智慧选矿背景下浮选泡沫状态信息化研究进展

张艳兵, 马艺闻, 柳小波, 孙欣, 姚富兴, 郑梦可, 孙竞珲. 智慧选矿背景下浮选泡沫状态信息化研究进展[J]. 矿产保护与利用, 2025, 45(1): 93-100. doi: 10.13779/j.cnki.issn1001-0076.2024.08.015
引用本文: 张艳兵, 马艺闻, 柳小波, 孙欣, 姚富兴, 郑梦可, 孙竞珲. 智慧选矿背景下浮选泡沫状态信息化研究进展[J]. 矿产保护与利用, 2025, 45(1): 93-100. doi: 10.13779/j.cnki.issn1001-0076.2024.08.015
ZHANG Yanbing, MA Yiwen, LIU Xiaobo, SUN Xin, YAO Fuxing, ZHENG Mengke, SUN Jinghui. Research Progress of Flotation Foam State Informatization Based on the Background of Intelligent Beneficiation[J]. Conservation and Utilization of Mineral Resources, 2025, 45(1): 93-100. doi: 10.13779/j.cnki.issn1001-0076.2024.08.015
Citation: ZHANG Yanbing, MA Yiwen, LIU Xiaobo, SUN Xin, YAO Fuxing, ZHENG Mengke, SUN Jinghui. Research Progress of Flotation Foam State Informatization Based on the Background of Intelligent Beneficiation[J]. Conservation and Utilization of Mineral Resources, 2025, 45(1): 93-100. doi: 10.13779/j.cnki.issn1001-0076.2024.08.015

智慧选矿背景下浮选泡沫状态信息化研究进展

详细信息
    作者简介: 张艳兵(1997—),男,河南周口人,硕士研究生,从事智慧选矿等研究方向,E-mail:13271311239@163.com
    通讯作者: 马艺闻(1985—),女,辽宁鞍山人,博士,副教授,硕士研究生导师,从事智慧选矿等研究方向,E-mail:me-myw@ustl.edu.cn
  • 中图分类号: TD923+.7

Research Progress of Flotation Foam State Informatization Based on the Background of Intelligent Beneficiation

More Information
  • 矿产资源是经济社会发展的基础,实现矿产资源高质量发展,利用信息化、数字化技术建设绿色、高效的智慧矿山是必要途径。智慧选矿是智慧矿山的组成部分,其实施基础是选矿过程的信息化和数字化。以泡沫浮选为切入点,梳理了泡沫状态信息化常用方法,在此基础上阐述了泡沫状态信息的数字化应用,探讨了浮选过程智能化的研发与推广方向,旨在推动智慧选矿领域先进技术的研究进程。

  • 加载中
  • 图 1  智慧选矿在智慧矿山体系中的定位[3]

    Figure 1. 

    图 2  泡沫图像采集系统

    Figure 2. 

    图 3  浮选泡沫状态信息化流程

    Figure 3. 

    图 4  浮选泡沫状态信息数字化应用

    Figure 4. 

  • [1]

    中国矿产资源报告2022[J]. 自然资源情报, 2023(1): 2.

    China mineral resources report 2022[J]. Natural Resource Information, 2023(1): 2.

    [2]

    邵安林, 刘畅, 岳星彤, 等. 新时期我国矿产资源行业高质量发展路径[J]. 金属矿山, 2024(1): 2−6.

    SHAO A L, LIU C, YUE X, et al. Path of high−quality development of China's mineral resources industry in the new era[J]. Metal Mine, 2024(1): 2−6.

    [3]

    柳小波, 张兴帆, 曲福明, 等. 我国冶金行业智慧矿山建设路径探索与实践[J]. 金属矿山, 2024(1): 45−54.

    LIU X B, ZHANG X F, QU F M, et al. Exploration and engineering practice of the development path for smart mines in China′s metallurgical industry[J]. Metal Mine, 2024(1): 45−54.

