Structural Parameter Analysis and Stability Calculation of End−of−pit Slope of a Polymetallic Mine
-
摘要:
露天多金属矿山的边坡稳定性是确保矿山安全生产和环境保护的关键问题。采用正交实验设计、极限平衡法和FLAC3D数值模拟等方法,对某露天矿山终了边坡的结构参数进行系统分析,并对其稳定性进行验证。通过正交实验设计,考察了不同坡高、坡角和地质条件下的边坡稳定性参数,并结合简化Bishop法和Morgenstern−Price法计算了安全系数。结果表明,在自然条件下,各坡面的安全系数均大于1.17,符合规范要求。为了进一步验证边坡的稳定性,采用FLAC3D数值模拟结合强度折减法进行三维稳定性分析。模拟结果表明,在边坡顶部和表面局部区域存在一定风险,但整体安全系数为1.78,表明边坡处于稳定状态。本研究不仅为露天矿山边坡设计和稳定性评价提供了理论依据和实践指导,也为类似工程项目提供了借鉴,具有提升矿山开采安全性和延长矿山寿命的重要价值。
-
关键词:
- 边坡稳定性 /
- Bishop法 /
- Morgenstern−price法 /
- 强度折减理论 /
- FLAC3D
Abstract:The slope stability of open−pit polymetallic mines is the key problem to ensure mine safety and environmental protection. In this paper, orthogonal experimental design, limit equilibrium method and FLAC3D numerical simulation are used to systematically analyze the structural parameters of the end slope of an open−pit mine and verify its stability. Through orthogonal experiment design, slope stability parameters under different slope height, slope Angle and geological conditions were investigated, and the safety factor was calculated by using simplified Bishop method and Morgenstern−Price method. The results showed that under natural conditions, the safety coefficient of each slope was greater than 1.17, which was in line with the standard requirements. In order to further verify the stability of the slope, FLAC3D numerical simulation combined with strength reduction method was used for three−dimensional stability analysis. The simulation results showed that there were some risks in the top and local areas of the slope surface, but the overall safety factor was 1.78, indicating that the slope was in a stable state. This study not only provides theoretical basis and practical guidance for slope design and stability evaluation of open−pit mine, but also provides reference for similar engineering projects, which has important value of improving mining safety and prolonging mine life.
-
Key words:
- slope stability /
- bishop method /
- morgenstern−price method /
- strength reduction theory /
- FLAC3D
-
-
表 1 岩体力学参数
Table 1. Parameters of rock mechanics
岩性 密度ρ
/(g·cm−3)黏聚力c
/MPa内摩擦
角φ/(°)变形模量E
/GPa泊松比μ 强风化
英安岩2.65 0.0337 31.5 3.54 0.32 中风化
英安岩2.66 0.1264 32.5 9.33 0.30 微风化
英安岩2.66 0.1643 33.4 15.76 0.27 流纹岩 2.91 0.2163 31.8 16.08 0.25 表 2 英安岩和流纹岩组成的边坡因素水平
Table 2. Slope factor levels for anglo−anglian and rhyolite compositions
