Zn2+与腐殖酸钠组合抑制剂对萤石、方解石浮选分离的影响及机理研究

林颖欣, 杨哲辉, 李茂林, 赵艳秋, 姚伟, 崔瑞. Zn2+与腐殖酸钠组合抑制剂对萤石、方解石浮选分离的影响及机理研究[J]. 矿产保护与利用, 2023, 43(5): 81-88. doi: 10.13779/j.cnki.issn1001-0076.2023.05.009
引用本文: 林颖欣, 杨哲辉, 李茂林, 赵艳秋, 姚伟, 崔瑞. Zn2+与腐殖酸钠组合抑制剂对萤石、方解石浮选分离的影响及机理研究[J]. 矿产保护与利用, 2023, 43(5): 81-88. doi: 10.13779/j.cnki.issn1001-0076.2023.05.009
LIN Yingxin, YANG Zhehui, LI Maolin, ZHAO Yanqiu, YAO Wei, CUI Rui. Effect and Mechanism of Combined Inhibitor of Zn2+ and Sodium Humate on the Flotation Separation of Fluorite and Calcite[J]. Conservation and Utilization of Mineral Resources, 2023, 43(5): 81-88. doi: 10.13779/j.cnki.issn1001-0076.2023.05.009
Citation: LIN Yingxin, YANG Zhehui, LI Maolin, ZHAO Yanqiu, YAO Wei, CUI Rui. Effect and Mechanism of Combined Inhibitor of Zn2+ and Sodium Humate on the Flotation Separation of Fluorite and Calcite[J]. Conservation and Utilization of Mineral Resources, 2023, 43(5): 81-88. doi: 10.13779/j.cnki.issn1001-0076.2023.05.009

Zn2+与腐殖酸钠组合抑制剂对萤石、方解石浮选分离的影响及机理研究

  • 基金项目: 2021年湖北省省级大学生创新创业训练计划项目(S202110488011)
详细信息
    作者简介: 林颖欣(2001—),女,河南郑州人,本科,主要从事矿物浮选分离研究
    通讯作者: 崔瑞(1984—),男,博士,副教授,硕士研究生导师,主要从事矿物分级及分选工艺研究,E-mail:cuirui@wust.edu.cn
  • 中图分类号: TD923+.14;TD971+.5

Effect and Mechanism of Combined Inhibitor of Zn2+ and Sodium Humate on the Flotation Separation of Fluorite and Calcite

More Information
  • 常见的方解石型萤石矿由于方解石与萤石表面物理化学性质相似,两者的浮选分离较为困难。本文研究了ZnSO4·7H2O与腐殖酸钠组合抑制剂对萤石和方解石选择性分离浮选的影响,通过吸附量测定、XPS检测、红外光谱分析以及溶液化学计算进行了机理分析。实验结果表明,相比于单一腐殖酸钠抑制剂,当使用腐殖酸钠与ZnSO4·7H2O质量比为3∶1的组合抑制剂且其用量为20 mg/L、油酸钠用量为1.5×10−4 mol/L、pH为7的条件下,可使萤石、方解石浮选回收率之差由41.8百分点提高到70.31百分点。腐殖酸钠与Zn2+发生化学反应生成的腐殖酸锌与单一抑制剂相较方解石表面腐殖酸根吸附量有所提高;而萤石表面腐殖酸根吸附量减少,更多活性位点与油酸钠结合,油酸钠的吸附量提高,进而提高了组合抑制剂在两种矿物表面的选择性吸附,最终达到浮选分离的目的。

  • 加载中
  • 图 1  萤石、方解石XRD分析

    Figure 1. 

    图 2  浮选实验流程

    Figure 2. 

    图 3  浮选药剂制度实验结果:(a)腐殖酸钠用量实验,(b)pH值实验

    Figure 3. 

    图 4  Zn−腐殖酸钠条件实验结果

    Figure 4. 

    图 5  不同抑制剂下的萤石及方解石表面油酸钠吸附量

    Figure 5. 

    图 6  萤石表面XPS全谱

    Figure 6. 

    图 7  萤石与Zn−腐殖酸钠或腐殖酸钠作用后萤石表面XPS图谱

    Figure 7. 