    [4]

    中华人民共和国自然资源部. 智能矿山建设规范: DZ/T 0376—2021[S]. 北京: 地质出版社, 2021.

    Ministry of Natural Resources of the People′s Republic of China. Specification for intelligent mine construction: DZ/T 0376—2021[S]. Beijing: Geology Press, 2021.

    [5]

    祝晋, 刘威, 高立强. 智能选矿厂的建设探索与实践[J]. 有色金属(选矿部分), 2023(1): 121−126.

    ZHU J, LIU W, GAO L Q. Exploration and practice of intelligent concentrator construction[J]. Nonferrous Metals (Mineral Processing Section), 2023(1): 121−126.

    [6]

    刘道喜. 基于浮选泡沫图像颜色特征提取的矿浆品位建模及工程实现[D]. 沈阳: 东北大学, 2024.

    LIU D X. Pulp grade modeling and engineering realization based on color feature extraction of flotation foam images[D]. Shenyang: Northeastern University, 2024.

    [7]

    李佳俊. 基于图像处理的辉铜矿浮选泡沫图像研究[D]. 黄石: 湖北师范大学, 2023.

    LI J J. Study on froth image of chalcocite flotation based on image processing[D]. Huangshi: Hubei Normal University, 2023.

    [8]

    MOOLMAN D W, AlRICH C, VAN DEVENTER J S J. The interpretation of flotation froth surfaces by using digital image analysis and neural networks[J]. Chemical Engineering Science, 1995, 50(22): 3501−3513. doi: 10.1016/0009-2509(95)00190-G

    [9]

    MOOLMAN D W, ALRICH C, SCHMITZ G, et al. The interrelationship between surface froth characteristics and industrial flotation performance[J]. Minerals Engineering, 1996, 9(8): 837−854.

    [10]

    HARGRAVE JM, MILES N J, HALL S T. The use of grey level measurement in predicting coal flotation performance[J]. Minerals Engineering, 1996, 9(6): 667−674. doi: 10.1016/0892-6875(96)00054-4

    [11]

    WOODBURN E T, AUSTIN L G, STOCKTON J B. A froth based flotation kinetic model[J]. Chemical Engineering Research & Design, 1994, 72(2A): 211−226.

    [12]

    VENTURA−MEDINA E, CILLIERS J J. Calculation of the specific surface area in flotation[J]. Minerals Engineering, 2000, 13(3): 265−275. doi: 10.1016/S0892-6875(00)00006-6

    [13]

    VENTURA−MEDINA E, CILLIERS J J. A model to describe flotation performance based on physics of foams and froth image analysis[J]. International Journal of Mineral Processing, 2002, 67: 79−99. doi: 10.1016/S0301-7516(02)00038-8

    [14]

    WANG W, BERGHOLM F, YANG B. Froth delineation based on image classification[J]. Minerals Engineering, 2003, 16: 1183−1192. doi: 10.1016/j.mineng.2003.07.014

    [15]

    VINCENT L, SOLILLE P. Watershed in digital spaces: An efficient algorithm based immersion simulations[J]. IEEE Trans. PA−MI, 1991, 13(6): 583−598. doi: 10.1109/34.87344

    [16]

    SAMEER H M, DEE J B, MARTIN C H. The use of the froth surface lamellae burst rate as a flotation froth stability measurement[J]. Minerals Engineering, 2012, 36(10): 152−159.

    [17]

    XU C H, GUI W H, YANG C H, et al. Flotation process fault detection using output PDF of bubble size distribution[J]. Minerals Engineering, 2012, 26: 5−12. doi: 10.1016/j.mineng.2011.09.012

    [18]

    CHEN X F, GUI W H, YANG C H, et al. Adaptive image processing for bubbles in flotation process[J]. Measurement & Control, 2011, 44(4): 121−125.

