纳米气泡的制备方法及其强化微细颗粒矿物浮选机理的研究进展

王睿, 南楠, 马芳源, 李明娇, 李湘微, 张迪, 唐崇亮. 纳米气泡的制备方法及其强化微细颗粒矿物浮选机理的研究进展[J]. 矿产保护与利用, 2024, 44(1): 46-52. doi: 10.13779/j.cnki.issn1001-0076.2024.01.006
引用本文: 王睿, 南楠, 马芳源, 李明娇, 李湘微, 张迪, 唐崇亮. 纳米气泡的制备方法及其强化微细颗粒矿物浮选机理的研究进展[J]. 矿产保护与利用, 2024, 44(1): 46-52. doi: 10.13779/j.cnki.issn1001-0076.2024.01.006
WANG Rui, NAN Nan, MA Fangyuan, LI Mingjiao, LI Xiangwei, ZHANG Di, TANG Chongliang. Research Status on the Preparation Methods of Nanobubbles and the Mechanism of Enhancing the Flotation of Micro-fine Minerals[J]. Conservation and Utilization of Mineral Resources, 2024, 44(1): 46-52. doi: 10.13779/j.cnki.issn1001-0076.2024.01.006
Citation: WANG Rui, NAN Nan, MA Fangyuan, LI Mingjiao, LI Xiangwei, ZHANG Di, TANG Chongliang. Research Status on the Preparation Methods of Nanobubbles and the Mechanism of Enhancing the Flotation of Micro-fine Minerals[J]. Conservation and Utilization of Mineral Resources, 2024, 44(1): 46-52. doi: 10.13779/j.cnki.issn1001-0076.2024.01.006

纳米气泡的制备方法及其强化微细颗粒矿物浮选机理的研究进展

  • 基金项目: 辽宁省教育厅高等学校基本科研项目(LJKQZ20222340);辽宁科技大学博士启动基金;辽宁科技大学大学生创新创业训练计划项目
详细信息
    作者简介: 王睿(2004—),女,辽宁新民人,本科生,研究方向为细颗粒矿物浮选。Email:2941659743@qq.com
    通讯作者: 马芳源(1991—),男,辽宁凌源人,博士,研究方向为细颗粒矿物浮选。Email:1209468883@qq.com
  • 中图分类号: TD91;TD923

Research Status on the Preparation Methods of Nanobubbles and the Mechanism of Enhancing the Flotation of Micro-fine Minerals

More Information
  • 综述了近年来纳米气泡的制备方法以及对矿物浮选行为影响的研究现状,包括体相纳米气泡的产生、界面纳米气泡的制备,总结了纳米气泡对微细颗粒浮选概率、颗粒表面性质差异以及颗粒回收粒度的影响。在此基础上,阐述了纳米气泡强化细颗粒浮选的机理,为纳米气泡浮选技术的基础研究和应用提供了研究方向。

  • 加载中
  • 图 1  水利空化原理形成纳米气泡的过程[2]

    Figure 1. 

    图 2  两种超声法制备体相纳米气泡的装置[16-17]

    Figure 2. 

    图 3  纳米气泡发生系统原理(上)和工作台顶部设置(下)[19]

    Figure 3. 

    图 4  电解法和原子力显微镜联合制备纳米气泡装置[21]

    Figure 4. 

    图 5  疏水颗粒表面间纳米气泡桥接毛细管效应的形成过程[4]

    Figure 5. 

  • [1]

    TAO D P. Recent advances in fundamentals and applications of nanobubble enhanced froth flotation: a review[J]. Minerals Engineering, 2022, 183: 107554. doi: 10.1016/j.mineng.2022.107554

    [2]

    ZHOU L, WANG X, SHIN H, et al. Ultrahigh density of gas molecules confined in surface nanobubbles in ambient water[J]. Journal of the American Chemical Society, 2020, 142: 5583−5593. doi: 10.1021/jacs.9b11303

    [3]

    卢肖, 马芳源. 体相纳米气泡的制备方法及强化细颗粒矿物浮选机理研究现状[J]. 中国矿业, 2023, 32(10): 111−117.

