淀粉接枝丙烯酰胺与聚丙烯酰胺对高岭土动态絮凝差异的研究

高博, 刘新辉, 姚雷, 袁雪, 谢永鑫, 卜祥宁, 沙杰. 淀粉接枝丙烯酰胺与聚丙烯酰胺对高岭土动态絮凝差异的研究[J]. 矿产保护与利用, 2024, 44(1): 24-32. doi: 10.13779/j.cnki.issn1001-0076.2024.01.003
引用本文: 高博, 刘新辉, 姚雷, 袁雪, 谢永鑫, 卜祥宁, 沙杰. 淀粉接枝丙烯酰胺与聚丙烯酰胺对高岭土动态絮凝差异的研究[J]. 矿产保护与利用, 2024, 44(1): 24-32. doi: 10.13779/j.cnki.issn1001-0076.2024.01.003
GAO Bo, LIU Xinhui, YAO Lei, YUAN Xue, XIE Yongxin, BU Xiangning, SHA Jie. Differences of Flocculating Characteristics of Difficult−to−settle Coal Slime Water Between Polyacrylamide−grafted Starch Copolymer and Polyacrylamide[J]. Conservation and Utilization of Mineral Resources, 2024, 44(1): 24-32. doi: 10.13779/j.cnki.issn1001-0076.2024.01.003
Citation: GAO Bo, LIU Xinhui, YAO Lei, YUAN Xue, XIE Yongxin, BU Xiangning, SHA Jie. Differences of Flocculating Characteristics of Difficult−to−settle Coal Slime Water Between Polyacrylamide−grafted Starch Copolymer and Polyacrylamide[J]. Conservation and Utilization of Mineral Resources, 2024, 44(1): 24-32. doi: 10.13779/j.cnki.issn1001-0076.2024.01.003

淀粉接枝丙烯酰胺与聚丙烯酰胺对高岭土动态絮凝差异的研究

  • 基金项目: 国家自然科学基金青年科学基金项目(52204296)
详细信息
    作者简介: 高博(1995—),男,陕西省榆林市人,工程师,主要从事选煤技术管理工作,E-mail:m18681902752@163.com
    通讯作者: 卜祥宁(1990—),男,讲师,博士(后),硕士研究生导师,研究方向为微细物料分离过程强化,E-mail:xiangning.bu@foxmail.com
  • 中图分类号: TD923+.3

Differences of Flocculating Characteristics of Difficult−to−settle Coal Slime Water Between Polyacrylamide−grafted Starch Copolymer and Polyacrylamide

More Information
  • 高岭土等黏土矿的存在是煤泥水沉降效果差的主要原因,目前尚未有关于难沉降煤泥水动态絮凝过程的研究。相较于聚丙烯酰胺(PAM)合成单体的毒性,淀粉接枝丙烯酰胺(SAM)合成的单体可降解性好。为此,以高岭土为研究对象,系统对比了SAM与PAM对高岭土动态絮凝过程的影响。首先,考察了不同SAM与PAM用量下的沉降速度和絮凝效果。随后,通过聚焦光束反射测量(FBRM)和颗粒录影显微镜(PVM)技术研究了高岭土悬浮液在SAM和PAM作用下的不同粒级颗粒数量变化。沉降实验和FBRM−PVM测试结果表明,PAM能够形成更多的+100 μm大絮团,使得PAM具有更好的沉降效果;SAM形成的絮团更稳定,对细颗粒的絮凝效果更好。最后,通过FBRM获得的数据,基于Smoluchowski模型计算了PAM和SAM作用下高岭土的絮凝动力学参数,发现PAM作用下的絮凝指数明显高于SAM,同时−30 μm和30~60 μm颗粒数量的动态变化主导了絮凝动力学中絮团的形成过程。总体而言,PAM可以形成更多的、松散的大絮团,有利于高岭土的快速沉降,但对微细颗粒絮凝效果不佳。相较于PAM,SAM独特的多链立体网状结构,有利于微细颗粒絮凝和形成稳定的絮团,从而避免选煤厂洗水系统中细泥的循环积聚。

  • 加载中
  • 图 1  絮凝剂用量对高岭土悬浮液沉降高度的影响

    Figure 1. 

