Surface Rock Displacement Characteristics and Waste Rock Backfill Scheme of Open Pit under the Underground Mining Disturbance
-
摘要:
无底柱分段崩落法常应用于黑色金属露天转地下矿山,该方法易引起露天采场边坡失稳,影响矿区周边建(构)筑物的安全。以地表斜坡坡度较陡且地形切割强烈的李家河铁矿为研究对象,依据地表航拍点云数据和生产平面图建立精细的数值模型,采用数值模拟研究地下持续开采扰动作用下的露天坑地表岩移特征,并结合地势、植被、农作物和公路等因素,对比优选合理可行的地表废石充填方案。结果显示,随着矿体逐步向深部开采,受地形和矿体分布影响,Ⅰ号矿坑呈现局部零星破坏,Ⅱ号矿坑以东北侧区域破坏为主,Ⅰ号矿坑地表沉降变化范围小于Ⅱ号矿坑,最终优选出从侧壁向中间靠拢再向北侧推进的地表废石充填方案。
Abstract:The non−pillar sublevel caving method is often used in the black metal mines with open−pit to underground, which can easily cause instability of open−pit slopes and threaten the safety of surrounding buildings in the mining area. Taking the Lijiahe Iron Mine with steep surface slopes and strong terrain cutting as the research object, a detailed numerical model was constructed based on the surface aerial point cloud data and the production plans. The numerical simulation was used to study the surface rock movement characteristics of open−pit pits under the action of continuous underground mining disturbance. In combination with the factors such as terrain, vegetation, crops, and roads, a feasible surface waste rock filling scheme was compared and selected. The results showed that the No.1 mine pit showed local sporadic damage, while the No.2 mine pit was mainly damaged in the north−eastern area under the deep mining and the terrain and distribution of the ore body. The overall surface subsidence stability of the No.1 mine pit was better than that of the No.2 mine pit. Finally, a surface waste rock filling scheme was selected that moves from the sidewall to the centre and then northwards.
-
-
表 1 矿岩物理力学参数
Table 1. Physical and mechanical parameters of ore and rock
岩组类别 密度/(kg·m−3) 弹性模量/GPa 泊松比 内凝聚力/MPa 内摩擦角/(°) 抗拉强度/MPa 抗压强度/MPa 第四系 1610 0.03 0.28 0.0045 19.21 0.007 0.1 白云大理岩 2870 27.65 0.29 14.79 29.60 1.45 57.52 绿色层 2760 16.56 0.26 11.66 33.40 0.75 38.40 矿化大理岩 2880 29.34 0.27 16.75 30.42 1.62 58.39 磁铁矿 3730 34.80 0.31 6.11 39.95 1.53 55.51 废石充填体 2000 0.20 0.40 0.01 18.00 0.01 0.5 -
[1] 张东杰, 任凤玉, 王健多. 崩落法开采岩体冒落及岩移机理[J]. 采矿与岩层控制工程学报, 2021, 3(3): 033521.
ZHANG D J, REN F Y, WANG J D. Rock mass caving and movement mechanisms of block caving mining[J]. Journal of Mining and Strata Control Engineering, 2021, 3(3): 033521.
[2] 任凤玉, 张晶, 何荣兴, 等. 复杂条件下不规则空区围岩冒落时空演化特征研究[J]. 金属矿山, 2022(3): 28−34.
REN F Y , ZHANG J, HE R X, et al. Study on the temporal and spatial evolution characteristics of surrounding rock caving in irregular goaf under complex conditions[J]. Metal Mine, 2022(3): 28−34.
[3] DENG Y, CHEN C, XIA K, et al. Investigation on the characteristics of overlying strata caving in the Chengchao Iron Mine, China[J]. Environmental Earth Sciences, 2018, 77(10): 1−25.
[4] 蔡美峰, 薛鼎龙, 任奋华. 金属矿深部开采现状与发展战略[J]. 工程科学学报, 2019, 41(4): 417−426.
CAI M F, XUE D L, REN F H. Current status and development strategy of metal mine[J]. Chinese Journal of Engineering 2019, 41(4): 417−426.
[5] 张玮, 杨天鸿, 侯俊旭, 等. 大红山铁矿露天−地下联合开采岩移发展规律研究[J]. 金属矿山, 2024(2): 232−238.
ZHANG W, YANG T L, HOU J X, et al. Research on the development law of rock movement in the opencast underground combined mining of Dahongshan Iron Mine[J]. Metal Mine, 2024(2): 232−238.
[6] 张亚宾, 王鑫, 艾蕊, 等. 三友石矿露天转地下开采边坡稳定性研究[J]. 华北理工大学学报(自然科学版), 2024, 46(1): 18−25.
ZHANG Y B, WANG X, AI R, et al. Study on slope stability from open pit to underground mining in quarry of Tangshan Sanyou Company[J]. Journal of North China University of Seience and Technology (Natural Science Edition), 2024, 46(1): 18−25.
[7] ZHAO X, ZHU Q. Analysis of the surface subsidence induced by sublevel caving based on GPS monitoring and numerical simulation[J]. Natural Hazards, 2020, 103(3): 3063−3083. doi: 10.1007/s11069-020-04119-0
[8] 刘洋, 任凤玉, 何荣兴, 等. 基于放矿下临界散体柱理论的地表塌陷范围预测[J]. 东北大学学报(自然科学版), 2018, 39(3): 858−887.
LIU Y, REN F Y, HE R X, et al. Prediction of surface subsidence range based on the critical medium column's theory under ore drawin[J]. Journal of Northeastern University( Natural Science), 2018, 39(3): 858−887.