    LU X, MA F Y. Study on properties of bulk nanobubbles and their interaction mechanism with fine particles[J]. China Mining Magazine, 2023, 32(10): 111−117.

    [4]

    孟令轩, 赵通林, 范兆琳, 等. 纳米气泡强化超细颗粒浮选机理研究现状及展望[J]. 矿产保护与利用, 2023, 43(2): 162−168.

    MENG L X, ZHAO T L, FAN Z L, et al. Research status of nanobubble enhanced flotation mechanism of ultrafine particles[J]. Conservation and Utilization of Mineral Resources, 2023, 43(2): 162−168.

    [5]

    ZHANG D, MA F, TAO Y. Study on effect of nanobubble on ultra-fine flake graphite (UFG) flotation[J]. Particulate Science and Technology, 2023, 41(7): 1062−1070. doi: 10.1080/02726351.2023.2173110

    [6]

    MA F, TAO D, TAO Y. Effects of nanobubbles in column flotation of Chinese sub-bituminous coal[J]. International Journal of Coal Preparation and Utilization, 2022, 42(4): 1126−1142. doi: 10.1080/19392699.2019.1692340

    [7]

    HUANG H, YANG X, WU Z, et al. An investigation of nanobubble enhanced flotation for fly ash decarbonization[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 679: 132563. doi: 10.1016/j.colsurfa.2023.132563

    [8]

    CHEN G, REN L, ZANG Y, et al. Improvement of fine muscovite flotation through nanobubble pretreatment and its mechanism[J]. Minerals Engineering, 2022, 189: 107868.

    [9]

    杨晓, 陶东平, 邵怀志, 等. 纳米气泡浮选技术研究进展[J]. 矿产综合利用, 2023: 1-9. [网络首发].

    YANG X, TAO D P, SHAO H Z, et al. Research progress of nanobubble flotation technology[J]. Multipurpose Utilization of Mineral Resources. 2023: 1-9. [Online].

    [10]

    LI M, BUSSONNIERE A, BRONSON M, et al. Study of venturi tube geometry on the hydrodynamic cavitation for the generation of microbubbles[J]. Minerals Engineering, 2019, 132: 268−74. doi: 10.1016/j.mineng.2018.11.001

    [11]

    ZHANG X Y, WANG Q S, WU Z X, et al. An experimental study on size distribution and zeta potential of bulk cavitation nanobubbles[J]. International Journal of Minerals, Metallurgy and Materials, 2021, 27(2): 152−161.

    [12]

    ETCHEPARE R, OLIVEIRA H, NICKNIG M, et al. Nanobubbles: generation using a multiphase pump, properties and features in flotation[J]. Minerals Engineering, 2017, 112: 19−26. doi: 10.1016/j.mineng.2017.06.020

    [13]

    OLIVEIRA H, AZEVEDO A, RUBIO J. Nanobubbles generation in a high-rate hydrodynamic cavitation tube[J]. Minerals Engineering, 2018, 116: 32−34. doi: 10.1016/j.mineng.2017.10.020

    [14]

    ROSA A F, RUBIO J. On the role of nanobubbles in particle–bubble adhesion for the flotation of quartz and apatitic minerals[J]. Minerals Engineering, 2018, 127: 178−184. doi: 10.1016/j.mineng.2018.08.020

    [15]

    WU C, NESSET K, MASLIYAH J, et al. Generation and characterization of submicron size bubbles[J]. Advances in Colloid and Interface Science, 2012, 179/180/181/182: 123-132.