    图 9  方解石与Zn−腐殖酸钠或腐殖酸钠作用后萤石表面XPS图谱

    Figure 9. 

    图 8  方解石表面XPS全谱

    Figure 8. 

    图 10  Zn−腐殖酸钠与腐殖酸钠的红外光谱

    Figure 10. 

    图 11  Zn2+水解组分图

    Figure 11. 

    图 12  Zn2+−腐殖酸钠机理模型推测

    Figure 12. 

    表 1  两种矿物化学成分含量化验

    Table 1.  Assay of the chemical content of the two minerals /%

    样品名称CaF2CaOSiO2MgOAl2O3纯度
    萤石99.150.380.130.1899.15
    方解石55.030.880.370.1598.30
    下载: 导出CSV

    表 2  实验药剂

    Table 2.  Experiment reagents

    药剂名称分子式品级生产厂家
    盐酸HCl分析纯国药集团化学试剂有限公司
    氢氧化钠NaOH分析纯国药集团化学试剂有限公司
    腐殖酸钠C9H8O4Na2分析纯上海麦克林生化科技有限公司
    油酸钠C17H33COONa分析纯上海迈坤化工有限公司
    氯化钾
    硫酸锌
    KCl
    ZnSO4·7H2O
    分析纯
    分析纯
    国药集团化学试剂有限公司
    国药集团化学试剂有限公司
    下载: 导出CSV
  • [1]

    中华人民共和国自然资源部. 中国矿产资源报告2018[M]. 北京: 地质出版社, 2018.

    Ministry of Natural Resources of the People's Republic of China a. China mineral resources report 2018 [M]. Beijing: Geological Press, 2018

    [2]

    毛景文, 杨宗喜, 谢桂青, 等. 关键矿产−国际动向与思考[J]. 矿床地质, 2019, 38(4): 689−698. doi: 10.16111/j.0258-7106.2019.04.001

    MAO J W, ANG Z X, XIE G Q, et al. Key minerals−International trends and reflections[J]. Mineral Deposits Geology, 2019, 38(4): 689−698. doi: 10.16111/j.0258-7106.2019.04.001

    [3]

    王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 2019, 93(6): 1189−1209. doi: 10.3969/j.issn.0001-5717.2019.06.003

    WANG D H. Research significance, mineral species definition, resource attributes, progress of mineral search, problems and main directions of research on key minerals[J]. Journal of Geology, 2019, 93(6): 1189−1209. doi: 10.3969/j.issn.0001-5717.2019.06.003

    [4]

    李敬, 张寿庭, 商朋强, 等. 萤石资源现状及战略性价值分析[J]. 矿产保护与利用, 2019, 39(6): 62−68. doi: 10.13779/j.cnki.issn1001-0076.2019.06.010

    LI J, ZHANG S T, SHANG P Q, et al. Current situation and strategic value analysis of fluorite resources[J]. Mineral Protection and Utilization, 2019, 39(6): 62−68. doi: 10.13779/j.cnki.issn1001-0076.2019.06.010

    [5]

    李育彪, 杨旭. 我国萤石资源及选矿技术进展[J]. 矿产保护与利用, 2022, 42(2): 49−58.

    LI Y B, YANG X. Progress of fluorite resources and beneficiation technology in China[J]. Mineral Protection and Utilization, 2022, 42(2): 49−58.

    [6]

    邓湘湘, 廖德华. 萤石选矿技术研究现状[J]. 怀化学院学报, 2015, 34(11): 94−96. doi: 10.3969/j.issn.1671-9743.2015.11.024

    DENG X X, LIAO D H. Research status of fluorite beneficiation technology[J]. Journal of Huaihua College, 2015, 34(11): 94−96. doi: 10.3969/j.issn.1671-9743.2015.11.024

    [7]

    ZENG X B, XU L H, TIAN J, et al. Effect of a ca depressant on flotation separation of celestite from fluorite and calcite using sds as a collector[J]. Minerals Engineering, 2017, 111: 201−208. doi: 10.1016/j.mineng.2017.06.019

    [8]