    图 2  絮凝剂用量对高岭土悬浮液上清液浊度的影响

    Figure 2. 

    图 3  不同絮凝剂的SEM图片:(a) 淀粉;(b) PAM;(c) SAM[27]

    Figure 3. 

    图 4  不同测量时间下平均弦长(未加权)的变化曲线(5 min时添加絮凝剂)

    Figure 4. 

    图 5  −30 μm高岭土的颗粒数随测量时间的变化(5 min时添加絮凝剂)

    Figure 5. 

    图 9  +150 μm高岭土的颗粒数随测量时间的变化(5 min时添加絮凝剂)

    Figure 9. 

    图 6  30~60 μm高岭土的颗粒数随测量时间的变化(5 min时添加絮凝剂)

    Figure 6. 

    图 7  60~100 μm高岭土的颗粒数随测量时间的变化(5 min时添加絮凝剂)

    Figure 7. 

    图 8  100~150 μm高岭土的颗粒数随测量时间的变化(5 min时添加絮凝剂)

    Figure 8. 

    图 10  6 min和12 min时不同药剂作用的高岭土絮团形貌(药剂用量375 g/t)

    Figure 10. 

    图 11  SAM及PAM不同用量时颗粒絮凝指数的变化

    Figure 11. 

  • [1]

    王兆印, 王旭昭, 胡世雄. 利用粘土絮凝网处理钼矿尾液技术探索[J]. 泥沙研究, 2002(2): 36−39.

    WANG Z Y, WANG X Z, HU S X. Treatment of gangue suspension with clay suspension[J]. Journal of Sediment Research, 2002(2): 36−39.

    [2]

    陈忠杰, 闵凡飞, 朱金波, 等. 高泥化煤泥水絮凝沉降试验研究[J]. 煤炭科学技术, 2010, 38(9): 117−120.

    CHEN Z J, MIN F F, ZHU J B, et al. Experiment research on flocculation settlement of high muddied coal slurry water[J]. Coal Science and Technology, 2010, 38(9): 117−120.

    [3]

    孙景丹, 李涛, 朱莹莹. 联合助滤剂对高泥化煤泥水助滤效果影响研究[J]. 黑龙江工业学院学报(综合版), 2023, 23(1): 98−103.

    SUN J D, LI T, ZHU Y Y. Study on the effect of combined filter aid on extremely sliming coal slime water[J]. Journal of HeilongJiang University of Technology (Comprehensive Edition), 2023, 23(1): 98−103.

    [4]

    闵凡飞, 张明旭, 朱金波. 高泥化煤泥水沉降特性及凝聚剂作用机理研究[J]. 矿冶工程, 2011, 31(4): 55−58,62.

    MIN F F, ZHANG M X, ZHU J B. Settling property of highly−argillized coal slurry and reaction mechanism of coagulants[J]. Mining and Metallurgical Engineering, 2011, 31(4): 55−58,62.

    [5]

    孙浩, 李茂林, 崔瑞, 等. 不同絮凝剂对铅锌尾矿沉降效果的影响[J]. 矿产保护与利用, 2021, 41(1): 66−72.

    SUN H, LI M L, CUI R, et al. Influence of different flocculants on settling effect of lead−zinc tailings[J]. Conservation and Utilization of Mineral Resources, 2021, 41(1): 66−72.

    [6]

    石从众, 王成, 刘清涛, 等. 高分子复合絮凝剂在废水处理中的研究进展[J]. 毛纺科技, 2023, 51(7): 104−110.

    SHI C Z, WANG C, LIU Q T, et al. Research progress of polymer composite flocculants in treatment of textile wastewater[J]. Wool Textile Journal, 2023, 51(7): 104−110.

    [7]

    ZHANG W, TANG M, LI D, et al. Effects of alkalinity on interaction between EPS and hydroxy−aluminum with different speciation in wastewater sludge conditioning with aluminum based inorganic polymer flocculant[J]. Journal of Environmental Sciences, 2021, 100(2): 257−268.