    [16]

    YASUDA K, MATSUSHIMA H, ASAKURA Y. Generation and reduction of bulk nanobubbles by ultrasonic irradiation[J]. Chemical Engineering Science, 2019, 195: 455−461. doi: 10.1016/j.ces.2018.09.044

    [17]

    KI M, SONG S, KIM W, et al. An experimental study on bubble collapsing effect of nanobubble using ultrasonic wave[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(1): 636−642. doi: 10.1166/jnn.2020.17280

    [18]

    LI C, ZHANG H. A review of bulk nanobubbles and their roles in flotation of fine particles[J]. Powder Technology, 2022, 395: 618−633. doi: 10.1016/j.powtec.2021.10.004

    [19]

    AHMED A, SUN C, HUA L, et al. Generation of nanobubbles by ceramic membrane filters: The dependence of bubble size and zeta potential on surface coating, pore size and injected gas pressure[J]. Chemosphere, 2018, 203: 327−335. doi: 10.1016/j.chemosphere.2018.03.157

    [20]

    FAVAS E P, KYZAS G Z, EFTHIMIADOU E K, et al. Bulk nanobubbles, generation methods and potential applications[J]. Current Opinion in Colloid & Interface Science, 2021, 54: 101455.

    [21]

    张立娟, 方海平, 胡钧. 纳米气泡的科学之谜[J]. 物理, 2018, 47(9): 574−583. doi: 10.7693/wl20180906

    ZHANG L J, FANG H P, HU J. Science mysteries of nanobubbles[J]. Physics, 2018, 47(9): 574−583. doi: 10.7693/wl20180906

    [22]

    周利民. 水中纳米气泡的气体状态与稳定机理的探究[D]. 北京: 中国科学院大学(中国科学院上海应用物理研究所), 2019.

    ZHOU L M. Investigation of the gaseous nature and stabilization mechanism of nanobubbles in water[D]. Beijing: University of Chinese Academy of Sciences (Shanghai Institute of Applied Physics, Chinese Academy of Sciences), 2019.

    [23]

    YANG S, TSAI P, KOOIJ E, et al. Electrolytically generated nanobubbles on highly orientated pyrolytic graphite surfaces[J]. Langmuir, 2013, 29(19): 5937−5937. doi: 10.1021/la401330b

    [24]

    段娟. 不同含气量水溶液替换法产生纳米气泡及其物理特性的研究[D]. 上海: 上海师范大学, 2014.

    DUAN J. Study on nanobubbles produced by different gas-containing aqueous solutions replacement method and their physical properties[D]. Shanghai: Shanghai Normal University, 2014.

    [25]

    LI C, ZHANG H. Surface nanobubbles and their roles in flotation of fine particles: a review[J]. Journal of Industrial and Engineering Chemistry, 2022, 106: 37−35. doi: 10.1016/j.jiec.2021.11.009

    [26]

    LOU S, OUYANG Z, ZHANG Y, et al. Nanobubbles on solid surface imaged by atomic force microscopy[J]. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2000, 18: 2573.

    [27]

    LOU S, GAO J, XIAO X, et al. Studies of nanobubbles produced at liquid/solid interfaces[J]. Mater Charact. 2002, 48: 211–4.

    [28]

    LI C, LI X, XU M, ZHANG H. Effect of ultrasonication on the flotation of fine graphite particles: nanobubbles or not[J]. Ultrasonics Sonochemistry, 2020, 69: 105243. doi: 10.1016/j.ultsonch.2020.105243

    [29]

    MA F, ZHANG P, TAO D. Surface nanobubble characterization and its enhancement mechanisms for fine-particle flotation: a review[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(4): 727−738. doi: 10.1007/s12613-022-2450-3

    [30]

    ZHANG F, XING Y, CHANG G, et al. Enhanced lignite flotation using interfacial nanobubbles based on temperature difference method[J]. Fuel, 2021, 293: 120313. doi: 10.1016/j.fuel.2021.120313

    [31]

    ZHANG F, XING Y, SUN L, et al. Characteristics of interfacial nanobubbles and their interaction with solid surfaces[J]. Applied Surface Science, 2021, 550: 149258. doi: 10.1016/j.apsusc.2021.149258

    [32]

    ZHOU L, WANG X, HYUN-JOON S, et al. Surface nanobubbles produced by cold water investigated using scanning transmission X-ray microscopy[J]. Microscopy and Microanalysis, 2018, 24(S2): 470−471. doi: 10.1017/S1431927618014587

    [33]