因素水平 台阶高度/m 台阶坡面角/(°) 平台宽度/m 1 8 55 4 2 10 60 6 3 12 65 8 表 3 边坡高度为130 m下实验结果
Table 3. Experimental results under slope height of 130 m
实验编号 台阶高度/m 台阶坡面角/(°) 平台宽度/m 最终边坡角/(°) 实验结果 (安全系数) 自然工况 地震工况(8度设防) 1 8 55 4 41 1.477 1.350 2 8 60 6 38 1.562 1.424 3 8 65 8 35 1.680 1.524 4 10 55 6 39 1.545 1.410 5 10 60 8 37 1.614 1.470 6 10 65 4 50 1.235 1.145 7 12 55 8 37 1.590 1.449 8 12 60 4 48 1.266 1.168 9 12 65 6 47 1.287 1.186 表 4 边坡高度为280 m下的实验结果
Table 4. Experimental results under slope height of 280 m
实验编号 台阶高度/m 台阶坡面角/(°) 平台宽度/m 最终边坡角/(°) 实验结果 (安全系数) 自然工况 地震工况(8度设防) 1 8 55 4 40 1.181 1.081 2 8 60 6 37 1.272 1.160 3 8 65 8 35 1.374 1.243 4 10 55 6 38 1.252 1.143 5 10 60 8 36 1.306 1.190 6 10 65 4 50 0.953 0.879 7 12 55 8 37 1.299 1.183 8 12 60 4 48 0.981 0.904 9 12 65 6 47 1.016 0.935 表 5 边坡高度为326 m下的实验结果
Table 5. Experimental results under slope height of 326 m
试验编号 台阶高度/m 台阶坡面角/(°) 平台宽度/m 最终边坡角/(°) 试验结果 (安全系数) 自然工况 地震工况(8度设防) 1 8 55 4 40 1.115 1.016 2 8 60 6 37 1.197 1.086 3 8 65 8 35 1.285 1.162 4 10 55 6 38 1.179 1.071 5 10 60 8 36 1.230 1.115 6 10 65 4 50 0.886 0.813 7 12 55 8 37 1.218 1.105 8 12 60 4 48 0.912 0.837 9 12 65 6 47 0.952 0.871 表 6 边坡高度为476 m下的实验结果
Table 6. Experimental results under slope height of 476 m
实验编号 台阶高度/m 台阶坡面角/(°) 平台宽度/m 最终边坡角/(°) 实验结果 (安全系数) 自然工况 地震工况(8度设防) 1 8 55 4 40 0.983 0.915 2 8 60 6 37 1.066 0.991 3 8 65 8 35 1.162 1.076 4 10 55 6 38 1.049 0.975 5 10 60 8 36 1.096 1.017 6 10 65 4 49 0.767 0.716 7 12 55 8 36 1.094 1.016 8 12 60 4 48 0.795 0.743 9 12 65 6 46 0.832 0.778 表 7 不同边坡高度下最终边坡角最大取值
Table 7. Maximum values of final slope angle for different slope heights
边坡高度/m 100~200 200~300 300~400 >400 最终边坡角/(°) 49 38 34 30 表 8 设计境界的边坡稳定性计算结果
Table 8. Slope stability calculations for the design realm
边坡分区 剖面编号 边坡高度/m 边坡角/(°) 载荷组合 安全系数 规范允许安全系数 备注 M−P法 Bishop法 B区 1 238 36 Ⅰ 1.226 1.229 1.20 满足规范要求 Ⅱ 1.185 1.184 1.18 满足规范要求 Ⅲ 1.161 1.159 1.15 满足规范要求 2 189 34 Ⅰ 1.367 1.372 1.20 满足规范要求 Ⅱ 1.251 1.277 1.18 满足规范要求 Ⅲ 1.226 1.25 1.15 满足规范要求 3 280 31 Ⅰ 1.283 1.282 1.20 满足规范要求 Ⅱ 1.196 1.205 1.18 满足规范要求 Ⅲ 1.162 1.158 1.15 满足规范要求 4 290 32 Ⅰ 1.291 1.291 1.20 满足规范要求 Ⅱ 1.214 1.214 1.18 满足规范要求 Ⅲ 1.169 1.167 1.15 满足规范要求 5 170 34 Ⅰ 1.445 1.454 1.20 满足规范要求 Ⅱ 1.327 1.335 1.18 满足规范要求 Ⅲ 1.307 1.315 1.15 满足规范要求 C区 6上部 288 25 Ⅰ 1.497 −− 1.20 满足规范要求 Ⅱ 1.372 −− 1.18 满足规范要求 Ⅲ 1.323 −− 1.15 满足规范要求 6下部 187 35 Ⅰ 1.3 1.301 1.20 满足规范要求 Ⅱ 1.224 1.225 1.18 满足规范要求 Ⅲ 1.179 1.178 1.15 满足规范要求 6整体 475 28 Ⅰ 1.401 1.399 1.20 满足规范要求 Ⅱ 