[9] 张东杰. 临界散体柱支撑理论及其在锡林浩特萤石矿应用研究[D]. 沈阳: 东北大学, 2019.
Zhang D J. Critical medium column support theory and its application in the Xilinhot Fluorite Mine[D]. Shenyang: Northeastern University, 2019.
[10] 韩智勇, 曹建立, 刘洋, 等. 近地表急倾斜厚矿体地表移动规律及影响因素的敏感性分析[J]. 金属矿山, 2020(2): 158−162.
Han Z Y, Cao J L, Liu Y, et al. Strata movement law of near−surface steeply inclined thick ore bodies and sensitivity analysis of influencing factor[J]. Metal Mine, 2020(2): 158−162.
[11] 邹开华, 任凤玉, 丁航行, 等. 北洺河铁矿开采深度与地表岩移时空演变规律研究[J]. 矿业研究与开发, 2022, 42(8): 60−65.
ZOU K H, REN F Y, DING H X, et al. Study on temporal and spatia evolution of mining depth and surface rock movement in Beiminghe Iron Mine[J]. Mining Research and Development, 2022, 42(8): 60−65.
[12] 杨宇江, 路增祥. 地下采深变化的露天矿残余边坡稳定性分析[J]. 金属矿山, 2019(1): 168−173.
YANG Y J, LU Z X. Stability analysis of residual slope of open−pit mine with variation of underground mining dept[J]. Metal Mine, 2019(1): 168−173.
[13] 罗浪, 李小双, 王运敏. 露天转地下开采不同坡高影响下覆岩采动响应特征研究[J]. 金属矿山, 2020(8): 32−37.
LUO L, LI X S, WANG Y M. Research on mining response character of underground overlying strata under different slope heights during transition from open pit to underground mining[J]. Metal Mine, 2020(8): 32−37.
[14] 姜安民, 董彦辰, 江学良, 等. 露天转地下开采引起露天采场边坡垮塌数值模拟研究[J]. 矿冶工程, 2022, 42(3): 14−17. doi: 10.3969/j.issn.0253-6099.2022.03.004
JANG A M, DONG Y C, JlANG X L, et al. Numerical simulation of open pit slope collapse caused by transition from open pit to underground mining[J]. Mining and Metallurgical Engineering, 2022, 42(3): 14−17. doi: 10.3969/j.issn.0253-6099.2022.03.004
[15] 王创业, 李俊鹏, 刘伟, 等. 露天地下联合开采边坡的稳定性及时效性研究[J]. 矿业研究与开发, 2017, 37(12): 107−110.
WANG C Y, LI J P, LIU W, et al. Study on the stability and timeliness of slope mining combination of open pit and underground[J]. Mining Research and Development, 2017, 37(12): 107−110.
[16] 闫佳钊, 刘溪鸽, 朱万成, 等. 露天削坡对地下采场地压显现影响的数值模拟[J]. 金属矿山, 2023(6): 213−219.
YAN J Z, LlU X G, ZHU W C, et al. Numerical simulation on ground pressure appearanee in underground stope caused by open−pit slope stripping[J]. Metal Mine, 2023(6): 213−219.
[17] 曹建立, 谭宝会, 张东杰. 孟家堡子铁矿岩移控制方法研究[J]. 金属矿山, 2019(11): 1−7.
CAO J L, TAN B H, ZHANG D J, et al. Study on the method of rock movement control in Mengjiapuzi Iron Mine[J]. Metal Mine, 2019(11): 1−7.
[18] 任凤玉, 刘洋, 何荣兴, 等. 放矿条件下塌陷区内尾砂穿流特性[J]. 东北大学学报(自然科学版), 2020, 41(6): 858−887. doi: 10.12068/j.issn.1005-3026.2020.06.017
REN F Y, LIU Y, HE R X, et al. Flow−through features of tailings in subsidence area under ore drawing conditions[J]. Journal of Northeastern University(Natural Science), 2020, 41(6): 858−887. doi: 10.12068/j.issn.1005-3026.2020.06.017
[19] 曹建立, 任凤玉, 丁航行, 等. 基于露天地下协同开采的地表岩移控制技术研究[J]. 金属矿山, 2020(1): 37−43.
CAO J L, REN F Y, DING H X, et al. Study on surface rock movement control technology based on open−pit and underground synergetic mining[J]. Metal Mine, 2020(1): 37−43.
[20] 张东杰, 任凤玉, 郑有伟. 临界散体柱主要影响因素研究[J]. 金属矿山, 2020(9): 72−79.
ZHANG D J, REN F Y, ZHENG Y W. Study on the main influencing factors of the critical medium column[J]. Metal Mine, 2020(9): 72−79.
[21] 王昊. 鑫达金矿盲竖井保安矿柱圈定及其稳定性分析[D]. 包头: 内蒙古科技大学, 2021.
WANG H. Delimitation and stability analysis of safety pillar of blind shaft in Xinda gold mine[D]. Baotou: Inner Mongolia University of Science & Technology, 2021.
[22] 何荣兴, 付煜, 任凤玉, 等. 弓长岭东南区塌陷坑后续开采岩移规律研究[J]. 采矿与安全工程学报, 2019, 36(3): 527−534.
HE R X, FU Y, REN F Y, et al. Strata movement law of subsequent mining of collapse pit in southeast mining area of Gongchangling iron mine[J]. Journal of Mining & Safety Engineering, 2019, 36(3): 527−534.
-