    OWENS C L, SCHACH E, HEINIG T, et al. Surface nanobubbles on the rare earth fluorcarbonate mineral synchysite[J]. Journal of Colloid and Interface Science, 2019, 552: 66−71. doi: 10.1016/j.jcis.2019.05.014

    [34]

    SOBHY A, TAO D. Nanobubble column flotation of fine coal particles and associated fundamentals[J]. International Journal of Mineral Processing, 2013, 124: 109−116. doi: 10.1016/j.minpro.2013.04.016

    [35]

    ZHOU W G, CHEN H, OU L M, et al. Aggregation of ultra-fine scheelite particles induced by hydrodynamic cavitation[J]. International Journal of Mineral Processing, 2016, 157: 236−240. doi: 10.1016/j.minpro.2016.11.003

    [36]

    徐冬林, 陶东平, 吴中贤, 等. 纳米气泡在鞍山式铁矿反浮选中效果探索[J]. 金属矿山, 2020(8): 83−90.

    XU DONGLIN, TAO DONGPING, WUZHONGXIAN, et al. Exploration of effects of nanobubble in reverse flotation of Anshan-type iron ore[J]. Metal Mine, 2020(8): 83−90.

    [37]

    PARKER J L, LAESSON P M, ATTARD P. Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces[J]. The Journal of Physical Chemistry, 1994, 98(34): 8468−8480. doi: 10.1021/j100085a029

    [38]

    MA F, TAO D. A Study of Mechanisms of Nanobubble-Enhanced Flotation of Graphite[J]. Nanomaterials, 2022, 12(19): 3361.

    [39]

    WANG X, YUAN S, LIU J, ZHU Y M, HAN Y X. Nanobubble-enhanced flotation of ultrafine molybdenite and the associated mechanism[J]. Journal of Molecular Liquids, 2022, 346: 118312. doi: 10.1016/j.molliq.2021.118312

    [40]

    WANG Y, XIAO W, QIU W. Nanobubble enhances rutile flotation separation in styrene phosphoric acid system[J]. Separations, 2023, 10(4): 243. doi: 10.3390/separations10040243

    [41]

    SONG B, WALCZYK W, SCHONHERR H. Contact angles of surface nanobubbles on mixed self-assembled monolayers with systematically varied macroscopic wettability by atomic force microscopy[J]. Langmuir, 2011, 27(13): 8223−8232. doi: 10.1021/la2014896

    [42]

    DING S, XING Y, ZHENG X, et al. New insights into the role of surface nanobubbles in bubble-particle detachment[J]. Langmuir, 2020, 36(16): 4339−4346. doi: 10.1021/acs.langmuir.0c00359

    [43]

    TANG C, MA F, WU T, et al. Study on surface physical and chemical mechanism of nanobubble enhanced flotation of fine graphite[J]. Journal of Industrial and Engineering Chemistry, 2023, 122: 389−396.

    [44]

    CALGAROTO S, AZEVEDO A, RUBIO J. Flotation of quartz particles assisted by nanobubbles[J]. International Journal of Mineral Processing, 2015, 137: 64−70. doi: 10.1016/j.minpro.2015.02.010

    [45]

    CHEN G, REN L, ZHANG Y, BAO S. Improvement of fine muscovite flotation through nanobubble pretreatment and its mechanism[J]. Minerals Engineering, 2022, 189: 107868.

    [46]

    STOCKELHUBER K W, RADOEV B, WNGER A, et al. Rupture of wetting films caused by nanobubbles[J]. Langmuir, 2004, 20(1): 164−168. doi: 10.1021/la0354887

    [47]

    SIMONSEN A C, HANSEN P L, KLOSGEN B. Nanobubbles give evidence of incomplete wetting at a hydrophobic interface[J]. Journal of Colloid and Interface Science, 2004, 273: 291−299. doi: 10.1016/j.jcis.2003.12.035

  • 加载中

(5)

计量
  • 文章访问数:  270
  • PDF下载数:  26
  • 施引文献:  0
出版历程
收稿日期:  2023-11-28
刊出日期:  2024-02-15

目录