-
摘要:
针对江西省某尾矿开展了工艺矿物学与回收锂云母选矿实验研究,明确了样品的主要元素与矿物组成,以及Li2O的元素赋存状态;考察了磨矿、脱泥、十二胺、调整剂GY503、水玻璃用量等因素对浮选的影响。研究结果表明,样品Li2O品位为0.276%,主要有价矿物为锂云母(锂白云母)。浮选实验发现,脱泥有利于提高Li2O浮选效率,原矿适宜的磨矿细度为−0.074 mm粒级占60%,浮选粗选十二胺、GY503、水玻璃的最佳用量分别为200 g/t、2000 g/t和500 g/t,通过“一次粗选一次扫选两次精选”的浮选闭路流程,可获得Li2O品位和回收率分别为1.46%和82.81%的锂云母精矿;对锂云母浮选精矿进一步开展了磁选提质实验,获得了Li2O品位和回收率分别为2.02%和40.71%的磁选精矿,实现了该低品位锂云母资源的有效利用。
Abstract:Through research on process mineralogy and the recovery of lepidolite, an experimental study was conducted on the tailings from Jiangxi Province. The main elements and mineral composition of the sample were identified, and the occurrence states of Li2O−bearing minerals were determined. Tests were performed on grinding, desliming, and the dosages of lauryl amine, GY503, and sodium silicate. The results indicated that the Li2O grade of the sample was 0.276%, with the main valuable mineral being lepidolite (or lithian muscovite). Flotation condition tests showed that desliming improved flotation efficiency, and the suitable grinding fineness for the ore was 60% passing 0.074 mm. In roughing flotation, the optimal dosages of dodecyl amine, GY503, and sodium silicate were 200 g/t, 2000 g/t, and 500 g/t, respectively. The flotation closed−circuit test, consisting of one roughing, one cleaning, and two scavenging steps, yielded concentrates with a Li2O grade of 1.46% and a recovery of 82.81%. Furthermore, high−gradient magnetic separation further improved the quality of the lepidolite flotation concentrates, yielding a magnetic concentrate with a Li2O grade of 2.02% and a recovery of 40.71%. Thus, the effective utilization of the low−grade lepidolite ore was realized.
-
Key words:
- lepidolite /
- flotation /
- magnetic separation /
- tailings
-
-
表 1 样品化学多元素分析结果
Table 1. Chemical multi-element analysis results of the sample
元素 Li2O Rb2O Cs2O Fe2O3 TiO2 K2O Na2O 含量/% 0.276 0.011 0.002 0.95 0.02 3.01 3.56 元素 MgO CaO Al2O3 SiO2 Ta2O5 Nb2O5 — 含量/% 0.03 0.52 15.97 74.18 0.002 0.005 — 表 2 样品矿物组成和锂的赋存状态/%
Table 2. Mineral constituents and Li2O occurrence states of the sample
/% 矿物 含量 Li2O 品位 Li2O 分布率 钽铌锰矿 0.014 —— —— 锡石 0.006 —— —— 锂云母/锂白云母 16.332 1.52 89.78 锂绿泥石/绿泥石 1.583 1.12 6.41 磷锂铝石 0.019 10.10 0.69 磷锰锂矿 0.005 10.31 0.19 石英 33.019 0.01 1.19 长石 47.906 0.01 1.74 其他 1.116 —— —— 合计 100.000 0.32 100.00 表 3 浮选闭路实验结果
Table 3. Closed−circuit test results of lepidolite flotation
/% 产品 产率 Li2O品位 Li2O回收率 浮选精矿 15.82 1.46 82.81 尾矿 67.76 0.032 7.77 细泥 16.42 0.16 9.42 原矿 100.00 0.279 100.00 表 4 磁选提质实验磁选精矿指标
Table 4. Indexes of concentrates from high-gradient magnetic separation upgrading test
磁介质 背景场强/T 产率/% 磁选精矿
Li2O品位/%Li2O回收率/% 尺寸/mm 充填率/% 对作业 对原矿 对作业 对原矿 3 10.50 0.50 9.72 1.54 2.07 13.59 11.25 0.55 21.23 3.36 2.02 29.37 24.32 0.60 23.70 3.75 1.92 31.38 25.99 14.67 0.50 12.21 1.93 2.05 21.34 17.67 0.55 22.78 3.60 2.04 31.61 26.18 0.60 27.89 4.41 1.87 35.69 29.55 19.36 0.50 25.39 4.02 1.95 33.44 27.69 0.55 41.19 6.52 1.89 53.69 44.46 0.60 46.56 7.37 1.83 58.49 48.44 2 10.54 0.50 16.98 2.69 2.09 24.17 20.02 0.55 26.43 4.18 2.06 37.55 31.10 0.60 31.34 4.96 1.97 42.16 34.91 14.89 0.50 23.65 3.74 2.07 33.29 27.57 0.55 36.02 5.70 2.02 49.16 40.71 0.60 42.21 6.68 1.95 56.39 46.70 19.87 0.50 32.14 5.08 1.97 43.18 35.76 0.55 41.82 6.62 1.90 54.58 45.20 0.60 48.83 7.72 1.86 61.79 51.17 -
[1] 魏江桥, 王安建, 马哲, 等. 锂资源全球治理体系历史演变、现实困境与中国参与策略[J]. 科技导报, 2024, 42(5): 81−91.
