基于碎磨参数的介质优化及降低半自磨顽石积累实验研究

武煜凯, 王国强, 朱阳戈, 赵志强, 肖庆飞, 罗思岗. 基于碎磨参数的介质优化及降低半自磨顽石积累实验研究[J]. 矿产保护与利用, 2024, 44(3): 102-108. doi: 10.13779/j.cnki.issn1001-0076.2024.03.011
引用本文: 武煜凯, 王国强, 朱阳戈, 赵志强, 肖庆飞, 罗思岗. 基于碎磨参数的介质优化及降低半自磨顽石积累实验研究[J]. 矿产保护与利用, 2024, 44(3): 102-108. doi: 10.13779/j.cnki.issn1001-0076.2024.03.011
WU Yukai, WANG Guoqiang, ZHU Yangge, ZHAO Zhiqiang, XIAO Qingfei, LUO Sigang. Experimental Study on Medium Optimization and Reduction of Semi−Autogenous Grinding Hard Stone Accumulation Based on Grinding Parameters[J]. Conservation and Utilization of Mineral Resources, 2024, 44(3): 102-108. doi: 10.13779/j.cnki.issn1001-0076.2024.03.011
Citation: WU Yukai, WANG Guoqiang, ZHU Yangge, ZHAO Zhiqiang, XIAO Qingfei, LUO Sigang. Experimental Study on Medium Optimization and Reduction of Semi−Autogenous Grinding Hard Stone Accumulation Based on Grinding Parameters[J]. Conservation and Utilization of Mineral Resources, 2024, 44(3): 102-108. doi: 10.13779/j.cnki.issn1001-0076.2024.03.011

基于碎磨参数的介质优化及降低半自磨顽石积累实验研究

  • 基金项目: 国家自然科学基金面上项目(52374269);院青年科技创新基金(04−2335)
详细信息
    作者简介: 武煜凯(1995-),男,山西平遥人,硕士,助理工程师,主要从事碎磨理论与工艺研究,E-mail:wuyukai@bgrimm.com; 肖庆飞(1980—),男,博士,教授,博士生导师,现任昆明理工大学国土资源工程学院副院长兼科学技术院副院长,校首批明德“卓越学者”,云南省“兴滇英才支持计划”产业创新人才,云南省高校选择性磨矿提质降耗科技创新团队带头人,主要从事碎磨理论及工艺研究;主持国家自然科学基金面上/地区项目、自然资源部、安徽省/青海省/云南省重点研发计划等项目11项,主持企业委托技术开发项目66项,科研成果已成功产业化应用于100多个大中型矿山选厂;发表论文110余篇,出版5部教材及专著,其中副主编《碎矿与磨矿》(第三版)为“十二五”普通高等教育国家规划教材;获授权16项国家发明专利,获省部级科技进步一、二等奖6项,省部级教学成果一、二等奖2项
    通讯作者: 肖庆飞(1980-),男,安徽宿松人,博士,教授,从事选择性磨矿理论与工艺,颗粒离散元模拟仿真,E-mail:13515877@qq.com
  • 中图分类号: TD921+.4

Experimental Study on Medium Optimization and Reduction of Semi−Autogenous Grinding Hard Stone Accumulation Based on Grinding Parameters

More Information
  • 针对某大型钼矿存在半自磨机顽石积累、产能提升幅度有限等问题,在综合考虑不同测试方法下的碎磨参数及通过压载实验获得顽石粒级的基础上,运用修正后的Azzaroni公式进行钢球直径精确计算,并通过实验室实验进行合理性验证。研究结果表明:(1)三种测试方法获得的碎磨参数结果均表明了该矿石的难磨剥特性但在描述矿石抗冲击性能上仍有区别;(2)该矿石的顽石粒级为−80+20 mm;(3)半自磨机的最佳钢球方案为m(Φ130 mm)∶m(Φ110 mm)=1∶1。单一球径Φ130 mm中+100 mm充当自磨介质的矿石磨矿产品较选厂Φ120 mm钢球方案提高了11.17百分点,顽石含量降低了1.67百分点;混合球径m(Φ130 mm)∶m(Φ110 mm)=1∶1的+100 mm含量较单一球径Φ130 mm提高了1百分点,顽石含量降低了3.41百分点,验证了所计算的最大钢球直径方案的合理性,并采用混合球径方案获得了更优的磨矿效果。

  • 加载中
  • 图 1  M−fmat−x模型拟合单颗粒冲击破碎实验结果

    Figure 1. 

    图 2  A−b模型拟合单颗粒冲击破碎实验结果

    Figure 2. 

    图 3  矿石断裂比能的Logistic函数分布

    Figure 3. 

    图 4  E50的幂函数拟合曲线

    Figure 4. 

    图 5  第4次磨矿循环产品(单一球径)

    Figure 5. 

    图 6  第4次磨矿循环产品(混合球径)

    Figure 6. 