    [19]

    HAMARNEH G, LI X. Watershed segmentation using prior shape and appearance knowledge[J]. Image & Vision Computing, 2009, 27(1): 59−68.

    [20]

    GAO H, LIN W. Marker−based image segmentation relying on disjoint set union[J]. Signal Processing Image Communication, 2006, 21(2): 100−112. doi: 10.1016/j.image.2005.06.008

    [21]

    GONZALEZ R C, WOODS R E. Woods digital image processing: 2nd edition[M]. Beijing: Publishing House of Electronics Industry, 2011.

    [22]

    林小竹, 谷莹莹, 赵国庆. 煤泥浮选泡沫图像分割与特征提取[J]. 煤炭学报, 2007(3): 304−308. doi: 10.3321/j.issn:0253-9993.2007.03.019

    LIN X Z, GU Y Y, ZHAO G Q. Image segmentation and feature extraction of slime flotation foam[J]. Journal of China Coal Society, 2007(3): 304−308. doi: 10.3321/j.issn:0253-9993.2007.03.019

    [23]

    李怡. 铜浮选过程泡沫图像特征提取及工况识别方法研究[D]. 沈阳: 东北大学, 2019.

    LI Y. Study on foam image feature extraction and working condition recognition method in copper flotation process[D]. Shenyang: Northeastern University, 2019.

    [24]

    周开军. 矿物浮选泡沫图像形态特征提取方法与应用[D]. 长沙: 中南大学, 2010.

    ZHOU K J. Morphological feature extraction method and application of mineral flotation foam image[D]. Changsha: Central South University, 2010.

    [25]

    廖一鹏, 王卫星. 结合多尺度边缘增强及自适应谷底检测的浮选气泡图像分割[J]. 光学精密工程, 2016, 24(10): 2589−2600. doi: 10.3788/OPE.20162410.2589

    LIAO Y P, WANG W X. Flotation bubble image segmentation combined with multi−scale edge enhancement and adaptive valley bottom detection[J]. Optics and Precision Engineering, 2016, 24(10): 2589−2600. doi: 10.3788/OPE.20162410.2589

    [26]

    NING Z. An image segmentation algorithm for flotation foam of copper and molybdenum ore[J]. Computer Knowledge and Technology, 2014, 10(12): 2875−2877.

    [27]

    王宇龙. 基于机器视觉的煤泥浮选泡沫分类研究[D]. 太原: 太原理工大学, 2022.

    WANG Y L. Study on classification of coal slime flotation foam based on machine vision[D]. Taiyuan: Taiyuan University of Technology, 2022.

    [28]

    温智平. 基于深度学习的煤泥浮选过程灰分预测与系统控制研究[D]. 徐州: 中国矿业大学, 2023.

    WEN Z P. Research on ash prediction and system control of coal slime flotation process based on deep learning[D]. Xuzhou: China University of Mining and Technology, 2023.

    [29]

    胡椰清. 基于泡沫图像特征的钨浮选精矿品位预测研究[D]. 长沙: 中南大学, 2023.

    HU Y Q. Prediction of tungsten flotation concentrate grade based on foam image features[D] . Changsha: Central South University, 2023.

    [30]

    陈宁, 黄璐, 桂卫华, 等. 泡沫图像统计建模与恒常颜色校正算法研究[J]. 控制理论与应用, 2016, 33(5): 613−620. doi: 10.7641/CTA.2016.50783

    CHEN N, HUANG L, GUI W H, et al. Research on statistical modeling and constant color correction algorithm of foam image[J]. Control Theory and Applications, 2016, 33(5): 613−620. doi: 10.7641/CTA.2016.50783

    [31]

    LIU J, GUI W, TANG Z, et al. Recognition of the operational statuses of reagent addition using dynamic bubble size distribution in copper flotation process[J]. Minerals Engineering, 2013, 45: 128−41. doi: 10.1016/j.mineng.2013.02.003

    [32]

    何桂春, 黄开启. 浮选指标与浮选泡沫数字图像关系研究[J]. 金属矿山, 2008, 37(8): 96−101.