WEI J Q, WANG A J, MA Z, et al. Historical evolution, current status, realistic challenges, and China's strategy of the global governance system of lithium resources[J]. Science & Technology Review, 2024, 42(5): 81−91.
[2] MAISEL F, NEEF C, MARSCHEIDER−WEIDEMANN F, et al. A forecast on future raw material demand and recycling potential of lithium−ion batteries in electric vehicles[J]. Resources, Conservation and Recycling, 2023, 192: 106920. doi: 10.1016/j.resconrec.2023.106920
[3] MIATTO A, WOLFRAM P, RECK B K, et al. Uncertain future of American lithium: A perspective until 2050[J]. Environmental Science & Technology, 2021, 55(23): 16184−16194.
[4] ZENG X L, LI J H. Implications for the carrying capacity of lithium reserve in China[J]. Resources, Conservation and Recycling, 2013, 80: 58−63. doi: 10.1016/j.resconrec.2013.08.003
[5] 成金华, 左芝鲤, 詹成, 等. 中国锂资源综合风险动态演变及预警研究[J]. 自然资源学报, 2024, 39(3): 528−546. doi: 10.31497/zrzyxb.20240303
CHENG J H, ZUO Z L, ZHAN C, et al. Toward the dynamic evolution and early warning of comprehensive risk in China’s lithium resources[J]. Journal of Natural Resources, 2024, 39(3): 528−546. doi: 10.31497/zrzyxb.20240303
[6] 廖秋敏, 孙明浩. “逆全球化”背景下中国锂资源供应安全评价[J]. 矿业研究与开发, 2022, 42(4): 179−186.
LIAO Q M, SUN M H. Evaluation of China's lithium resource supply security under the background of “anti−globalization”[J]. Mining Research and Development, 2022, 42(4): 179−186.
[7] 崔晓林. 中国锂矿资源需求预测及供需分析[D]. 北京: 中国地质大学(北京), 2017.
CUI X L. China’s lithium ore resource demand forecast and supply and demand analysis[D]. Beijing: China University of Geosciences Beijing, 2017.
[8] 王世一, 彭频. 基于物质流分析下的中国锂资源供应风险评估[J/OL]. 中国国土资源经济: 1−20 [2024−04−21]. https://doi.org/10.19676/j.cnki.1672−6995.001027.
WANG S Y, PENG P. Risk assessment of lithium resource supply in China based on material flow analysis[J/OL]. Natural Resource Economics of China: 1−20 [2024−04−21]. https://doi.org/10.19676/j.cnki.1672−6995.001027.
[9] 杨泓, 钟巍, 钟发平, 等. 锂云母提锂技术研究进展[J/OL]. 过程工程学报: 1−12[2024−05−22]. http://kns.cnki.net/kcms/detail/11.4541.TQ.20240430.1044.002.html.
YANG H, ZHONG W, ZHONG F P, et al. Research progress of lithium extraction technology from lepidolite[J/OL]. The Chinese Journal of Process Engineering: 1−12 [2024−05−22]. http://kns.cnki.net/kcms/detail/11.4541.TQ.20240430.1044.002.html.
[10] 张江峰. 锂辉石提锂技术发展现状[J]. 世界有色金属, 2020(18): 1−4. doi: 10.3969/j.issn.1002-5065.2020.18.001
ZHANG J F. Current status of lithium extraction technology from spodumene[J]. World Nonferrous Metals, 2020(18): 1−4. doi: 10.3969/j.issn.1002-5065.2020.18.001
[11] 肖仪武, 王臻, 冯凯, 等. 锂矿石基因特性及其对选矿的影响[J/OL]. 有色金属(选矿部分): 1−23[2024−04−21]. http://kns.cnki.net/kcms/detail/11.1840.TF.20240411.1436.002.html.