    KEQING FA, ANH V. Nguyen, Jan D. Miller. Interaction of calcium dioleate collector colloids with calcite and fluorite surfaces as revealed by afm force measurements and molecular dynamics simulation[J]. International Journal of Mineral Processing, 2006, 81(3): 166−177. doi: 10.1016/j.minpro.2006.08.006

    [9]

    LONGHUA XU, HOUQIN WU, FAQIN DONG, et al. Flotation and adsorption of mixed cationic/anionic collectors on muscovite mica[J]. Minerals Engineering, 2013, 41: 41−45. doi: 10.1016/j.mineng.2012.10.015

    [10]

    YANG B Q, WANG D R, WANG T S, et al. Effect of Cu2+ and Fe3+ on the depression of molybdenite in flotation[J]. Minerals Engineering, 2019, 130: 101−109. doi: 10.1016/j.mineng.2018.10.012

    [11]

    许鸿国. 金属离子对白钨矿、方解石、萤石浮选的影响及作用机理研究[D]. 赣州: 江西理工大学, 2015.

    Hsu H. G. . Research on the effect and action mechanism of metal ions on scheelite, calcite and fluorite flotation[D]. Ganzhou: Jiangxi University of Technology, 2015.

    [12]

    宁江峰. Zn2+、Fe3+与水玻璃组合抑制剂对萤石、方解石浮选分离的影响研究[D]. 武汉: 武汉科技大学, 2021.

    NING J F. Study on the effect of combined inhibitors of Zn2+, Fe3+ and water glass on the flotation separation of fluorite and calcite[D]. Wuhan: Wuhan University of Science and Technology, 2021.

    [13]

    聂光华. 含氟矿物与含钙碳酸盐矿物选择性抑制及机理研究[D]. 北京: 北京科技大学, 2016.

    NIE G H. Research on selective inhibition and mechanism of fluorine−bearing minerals and calcium−bearing carbonate minerals [D]. Beijing: University of Science and Technology Beijing, 2016.

    [14]

    刘佳, 易平, 戴情园, 等. 腐植酸钠修饰磁性纳米颗粒的开发与应用[J]. 金属材料与冶金工程, 2016, 44(2): 61−64. doi: 10.16793/j.cnki.2095-5014.2016.02.013

    LIU J, YI P, DAI Q Y, et al. Development and application of sodium humate−modified magnetic nanoparticles[J]. Metal Materials and Metallurgical Engineering, 2016, 44(2): 61−64. doi: 10.16793/j.cnki.2095-5014.2016.02.013

    [15]

    姚钰昀, 王雅静, 方子川, 等. 萤石矿浮选药剂研究进展[J]. 现代矿业, 2018, 34(11): 89−93. doi: 10.3969/j.issn.1674-6082.2018.11.021

    YAO Y Y, WANG Y J, FANG Z C, et al. Research progress of fluorite ore flotation chemicals[J]. Modern Mining, 2018, 34(11): 89−93. doi: 10.3969/j.issn.1674-6082.2018.11.021

    [16]

    赵若涵. 海藻酸钙−nZVI−生物炭复合材料对Pb−Zn−Cd污染土壤的钝化机制研究[D]. 贵阳: 贵州大学, 2022.

    ZHAO R H. Study on the passivation mechanism of calcium alginate−nZVI−biochar composite on Pb−Zn−Cd contaminated soil[D]. Guiyang: Guizhou University, 2022.

    [17]

    陈志友, 冯其明, 石晴. 腐殖酸钠对石英分散性能影响的机理研究[J]. 非金属矿, 2017, 40(4): 70−72. doi: 10.3969/j.issn.1000-8098.2017.04.021

    CHEN Z Y, FENG Q M, SHI Q. Mechanistic study on the effect of sodium humate on the dispersion properties of quartz[J]. Nonmetallic Mining, 2017, 40(4): 70−72. doi: 10.3969/j.issn.1000-8098.2017.04.021

  • 加载中

(12)

(2)

计量
  • 文章访问数:  301
  • PDF下载数:  13
  • 施引文献:  0
出版历程
收稿日期:  2023-08-03
刊出日期:  2023-10-25

目录