    HE G C, HUANG K Q. Study of the relation between flotation indexes and froth digital images[J]. Metal Mine, 2008, 37(8): 96−101.

    [33]

    HARALICK R M, SHANMUGAM K, DINSTEIN I. Textural Features for Image Classification[J]. IEEE Transactions on Systems, Man and Cybernetics, 1973, 3(6): 610−621.

    [34]

    刘文礼, 路迈西, 王凡, 等. 煤泥浮选泡沫图像纹理特征的提取及泡沫状态的识别[J]. 化工学报, 2003, 54(6): 830−835. doi: 10.3321/j.issn:0438-1157.2003.06.025

    LIU W L, LU M X, WANG F, et al. Extraction of textural feature and recognition of coal flotation froth[J]. Journal of Chemical Industry and Engineering, 2003, 54(6): 830−835. doi: 10.3321/j.issn:0438-1157.2003.06.025

    [35]

    程翠兰. 基于颜色与纹理特征的矿物浮选精选泡沫分类[D]. 长沙: 中南大学, 2011.

    CHENG C L. Classification of mineral flotation foam based on color and texture characteristics[D]. Changsha: Central South University, 2011.

    [36]

    唐朝晖, 孙园园, 桂卫华, 等. 基于小波变换的浮选泡沫图像纹理特征提取[J]. 计算机工程, 2011, 37(18): 206−208. doi: 10.3969/j.issn.1000-3428.2011.18.069

    TANG C H, SUN Y Y, GUI W H, et al. Texture feature extraction of flotation foam image based on wavelet transform[J]. Computer Engineering, 2011, 37(18): 206−208. doi: 10.3969/j.issn.1000-3428.2011.18.069

    [37]

    朱楚梅. 铝土矿精选泡沫图像纹理特征提取方法研究[D]. 长沙: 中南大学, 2013.

    ZHU C M. Research on texture feature extraction method of bauxite foam image[D]. Changsha: Central South University, 2013.

    [38]

    马爱莲, 徐德刚, 谢永芳, 等. 基于复杂网络时空特性的泡沫图像动态纹理特征分析[J]. 化工学报, 2017, 68(3): 1023−1031.

    MA A L, XU D G, XIE Y F, et al. Analysis of dynamic texture features of floatation froth images based on space−time characteristics of complex networks[J]. CIESC Journal, 2017, 68(3): 1023−1031.

    [39]

    牟学民, 刘金平, 桂卫华, 等. 基于SIFT特征配准的浮选泡沫移动速度提取与分析[J]. 信息与控制, 2011, 40(4): 525−531.

    MOU X M, LIU J P, GUI W H, et al. Extraction and analysis of flotation foam movement velocity based on SIFT feature registration[J]. Information and Control, 2011, 40(4): 525−531.

    [40]

    TANG Z, ZENG S, XIE Y, et al. Real−time froth velocity extraction of zinc flotation based on improved SURF[C]//proceedings of the 2018 Chinese Automation Congress (CAC), F, IEEE. 2018.

    [41]

    陈良琴, 王卫星. 基于气泡跟踪与相位相关的浮选表面气泡平移运动估计[J]. 四川大学学报(工程科学版), 2016, 48(5): 143−152.

    CHEN L Q, WANG W X, Estimation of bubble translation motion on flotation surface based on bubble tracking and phase correlation[J]. Journal of Sichuan University (Engineering Science Edition), 2016, 48(5): 143−152.

    [42]

    卜显忠, 杨怡琳, 宛鹤. 基于浮选泡沫图像预测精矿品位的研究进展[J]. 金属矿山, 2024(2): 25−38.

    BU X Z, YANG Y L, WAN H. Research progress of concentrate grade prediction based on flotation foam image[J]. Metal Mine, 2024(2): 25−38.