1.31 1.304 1.18 满足规范要求 Ⅲ 1.25 1.248 1.15 满足规范要求 7 356 31 Ⅰ 1.288 1.288 1.20 满足规范要求 Ⅱ 1.191 1.191 1.18 满足规范要求 Ⅲ 1.166 1.165 1.15 满足规范要求 D区 8 115 37 Ⅰ 1.625 1.633 1.20 满足规范要求 Ⅱ 1.506 1.514 1.18 满足规范要求 Ⅲ 1.485 1.492 1.15 满足规范要求 A区 9 253 38 Ⅰ 1.264 1.263 1.20 满足规范要求 Ⅱ 1.189 1.191 1.18 满足规范要求 Ⅲ 1.155 1.152 1.15 满足规范要求 10 165 33 Ⅰ 1.338 1.344 1.20 满足规范要求 Ⅱ 1.221 1.227 1.18 满足规范要求 Ⅲ 1.212 1.217 1.15 满足规范要求 注:荷载组合Ⅰ为自重+地下水;荷载组合Ⅱ为自重+地下水+爆破振动力;荷载组合Ⅲ为自重+ 地下水+地震力。 -
[1] 陈兰兰, 夏益强, 肖海平, 等. 露天矿边坡稳定性监测方法研究现状及进展[J]. 测绘通报, 2022(5): 7−13. doi: 10.3969/j.issn.0494-0911.2022.5.chtb202205002
CHEN L L, XIA Y Q, XIAO H P, et al. Research status and progress of slop stability monitoring methods in open−pit mines[J]. Bulletin of Surveying and Mapping, 2022(5): 7−13. doi: 10.3969/j.issn.0494-0911.2022.5.chtb202205002
[2] 李全生. 蒙东草原区大型露天煤矿减损开采与生态修复关键技术[J]. 采矿与安全工程学报, 2023, 40(5): 905−915.
LI Q S. Key technologies for damage reduction mining and ecological restoration of large−scale open pit coal mines in grassland area of eastern inner Mongolia[J]. Journal of Mining & Safety Engineering, 2023, 40(5): 905−915.
[3] 李鸣庚, 张书毕, 高延东, 等. 适用于露天矿时序形变监测的优化DS−InSAR技术[J]. 金属矿山, 2023(1): 110−118.
LI M G, ZHANG S B, GAO Y D, et al. Optimized DS−InSAR technology for time series deformation monitoring in open−pit mines[J]. Metal Mine, 2023(1): 110−118.
[4] 代永新, 赵武鹍. 露天矿超高边坡灾变影响因素与防控关键技术研究综述[J]. 金属矿山, 2016(11): 1−9. doi: 10.3969/j.issn.1001-1250.2016.11.002
DAI Y X, ZHAO W K. Over about disaster factors critical control technique for super high slope of open−pit mine[J]. Metal Mine, 2016(11): 1−9. doi: 10.3969/j.issn.1001-1250.2016.11.002
[5] 吴礼军, 徐文彬. 邻近高陡边坡采矿爆破振动规律及边坡稳定性分析[J]. 工程爆破, 2022, 28(4): 113−119.
WU L J, XU W B. Analysis of blasting vibration law and slope stability in mining near high and steep slope[J]. Engineering Blasting, 2022, 28(4): 113−119.
[6] WANG Y, LIU X, ZHANG Z, et al. Analysis on slope stability considering seepage effect on effective stress[J]. KSCE Journal of Civil Engineering, 2016, 20(6): 2235−2242. doi: 10.1007/s12205-015-0646-z
[7] 任高峰, 王鑫, 周汉红, 等. 爆破作用下岩溶对边坡稳定性的数值模拟研究[J]. 爆破, 2023, 40(4): 192−200. doi: 10.3963/j.issn.1001-487X.2023.04.025
REN G F, WANG X, ZHOU H H, et al. Numerical simulation of karst effect on slope stability under blasting[J]. Blasting, 2023, 40(4): 192−200. doi: 10.3963/j.issn.1001-487X.2023.04.025
[8] 王文飞, 杨志全, 孟祥瑞, 等. 基于FLAC2D、GPS监测和人工巡视相结合的某矿山排土场边坡稳定性分析[J]. 有色金属(矿山部分), 2023, 75(6): 80−87.
