-
摘要:
以云南曲靖地区高铁煤矸石为对象,采用碳酸钠焙烧活化—硫酸浸出法进行氧化铝提取研究,探究了不同参数对H2SO4浸出Al2O3的影响。研究结果表明,在焙烧温度为800 ℃、焙烧时间为1 h、Na2CO3用量为25%、H2SO4质量浓度为98%、H2SO4用量为25%、酸浸时间为2 h的条件下,Al2O3的浸出率可以达到87%。添加Na2CO3焙烧活化可以有效改变煤矸石中氧化铝的晶体形态,显著提高Al2O3的浸出率。本研究可为煤矸石资源中的Al2O3开发利用提供一定的技术支持。
-
关键词:
- 煤矸石 /
- Na2CO3焙烧活化 /
- H2SO4浸出 /
- Al2O3浸出率
Abstract:Taking the coal gangue with high iron content in Qujing area of Yunnan Province as the research object, the coal gangue was roasted and activated by Na2CO3, and then Al2O3 was leached by H2SO4. The coal gangue was characterized by XRD and SEM, and the effects of different parameters on the leaching of Al2O3 by H2SO4 were investigated. The results showd that the leaching rate of Al2O3 from coal gangue was improved obviously by adding Na2CO3 during roasting. The optimum leaching rate of Al2O3 reached 87% under the following conditions of roasting temperature 800 ℃, roasting time 1 h, dosage of Na2CO3 25%, concentration of H2SO4 98%, dosage of H2SO4 25% and acid leaching time 2 h. This study provides theoretical guidance for leaching Al2O3 from coal gangue and technical support for the development and utilization of coal gangue resources.
-
Key words:
- coal gangue /
- Na2CO3 activation /
- H2SO4 leaching /
- Al2O3 leaching rate
-
-
表 1 煤矸石主要成分分析结果
Table 1. Analysis results of main components of coal gangue
/% 成分 SiO2 Al2O3 Fe2O3 TiO2 CaO MgO LOI 煤矸石 28.72 23.03 16.14 5.02 0.90 0.78 19.32 -
[1] CHEN P, ZHANG L, WANG Y, et al. Environmentally friendly utilization of coal gangue as aggregates for shotcrete used in the construction of coal mine tunnel[J]. Case Studies in Construction Materials, 2021, 15: e00751. doi: 10.1016/j.cscm.2021.e00751
[2] LI S, ZHANG H, DONG L, et al. Three−dimensional graphitic carbon sphere foams as sorbents for cleaning oil spills[J]. International Journal of Minerals Metallurgy and Materials, 2022, 29(3): 513−520. doi: 10.1007/s12613-020-2180-3
[3] 郭彦霞, 张圆圆, 程芳琴. 煤矸石综合利用的产业化及其展望[J]. 化工学报, 2014, 65(7): 2443−2453.
GUO Y X, ZHANG Y Y, CHEN F Q. Industrial development and prospect about comprehensive utilization of coal gangue[J]. CIESC Journal, 2014, 65(7): 2443−2453.
[4] LI J, WANG J. Comprehensive utilization and environmental risks of coal gangue: A review[J]. Journal of Cleaner Production, 2019, 239: 117946. doi: 10.1016/j.jclepro.2019.117946
[5] 黄顺进, 张丽, 颜井冲, 等. 高碱煤与煤矸石掺烧SO2和NO减排及结渣抑制研究[J]. 化工学报, 2022, 73(12): 5581−5591.
HUANG S J, ZHANG L, YAN J C, et al. lnvestigation on cofiring high−alkali coal with coal gangues: SO2, NO reduction and ash slagging inhibition[J]. CIESC Journal, 2022, 73(12): 5581−5591.