    [43]

    LI Z M, GUI W H, ZHU J Y, Fault diagnosis method of flotation process based on deep learning and support vector machine[J]. Journal of Central South University, 2019, 26(9): 2504−2515.

    [44]

    WANG X, SONG C, YANG C, et al. Process working condition recognition based on the fusion of morphological and pixel set features of froth for froth flotation[J]. Minerals Engineering, 2018, 128: 17−26. doi: 10.1016/j.mineng.2018.08.017

    [45]

    梁秀满, 田童, 刘文涛, 等. 基于泡沫图像特征融合的煤泥浮选工况识别[J]. 计算机仿真, 2021, 38(4): 385−389. doi: 10.3969/j.issn.1006-9348.2021.04.078

    LIANG X M, TIAN T, LIU W T, et al. Coal slime flotation condition recognition based on foam image feature fusion[J]. Computer Simulation, 2021, 38(4): 385−389. doi: 10.3969/j.issn.1006-9348.2021.04.078

    [46]

    朱建勇, 黄鑫, 杨辉, 等. 基于稀疏化神经网络的浮选泡沫图像特征选择[J]. 控制与决策, 2021, 36(7): 1627−1636.

    ZHU J Y, HUANG X, YANG H, et al. Feature selection of flotation froth image based on sparse neural network[J]. Control and Decision, 2021, 36(7): 1627−1636.

    [47]

    周开军, 阳春华, 牟学民, 等. 基于泡沫特征与LS−SVM的浮选回收率预测[J]. 仪器仪表学报, 2009, 30(6): 1295−1300. doi: 10.3321/j.issn:0254-3087.2009.06.034

    ZHOU K J, YANG C H, MOU X M, et al. Prediction of flotation recovery rate based on foam characteristics and LS−SVM[J]. Chinese Journal of Scientific Instrument, 2009, 30(6): 1295−1300. doi: 10.3321/j.issn:0254-3087.2009.06.034

    [48]

    张海洋, 王旭, 王庆凯等. 镍浮选过程智能控制系统开发与应用[J]. 有色金属工程, 2024, 14(2): 77−84.

    ZHANG H Y, WANG X, WANG Q K, et al. Development and application of intelligent control system for nickel flotation process[J]. Nonferrous Metals Engineering, 2024, 14(2): 77−84.

    [49]

    阳春华, 任会峰, 许灿辉, 等. 基于稀疏多核最小二乘支持向量机的浮选关键指标软测量[J]. 中国有色金属学报, 2011, 21(12): 3149−3154.

    YANG C H, REN H F, XU C H, et al. Soft measurement of key flotation indexes based on Sparse multi−core least squares support vector machine[J]. The Chinese Journal of Non−Ferrous Metals, 2011, 21(12): 3149−3154.

    [50]

    张燕红, 刘俊, 陈冲等. 浮选智能控制系统在某钼矿选厂的应用[J]. 矿山机械, 2021, 49(9): 50−54. doi: 10.3969/j.issn.1001-3954.2021.09.012

    ZHANG Y H, LIU J, CEHN C, et al. Application of flotation intelligent control system in a molybdenum ore separation plant[J]. Mining Machinery, 2021, 49(9): 50−54. doi: 10.3969/j.issn.1001-3954.2021.09.012

    [51]

    苏超, 王旭. 浮选流程智能控制系统开发与应用[J]. 铜业工程, 2019(4): 4−9. doi: 10.3969/j.issn.1009-3842.2019.04.003

    SU C, WANG X. Development and application of flotation process intelligent control system[J]. Copper Engineering, 2019(4): 4−9. doi: 10.3969/j.issn.1009-3842.2019.04.003

  • 加载中

(4)

计量
  • 文章访问数:  90
  • PDF下载数:  9
  • 施引文献:  0
出版历程
收稿日期:  2024-07-02
刊出日期:  2025-02-15

目录