WANG W F, YANG Z Q, MENG X R, et al. Slope stability analysis of a mine drainage field based on the combination of FLAC2D, GPS monitoring and manual patrolling[J]. Nonferrous Metals (Mining Section), 2023, 75(6): 80−87.
[9] 杨明财, 盛建龙, 叶祖洋, 等. 基于FlAC3D的露天矿边坡稳定性及影响因素敏感性分析[J]. 黄金科学技术, 2018, 26(2): 179−186. doi: 10.11872/j.issn.1005-2518.2018.02.179
YANG M C, SHENG J L, YE Z Y, et al. Analysis of sensitivity factors of open−pit mine slope stability and impact based on FLAC3D[J]. Gold Science and Technology, 2018, 26(2): 179−186. doi: 10.11872/j.issn.1005-2518.2018.02.179
[10] 朱纪朋, 苏怀斌, 赵旭阳, 等. 大型深凹露天矿边坡稳定性研究及智能监测系统应用[J]. 有色金属(矿山部分), 2022, 74(5): 99−105.
ZHU J P, SU H B, ZAHO X Y, et al. Study on slope stability of large deep concave open−pit mine and application of intelligent monitoring system[J]. Nonferrous Metals (Mining Section), 2022, 74(5): 99−105.
[11] PETER B A, ZHANG Y P, HE J X, et al. Evaluating the dynamic response and failure process of a rock slope under pulse−like ground motions[J]. Geomatics, Natural Hazards and Risk, 2023, 14(1): 2167613. doi: 10.1080/19475705.2023.2167613
[12] BASAHEL H, MITRI H. Probabilistic assessment of rock slopes stability using the response surface approach–A case study[J]. International Journal of Mining Science and Technology, 2019, 29(3): 357−370. doi: 10.1016/j.ijmst.2018.11.002
[13] RINALDO G, ROSELLA P T, CLERVIE G. Mitigation measures of debris flow and landslide risk carried out in two mountain areas of North−Eastern Italy[J]. Journal of Mountain Science, 2022, 19(6): 1808−1822. doi: 10.1007/s11629-021-7212-6
[14] WANG C L, NI W, ZHANG S Q, et al. Preparation and properties of autoclaved aerated concrete using coal gangue and iron ore tailings[J]. Construction and Building Materials, 2016, 104109−115.
[15] 张欢, 王玉银, 耿悦, 等. 考虑基体混凝土抗压强度影响的再生粗(细)骨料混凝土干燥收缩模型[J]. 建筑结构学报, 2020, 41(12): 156−164.
ZAHNG H, WANG Y Y, GENG Y, et al. Dry shrinkage model for recycled fine and coarse aggregate concrete considering compressive strength of matrix concrete[J]. Journal of Building Structures, 2020, 41(12): 156−164.
[16] 孟君. 露天矿边坡稳定性的仿真模拟研究[J]. 世界科技研究与发展, 2012, 34(3): 379−381. doi: 10.3969/j.issn.1006-6055.2012.03.007
MENG J. Simulate research on open−sit steep slope stability[J]. World Sci−Tech R & D, 2012, 34(3): 379−381. doi: 10.3969/j.issn.1006-6055.2012.03.007
[17] 韩龙强, 吴顺川, 李志鹏. 基于Hoek−Brown准则的非等比强度折减方法[J]. 岩土力学, 2016, 37(S2): 690−696.
HAN L Q, WU S C, LI Z P. Study of non−proportional strength reduction method based on Hoek−Brown failure criterion[J]. Rock and Soil Mechanics, 2016, 37(S2): 690−696.
-