[6] 耿嘉悦, 于庆雪, 赵荣, 等. Cr3+、Ni2+改性NaY分子筛的吸附脱氮性能研究[J]. 江西化工, 2021, 37(1): 43−45. doi: 10.3969/j.issn.1008-3103.2021.01.013
GEN J Y, YU Q X, ZHAO R et al. Study on adsorption denitrification of NaY molecular sieve modified by Cr3+、Ni2+[J]. Jiangxi Chemical Industry, 2021, 37(1): 43−45. doi: 10.3969/j.issn.1008-3103.2021.01.013
[7] 邱继生, 朱梦宇, 周云仙, 等. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 75−81.
QIU J S, ZHU M Y, ZHOU Y X, et al. Modification effect of fly ash on interfacial transition zone of coal gangue concrete[J]. Materials Reports, 2023, 37(2): 75−81.
[8] 郭文超, 朱晓波, 张治国, 等. 煤矸石焙烧活化−酸浸提取氧化铝的实验研究[J/OL]. 煤炭转化, 2023: 1–19.
GU W C, ZHU X B, ZHANG Z G, et al. Experimental study on extraction aluminum from coal gangue by roasting activation−acid leaching[J/OL]. Coal Conversion, 2023: 1−19
[9] 李瑜, 舒新前, 张蕾, 等. 酸浸法提取煤矸石中Al2O3的研究[J]. 环境污染与防治, 2013, 35(7): 70−73.
LI Y, SHU X Q, ZHANG L, et al. Study on the acid leaching of Al2O3 from coal gangue[J]. Environmental Pollution & Control, 2013, 35(7): 70−73.
[10] 官长平, 严朝晖. 酸浸法提取煤矸石中Al2O3优化条件的研究[J]. 四川有色金属, 2011(4): 35−39. doi: 10.3969/j.issn.1006-4079.2011.04.008
GUAN C P, YAN C H. Study on the dissolving ratio of alumina of coal gangue treated with acids[J]. Sichuan Nonferrous Metals, 2011(4): 35−39. doi: 10.3969/j.issn.1006-4079.2011.04.008
[11] KIM J C, HONG S Y. Liquid concentration changes during slag cement hydration by alkali activation[J]. Cement and Concrete Research, 2001, 31(2): 283−285. doi: 10.1016/S0008-8846(00)00455-5
[12] YANG Q, ZHANG F, DENG X, et al. Extraction of alumina from alumina rich coal gangue by a hydro−chemical process[J]. Royal Society Open Science, 2020, 7(4): 192132. doi: 10.1098/rsos.192132
[13] GUO Y, YAN K, CUI L, et al. Improved extraction of alumina from coal gangue by surface mechanically grinding modification[J]. Powder Technology, 2016, 302: 33−41. doi: 10.1016/j.powtec.2016.08.034
[14] ZHAO J, WANG D, LIAO S. Effect of mechanical grinding on physical and chemical characteristics of circulating fluidized bed fly ash from coal gangue power plant[J]. Construction and Building Materials, 2015, 101: 851−860. doi: 10.1016/j.conbuildmat.2015.10.144
[15] LI X N, WANG H Y, ZHOU Q S, et al. Efficient separation of silica and alumina in simulated CFB slag by reduction Roasting-alkaline leaching process[J]. Waste Management, 2019, 87: 798−804. doi: 10.1016/j.wasman.2019.03.020
[16] CAO Z, CAO Y, DONG H, et al. Effect of calcination condition on the microstructure and pozzolanic activity of calcined coal gangue[J]. International Journal of Mineral Processing, 2016, 146: 23−28. doi: 10.1016/j.minpro.2015.11.008
[17] GUO Y, YAN K, CUI L, et al. Effect of Na2CO3 additive on the activation of coal gangue for alumina extraction[J]. International Journal of Mineral Processing, 2014, 131: 51−57. doi: 10.1016/j.minpro.2014.07.001