    表 1  A×b值与矿石软硬对照表

    Table 1.  Comparison table of A×b values with ore softness and hardness

    特性 极硬 中硬 中软 极软
    A×b <30 30~38 38~43 43~56 56~67 67~127 >127
    下载: 导出CSV

    表 2  邦德球磨功指数与矿石软硬程度对照表

    Table 2.  Comparison table of bond ball mill work index with ore softness and hardness

    特性 软矿石 中矿石 中硬矿石 硬矿石 极硬矿石
    Wib,/(kW·h·t−1) <8 8~14 14~20 20~25 >25
    下载: 导出CSV

    表 3  普氏硬度系数与矿石软硬程度对照表

    Table 3.  Comparison table of protodyakonov coefficient with ore hardness and softness

    特性极硬很硬坚硬较硬普通较软软层松软
    f20158~105~63~41.5~20.8~1<1
    下载: 导出CSV

    表 4  碎磨特性参数

    Table 4.  Comminution characteristic parameters

    参数 M fmat A b A*b ta Wib/(kW·h·t−1)
    取值 96.54 0.17 67.22 1.01 67.89 0.36 16.27
    下载: 导出CSV

    表 5  力学性质测定结果

    Table 5.  Mechanical property measurement results

    样品 抗压强度R/MPa 块体密度/(g·cm−3) 泊松比
    345 104.00 2.59 /
    360 185.00 2.63 /
    375 77.50 2.62 0.34
    390 90.60 2.59 0.25
    435 137.00 2.63 /
    均值 118.82 2.61 0.30
    下载: 导出CSV
  • [1]

    A. GUPTA, D. S. YAN. Chapter 9 − autogenous and semi−autogenous mills[M]. Elsevier B. V. , 2006.

    [2]

    尤腾胜, 李兆峰, 何荣权. 半自磨系统顽石性质及其对系统产能的影响研究[J]. 中国矿山工程, 2023, 52(1): 72−77. doi: 10.3969/j.issn.1672-609X.2023.01.012

    YOU T S, LI Z F, HE R Q. Research on the properties of hard stones in semi autogenous grinding systems and their impact on system capacity[J]. China Mining Engineering, 2023, 52(1): 72−77. doi: 10.3969/j.issn.1672-609X.2023.01.012

    [3]

    肖庆飞, 王国强, 杨芳, 等. 半自磨顽石做中矿再磨介质的应用研究[J]. 矿产保护与利用, 2017(3): 32−36.

    XIAO Q F, WANG G Q, YANG F, et al. Research on the application of semi autogenous grinding refractory stone as a medium for intermediate ore re grinding[J]. Mineral Protection and Utilization, 2017(3): 32−36.

    [4]

    黄国智, 方启学, 任翔, 等. 全自磨半自磨磨矿技术[M]. 北京: 冶金工业出版社, 2018: 47−51.

    HUANG G Z, FANG Q X, REN X, et al. Fully and semi autogenous grinding[M]. Beijing: Metallurgical Industry Press, 2018: 47−51.

    [5]

    A. R. HASANKHOEI, M. MALEKI−MOGHADDAM, A. HAJI−ZADEH, et al. On dry SAG mills end liners: Physical modeling, DEM−based characterization and industrial outcomes of a new design[J]. Minerals Engineering, 2019, 141(C): 105835−105835.

    [6]

    VOGEL L , PEUKERT W . Determination of material properties relevant to grinding by practicable labscale milling tests[J]. International Journal of Mineral Processing, 2004, 74: S329−S338.

    [7]

    P. W. CLEARY, G. W. DELANEY, M. D. SINNOTT, et al. Inclusion of incremental damage breakage of particles and slurry rheology into a particle scale multiphase model of a SAG mill[J]. Minerals Engineering, 2018, 128: 92−105. doi: 10.1016/j.mineng.2018.08.026

    [8]

    R. D. MORRISON, P. W. CLEARY. Using DEM to model ore breakage within a pilot scale SAG mill[J]. Minerals Engineering, 2004, 17(11): 1117−1124.

    [9]

    P W. CLEARY, R. D. MORRISON, G. W. DELANEY. Incremental damage and particle size reduction in a pilot SAG mill: DEM breakage method extension and validation[J]. Minerals Engineering, 2018, 12856−68.

    [10]

    郜峰. 球磨机负荷监测软件平台的设计与开发[D]. 沈阳: 东北大学, 2010.

    GAO F. Design and development of a ball mill load monitoring software platform [D]. Shenyang: Northeastern University, 2010.

    [11]

    A GIBLETT, S MORRELL. Process development testing for comminution circuit design[J]. Minerals & Metallurgical Processing, 2016(4).