    [8]

    OZKAN A, YEKELER M. Coagulation and flocculation characteristics of celestite with different inorganic salts and polymers[J]. Chemical Engineering and Processing:Process Intensification, 2004, 43(7): 873−879. doi: 10.1016/S0255-2701(03)00107-7

    [9]

    孙英娟, 杨永利. 淀粉接枝丙烯酰胺絮凝剂在煤泥水处理中的应用[J]. 中国煤炭, 2017, 43(2): 86−91.

    SUN Y J, YANG Y L. Application of polyacrylamide−grafted starch copolymer flocculant in coal slurry wastewater treatment[J]. China Coal, 2017, 43(2): 86−91.

    [10]

    王啸天, 骆禹璐, 高敏, 等. 天然高分子絮凝剂处理重金属废水研究的进展[J]. 化学世界, 2023, 64(2): 65−72.

    WANG X T, LUO Y L, GAO M, et al. Progress in heavy metal wastewater treatment by natural polymer flocculants[J]. Chemical World, 2023, 64(2): 65−72.

    [11]

    骆禹璐, 王啸天, 高敏, 等. 改性天然高分子絮凝剂制备的研究进展[J]. 高分子通报, 2022(8): 1−11.

    LUO Y L, WANG X T, GAO M, et al. Research progress in preparation of modified natural polymer flocculants[J]. Chinese Polymer Bulletin, 2022(8): 1−11.

    [12]

    赵长青, 赵阳, 杨秦欢, 等. 两性淀粉改性生物絮凝剂的优化及其去除制革废水中总氮的研究[J]. 中国皮革, 2023, 52(6): 1−6+11.

    ZHAO C Q, ZHAO Y, YANG Q H, et al. Optimization of amphoteric starch modified bioflocculant and removal of total nitrogen from tanning wastewater[J]. China Leather, 2023, 52(6): 1−6+11.

    [13]

    屈佳, 曹宝月, 张梦萌, 等. 改性淀粉絮凝剂在选矿废水处理中的应用[J]. 中国矿业, 2017, 26(4): 135−139.

    QU J, CAO B Y, ZHANG M M, et al. Modified starch flocculants used in beneficiation wastewater treatment[J]. China Mining Magazine, 2017, 26(4): 135−139.

    [14]

    张昊, 郑瑶瑶, 王海涛, 等. 淀粉基絮凝剂的制备及废水应用的研究进展[J]. 功能材料, 2022, 53(2): 2012−2018.

    ZHANG H, ZHENG Y Y, WANG H T, et al. Research progress on the preparation of starch−based flocculants and wastewater application[J]. Journal of Functional Materials, 2022, 53(2): 2012−2018.

    [15]

    陆曦, 刘鉴雯, 周晟葆, 等. 基于重金属去除功能的改性淀粉絮凝剂的研究进展[J]. 南京工业大学学报(自然科学版), 2021, 43(5): 547−552.

    LU X, LIU J W, ZHOU S B, et al. Research progress of starch modified flocculant based on heavy metal removal function[J]. Journal of Nanjing University of Technology(Natural Science Edition), 2021, 43(5): 547−552.

    [16]

    丁淑芳, 潘凤娇, 邹洪顺达. 天然淀粉接枝改性絮凝剂的研究进展[J]. 应用化工, 2023, 52(2): 633−638.

    DING S F, PAN F J, ZOU H S D. Recent advances in natural starch graft modified flocculant[J]. Applied Chemical Industry, 2023, 52(2): 633−638.

    [17]

    丁淑芳, 潘凤娇, 邹洪顺达. 羟丙基淀粉接枝丙烯酰胺制备及其强化煤泥水沉降的作用机制[J]. 煤炭工程, 2023, 55(6): 169−175.

    DING S F, PAN F J, ZOU H S D. Preparation of hydroxypropyl starch−grafted acrylamide and its mechanism of action to enhance coal slime water sedimentation[J]. Coal Engineering, 2023, 55(6): 169−175.