[18] 伊文涛, 闫春燕, 袁红梅. 煤矸石中铝的酸浸动力学[J]. 化学工程, 2011, 39(7): 5−8+17. doi: 10.3969/j.issn.1005-9954.2011.07.002
YIN W T, YAN C Y, YUAN H M. Acid leaching kinetics of aluminum from coal gangue[J]. Chemical Engineering, 2011, 39(7): 5−8+17. doi: 10.3969/j.issn.1005-9954.2011.07.002
[19] 程芳琴, 崔莉, 张红, 等. 煤矸石中氧化铝溶出的实验研究[J]. 环境工程学报, 2007(11): 99−103. doi: 10.3969/j.issn.1673-9108.2007.11.020
CHEN F Q, CUI L, ZHANG H, et al. Study on aluminum oxide extracted from coal gangue[J]. Chinese Journal of Environmental Engineering, 2007(11): 99−103. doi: 10.3969/j.issn.1673-9108.2007.11.020
[20] 燕可洲, 郭彦霞, 张俊才, 等. 潞安矿区煤矸石用于氧化铝提取的研究[J]. 煤炭转化, 2014, 37(4): 85−90. doi: 10.3969/j.issn.1004-4248.2014.04.019
YAN K Z, GUO Y X, ZHANG J C, et al. Study on alumina extraction from coal gangue in lu'an mining area[J]. Coal Conversion, 2014, 37(4): 85−90. doi: 10.3969/j.issn.1004-4248.2014.04.019
[21] 高孟华, 公明明, 王吉晶, 等. 煤矸石的活化及氧化铝提取[J]. 中国矿业, 2007(6): 88−90+102.
GAO M H, GONG M M, WANG J J, et al. Activation of coal waste and extraction of Al2O3[J]. China Mining Magazine, 2007(6): 88−90+102.
[22] 罗仲仁, 柯国军, 石马刚, 等. 基于山东某煤矸石的热活化机理研究[J]. 山西建筑, 2022, 48(22): 100−103. doi: 10.13719/j.cnki.1009-6825.2022.22.026
LUO Z R, KE G J, SHI M G, et al. Activation and evaluation of coal gangue[J]. Shanxi Architecture, 2022, 48(22): 100−103. doi: 10.13719/j.cnki.1009-6825.2022.22.026
[23] LIU S, LUO S, WU X, et al. Application of silica-alumina as hydrothermally stable supports for Pt catalysts for acid-assisted soot oxidation[J]. Rare Metals, 2023, 42(5): 1614−1623.
[24] DONG L, LIANG X X, SONG Q, et al. Study on Al2O3 extraction from activated coal gangue under different calcination atmospheres[J]. Journal of Thermal Science, 2017, 26(6): 570−576. doi: 10.1007/s11630-017-0975-y
[25] 朱宝忠, 孙运兰, 谢承卫. 不同煅烧温度下贵州兴义煤矸石的光谱学研究[J]. 煤炭学报, 2008(9): 1049−1052. doi: 10.13225/j.cnki.jccs.2008.09.014
ZHU B Z, SUN Y L, XIE C W. Spectroscopy research on the Guizhou Xingyi gangue of different calcined temperatures[J]. Journal of China Coal Society, 2008(9): 1049−1052. doi: 10.13225/j.cnki.jccs.2008.09.014
[26] 李永峰, 王万绪, 杨效益. 煤矸石热活化及影响因素[J]. 煤炭转化, 2007(1): 52−56. doi: 10.3969/j.issn.1004-4248.2007.01.013
LI Y F, WANG W X, YANG X Y. Thermal activation and influential factors of coal−gangue[J]. Coal Conversion, 2007(1): 52−56. doi: 10.3969/j.issn.1004-4248.2007.01.013
[27] 刘海龙, 韩红光, 崔莉, 等. 粒度对煤矸石活化效率的影响[J]. 环境科学与技术, 2009, 32(6): 45−48+52. doi: 10.3969/j.issn.1003-6504.2009.06.011
LIU H L, HAN H G, CUI L, et al. Key affecting factors on coal gangue activation[J]. Environmental Science & Technology, 2009, 32(6): 45−48+52. doi: 10.3969/j.issn.1003-6504.2009.06.011
-