    [12]

    谭文才, 刘俊, 夏林, 等. 给料粒度分布对半自磨机的影响[J]. 矿山机械, 2019, 47(11): 36−40. doi: 10.3969/j.issn.1001-3954.2019.11.009

    TANG W C, LIU J, XIA L, et al. The influence of feed particle size distribution on semi autogenous grinding machines[J]. Mining Machinery, 2019, 47(11): 36−40. doi: 10.3969/j.issn.1001-3954.2019.11.009

    [13]

    王越, 苏祥玉, 邓海轩, 等. 某钼矿快捷提高半自磨处理量的有效途径[J]. 矿冶, 2022, 31(2): 47−52. doi: 10.3969/j.issn.1005-7854.2022.02.008

    WANG Y, SU X Y, DENG H X, et al. An effective way to quickly increase the semi autogenous grinding processing capacity of a molybdenum mine[J]. Mining and Metallurgy, 2022, 31(2): 47−52. doi: 10.3969/j.issn.1005-7854.2022.02.008

    [14]

    国宏臣, 肖庆飞, 李云啸, 等. 基于离散元法的多级配球提高半自磨机磨矿效率研究[J]. 矿产保护与利用, 2023, 43(4): 60−67.

    GUO H C, XIAO Q F, LI Y X, et al. Research on improving the grinding efficiency of semi autogenous mills by multi−stage ball matching based on discrete element method[J]. Mineral Protection and Utilization, 2023, 43(4): 60−67.

    [15]

    谢浩松, 肖庆飞, 张志鹏, 等. 云南某金矿半自磨钢球尺寸优化及离散元仿真模拟分析[J]. 矿产保护与利用, 2023, 43(1): 57−65.

    XIE H S, XIAO Q F, ZHANG Z P, et al. Size optimization and discrete element simulation analysis of semi autogenous grinding steel balls in a gold mine in Yunnan[J]. Mineral Protection and Utilization, 2023, 43(1): 57−65.

    [16]

    国宏臣, 周强, 肖庆飞, 等. 勒洛四面体与传统磨矿介质对料层冲击破碎特性的对比研究[J]. 矿产保护与利用, 2023, 43(5): 107−113.

    GUO H C, ZHOU Q, XIAO Q F, et al. Comparative study on the impact crushing characteristics of material layers between Leluo tetrahedron and traditional grinding media[J]. Mineral Protection and Utilization, 2023, 43(5): 107−113.

    [17]

    SHI F , KOJOVIC T . Validation of a model for impact breakage incorporating particle size effect[J]. International Journal of Mineral Processing, 2006, 82(3): 156−163.

    [18]

    GROUP T & E C . From Single Particle Impact Behaviour to Modeling of Impact Mills[J]. Chemical Engineering & Technology: Industrial Chemistry −Plant Equipment −Process Engineering −Biotechnology, 2005, 28(10): 1077.

    [19]

    王国强, 刘建远, 朱阳戈, 等. 基于矿石碎磨特性的设备选型及能耗分析[J]. 矿山机械, 2022, 50(1): 29−33. doi: 10.3969/j.issn.1001-3954.2022.01.007

    WANG G Q, LIU J Y, ZHU Y G, et al. Equipment selection and energy consumption analysis based on ore crushing and grinding characteristics[J]. Mining Machinery, 2022, 50(1): 29−33. doi: 10.3969/j.issn.1001-3954.2022.01.007

    [20]

    周强, 汪轶凡, 肖庆飞, 等. 不规则铜钼矿颗粒断裂强度分布实验研究[J]. 矿产保护与利用, 2023, 43(4): 33−42.

    ZHOU Q, WANG Y F, XIAO Q F, et al. Experimental study on the distribution of fracture strength of irregular copper molybdenum ore particles[J]. Mineral Protection and Utilization, 2023, 43(4): 33−42.

    [21]

    周强, 肖庆飞, 潘永泰. 挤压作用下脆性物料断裂强度分布研究[J]. 中国矿业大学学报, 2022, 51(6): 1086−1095. doi: 10.3969/j.issn.1000-1964.2022.6.zgkydxxb202206005

    ZHOU Q, XIAO Q F, PAN Y T. Research on the distribution of fracture strength of brittle materials under compression[J]. Journal of China University of Mining and Technology, 2022, 51(6): 1086−1095. doi: 10.3969/j.issn.1000-1964.2022.6.zgkydxxb202206005

    [22]

    L. M TAVARES, R. P KING. Single−particle fracture under impact loading[J]. Elsevier B. V. , 1998.

    [23]

    骆忠, 肖庆飞, 方雨, 等. 基于钢球与矿石碰撞能量确定半自磨机钢球尺寸的方法: CN115138447A[P], 2022−10−04.

    LUO Z, XIAO Q F, FANG Y, et al. Method for determining the size of steel balls in semi−automatic mills based on the collision energy between steel balls and ores: CN115138447A[P], 2022−10−04.

  • 加载中

(6)

(5)

计量
  • 文章访问数:  199
  • PDF下载数:  45
  • 施引文献:  0
出版历程
收稿日期:  2024-05-22
刊出日期:  2024-06-15

目录