    [18]

    聂容春, 贾荣仙, 徐初阳, 等. 阳离子型PAM絮凝剂的光引发合成表征及絮凝效果[J]. 煤炭学报, 2006, 31(5): 631−634.

    NIE R C, JIA R X, XU C Y, et al. Photo−initiation synthesis and flocculation property of cationic PAM flocculant[J]. Journal of China Coal Society, 2006, 31(5): 631−634.

    [19]

    降林华, 朱书全, 邹立壮, 等. 天然改性淀粉絮凝剂的合成与应用[J]. 环境化学, 2008, 27(4): 449−453.

    JIANG L H, ZHU S Q, ZOU L Z, et al. Application and developing of natural modified starch flocculent[J]. Environmental Chemistry, 2008, 27(4): 449−453.

    [20]

    邸传耕, 乔军强. 布尔台选煤厂煤泥水特性的研究[J]. 选煤技术, 2016(6): 21−24.

    DI C G, QIAO J Q. A study on the characteristics of the slurry water at Burtai coal preparation plant[J]. Goal Preparation Technology, 2016(6): 21−24.

    [21]

    高明, 徐志强. 两性型淀粉−丙烯酰胺接枝共聚物的合成与在煤泥水处理中的应用[J]. 中国煤炭, 2013(11): 90−93,107.

    GAO M, XU Z Q. Preparation of amphoteric polyacrylamide−grafted starch copolymer and its application in coal slurry wastewater treatment[J]. China Coal, 2013(11): 90−93,107.

    [22]

    张方东, 李国栋, 裴继诚, 等. 利用FBRM研究阳离子聚丙烯酰胺对高岭土的动态絮凝过程[J]. 中国造纸, 2013, 32(10): 15−20.

    ZHANG F D, LI G D, PEI J C, et al. Study on the dynamic flocculation process of kaolin suspensions induced by cationic polyacrylamide by using FBRM[J]. China Pulp & Paper, 2013, 32(10): 15−20.

    [23]

    GAO J, BU X, ZHOU S, et al. Graphite flotation by β−cyclodextrin/kerosene Pickering emulsion as a novel collector[J]. Minerals Engineering, 2022, 178: 107412.

    [24]

    GAO J, BU X, ZHOU S, et al. Pickering emulsion prepared by nano−silica particles – A comparative study for exploring the effect of various mechanical methods[J]. Ultrasonics Sonochemistry, 2022, 83: 105928.

    [25]

    LI S, WANG X, ZHANG Q. Dynamic experiments on flocculation and sedimentation of argillized ultrafine tailings using fly−ash−based magnetic coagulant[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(7): 1975−1984. doi: 10.1016/S1003-6326(16)64308-X

    [26]

    ZHOU S, BU X, ALHESHIBRI M, et al. Floc structure and dewatering performance of kaolin treated with cationic polyacrylamide degraded by hydrodynamic cavitation[J]. Chemical Engineering Communications, 2022, 209(6): 798−807. doi: 10.1080/00986445.2021.1919652

    [27]

    康巍. 酸变性水包水型淀粉接枝聚丙烯酰胺的合成及性能研究[D]. 武汉: 武汉科技大学, 2011.

    KANG W. Synthesis and properties of acid modified water in water starch grafted polyacrylamide[D]. Wuhan: Wuhan University of Science and Technology, 2011.

    [28]

    DING S, ZOU H, ZHOU S, et al. The preparation of hydroxypropyl starch grafted acrylamide and its enhancement on flocculation of coal slime water[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects, 2022, 44(3): 7934−7948. doi: 10.1080/15567036.2022.2118904

    [29]

    NEGRO C, FUENTE E, BLANCO A, et al. Flocculation mechanism induced by phenolic resin/PEO and floc properties[J]. AIChE Journal, 2005, 51(3): 1022−1031. doi: 10.1002/aic.10352

  • 加载中

(11)

计量
  • 文章访问数:  127
  • PDF下载数:  12
  • 施引文献:  0
出版历程
收稿日期:  2023-10-16
刊出日期:  2024-02-15

目录