XIAO Y W, WANG Z, FENG K, et al. Genetic characteristics of lithium ores and its influence on mineral beneficiation[J/OL]. Nonferrous Metals(Mineral Processing Section): 1−23 [2024−04−21]. http://kns.cnki.net/kcms/detail/11.1840.TF.20240411.1436.002.html.
[12] 康敏, 吴天骄, 赵笑益, 等. 锂云母矿浸出液除钙、镁工艺研究[J]. 矿冶工程, 2023, 43(4): 135−138. doi: 10.3969/j.issn.0253-6099.2023.04.029
KANG M, WU T J, ZHAO X Y, et al. Removal of calcium and magnesium from leaching solution of lepidolite[J]. Mining and Metallurgical Engineering, 2023, 43(4): 135−138. doi: 10.3969/j.issn.0253-6099.2023.04.029
[13] SHA Y, DONG T, ZHAO Q, et al. A new strategy for enhancing the room temperature conductivity of solid−state electrolyte by using a polymeric ionic liquid[J]. Ionics, 2020, 26(10): 4803−4812.
[14] ZHENG H, HUANG J, DONG T, et al. A novel strategy of lithium recycling from spent lithium−ion batteries using imidazolium ionic liquid[J]. Chinese Journal of Chemical Engineering. 2022, 41: 246−251.
[15] XU X, CHEN Y, WAN P, et al. Extraction of lithium with functionalized lithium ion−sieves[J]. Progress in Materials Science. 2016: 276−313.
[16] 楼法生, 徐喆, 黄贺, 等. 江西低品位超大型花岗岩云母型锂矿地质特征及找矿意义[J]. 东华理工大学学报(自然科学版), 2023, 46(5): 425−436.
LOU F S, XU Z, HUAN G H, et al. Geological characteristics and prospecting significance of low grade super large granite mica−type lithium deposits in Jiangxi province[J]. Journal of East China University of Technology (Natural Science), 2023, 46(5): 425−436.
[17] CBC−金属网−中国锂电网. 中国锂云母(Li2O: 1.5−2.0)价格行情Li2O: 1.5−2.0[EB/OL]. https://www.cbcie.com/104899/0/list.html.
China Bulk Commodity−Metal−China Lithium Battery. China’s lepidolite (Li2O: 1.5−2.0) price market Li2O: 1.5−2.0[EB/OL]. https://www.cbcie.com/104899/0/list.html.
[18] 谢黎明, 姚涛, 汪龙飞. 江西某含锂瓷石矿选矿试验研究[J]. 非金属矿, 2024, 47(1): 59−61+66.
XIE L M, YAO T, WANG L F. Experimental study on beneficiation of a lithium−containing porcelain ore in Jiangxi[J]. Non−Metallic Mines, 2023, 46(5): 425−436.
[19] 邹伟民, 梅晓方, 邱振忠, 等. 某锂云母粗精矿磁选再富集试验研究[J]. 现代矿业, 2024, 40(2): 176−178. doi: 10.3969/j.issn.1674-6082.2024.02.044
ZOU W M, MEI X F, QIU Z Z, et al. Experimental study on magnetic separation and re−enrichment of a lepidolite rough concentrate[J]. Modern Mining, 2024, 40(2): 176−178. doi: 10.3969/j.issn.1674-6082.2024.02.044
[20] 李杰, 孙大勇, 祁忠旭, 等. 内蒙古某低品位铷多金属矿选矿试验研究[J]. 矿业研究与开发, 2024, 44(1): 202−206.
LI J, SUN D Y, QI Z X, et al. Experimental study on beneficiation of a low−grade rubidium polymetallic ore in Inner Mongolia[J]. Mining Research and Development, 2024, 44(1): 202−206.
[21] 李洁, 黄小龙. 江西雅山花岗岩岩浆演化及其Ta−Nb富集机制[J]. 岩石学报, 2013, 29(12): 4311−4322.
LI J, HUANG X L. Mechanism of Ta−Nb enrichment and magmatic evolution in the Yashan granites, Jiangxi Province[J]. Acta Petrologica Sinica, 2013, 29(12): 4311−4322.
[22] CUNEY M, MARIGNAC C, WEISBROD A. The Beauvoir topaz−lepidolite albite granite (Massif Central, France): The disseminated magmatic Sn−Li−Ta−Nb−Be mineralization[J]. Economic Geology, 1992, 87(7): 1766−1794. doi: 10.2113/gsecongeo.87.7.1766
[23] BREITER K, ĎURIŠOVÁ J, HRSTKA T, et al. Assessment of magmatic vs. metasomatic processes in rare−metal granites: a case study of the Cínovec/Zinnwald Sn−W−Li deposit, Central Europe[J]. Lithos, 2017, 292: 198−217.
-