固体钾盐矿地下采空区充填技术研究进展

王其洲, 黄玉书, 池秀文, 任高峰, 张聪瑞, 李扬, 李梅, 颜代蓉, 李立峰. 固体钾盐矿地下采空区充填技术研究进展[J]. 矿产保护与利用, 2025, 45(1): 85-92. doi: 10.13779/j.cnki.issn1001-0076.2024.08.022
引用本文: 王其洲, 黄玉书, 池秀文, 任高峰, 张聪瑞, 李扬, 李梅, 颜代蓉, 李立峰. 固体钾盐矿地下采空区充填技术研究进展[J]. 矿产保护与利用, 2025, 45(1): 85-92. doi: 10.13779/j.cnki.issn1001-0076.2024.08.022
WANG Qizhou, HUANG Yushu, CHI Xiuwen, REN Gaofeng, ZHANG Congrui, LI Yang, LI Mei, YAN Dairong, LI Lifeng. Research Status of Underground Goaf Filling Technology in Solid Sylvite Mine[J]. Conservation and Utilization of Mineral Resources, 2025, 45(1): 85-92. doi: 10.13779/j.cnki.issn1001-0076.2024.08.022
Citation: WANG Qizhou, HUANG Yushu, CHI Xiuwen, REN Gaofeng, ZHANG Congrui, LI Yang, LI Mei, YAN Dairong, LI Lifeng. Research Status of Underground Goaf Filling Technology in Solid Sylvite Mine[J]. Conservation and Utilization of Mineral Resources, 2025, 45(1): 85-92. doi: 10.13779/j.cnki.issn1001-0076.2024.08.022

固体钾盐矿地下采空区充填技术研究进展

  • 基金项目: 国家重点研发计划资助项目(2022YFC290400301);国家自然科学基金项目(51704218)
详细信息
    作者简介: 王其洲(1986—),男,山东青州人,博士,副教授,主要从事岩层控制理论与技术研究,E-mail:wqz_whut@126.com
  • 中图分类号: TD853.34

Research Status of Underground Goaf Filling Technology in Solid Sylvite Mine

  • 钾盐矿作为我国战略性非金属矿产,其安全高效开采直接关系到国家粮食安全和经济社会稳定。针对其地下开采遗留的采空区和选矿产生的固液尾废,总结了地下固体钾盐矿开采方法和充填方式的特点,系统介绍了不同充填胶凝材料的固结机理和研究进展,明确了胶凝材料配方及配比、尾废−胶结料固结体力学性能、胶结充填配套工艺等研究方向,为钾盐矿开发企业选择合适开采方式、充填方法和基于固液尾废的充填材料提供了参考。分析表明:低掺量氯氧镁水泥、粉煤灰、外加剂复合型胶凝材料,是现阶段实现地下固体钾盐矿山高效安全、低尾废排放、低成本充填开采的关键。

  • 加载中
  • 图 1  添加不同胶凝材料的尾盐试样抗压强度

    Figure 1. 

    图 2  氯氧镁水泥3相水化物(a)和5相水化物(b)结构 [55]

    Figure 2. 

    图 3  掺粉煤灰的氯氧镁水泥水化反应过程[67]

    Figure 3. 

  • [1]

    SHARMA P P, YADAV V, RAJPUT A, et al. Synthesis of chloride−free potash fertilized by ionic metathesis using four−compartment electrodialysis salt engineering[J]. ACS Omega, 2018, 3(6): 6895−6902.

    [2]

    TüRK T, ÜçERLER Z, BURAT F, et al. Extraction of potassium from feldspar by roasting with CaCl2 obtained from the acidic leaching of wollastonite−calcite ore[J]. Minerals, 2021, 11(12): 1369.

    [3]

    熊增华, 王石军. 中国钾资源开发利用技术及产业发展综述[J]. 矿产保护与利用, 2020, 40(6): 1−7.

    XIONG Z H, WANG S J. Overview of potassium resources exploitation & utilization technology and potash industry development[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 1−7.

    [4]

    汪家铭. 我国海外钾盐资源开发及前景展望[J]. 中国石油和化工经济分析, 2010(9): 51−55.

    WANG J M. Development and prospect of overseas potash resources in China[J]. China Petroleum and Chemical Economic Analysis, 2010(9): 51−55.

    [5]

    王石军. 全球钾肥产业发展现状与展望[J]. 磷肥与复肥, 2019, 34(10): 9−13. doi: 10.3969/j.issn.1007-6220.2019.10.004

    WANG S J. Development status and prospect of potash fertilizer industry in the world[J]. Phosphate & Compound Fertilizer, 2019, 34(10): 9−13. doi: 10.3969/j.issn.1007-6220.2019.10.004

    [6]

    SANTOS S, CASAGRANDE P, NADER P, et al. Technical feasibility study of the exploitation of seabed potassium salts by solution mining[J]. Journal of Materials Research and Technology, 2022, 16: 433−441.

    [7]

    ZELEK S M, STADNICKA K M, TOBOŁA T, et al. Lattice deformation of blue halite from Zechstein evaporite basin: Kłodawa Salt Mine, Central Poland[J]. Mineralogy and Petrology, 2014, 108: 619−631.

    [8]

    白仟, 张寿庭, 袁俊宏, 等. 钾盐开采—加工技术及其对产业发展的影响[J]. 资源与产业, 2015, 17(3): 79−88.

    BAI Q, ZHANG S T, YUAN J H, WANG Z G. Potash mining & processing technology and its influence on industrial development[J]. Resources & Industries, 2015, 17(3): 79−88.

    [9]

    常政, 袁小龙, 刘万平, 等. 察尔汗盐湖固体钾盐溶解对溶剂注入速率响应机制研究[J]. 地球学报, 2022, 43(3): 287−294. doi: 10.3975/cagsb.2022.021701

    CHANG Z, YUAN X L, LIU W P. A study on the mechanism of influence of the dissolution of solid potassium salt in Qarhan Salt Lake to the rate of solvent injection[J]. Acta Geoscientica Sinica, 2022, 43(3): 287−294. doi: 10.3975/cagsb.2022.021701

    [10]

    董晓铭, 秦佳政, 张仂. 地下可溶性固体钾盐矿加工氯化钾新工艺探索[J]. 盐业与化工, 2015, 44(2): 18−20.

    DONG X M, QIN J Z, ZHANG L. Exploration of new process for processing potassium chloride from underground soluble solid potash mine[J]. Journal of Salt Science and Chemical Industry, 2015, 44(2): 18−20.

    [11]

    王兴富, 王石军, 王罗海, 等. 柴达木低品位固体钾矿溶解转化实验及应用前景[J]. 化工矿产地质, 2019, 41(4): 299−305.

    WANG X F, WANG S J, WANG L H, et al. Dissolution and transformation experiment of low−grade solid potash for Qaidam and its application prospect[J]. Geology of Chemical Minerals, 2019, 41(4): 299−305.

    [12]

    CUI Z H, ZHAO Y J, ZHANG Y M, et al. Experimental study of lithium extraction in the solid−liquid conversion of low−grade solid potash ore[J]. Minerals, 2024, 14(1): 116.

    [13]

    LI R Q, LIU C L, JIAO P C, et al. The present situation, existing problems, and countermeasures for exploitation and utilization of low−grade potash minerals in Qarhan Salt Lake, Qinghai Province, China[J]. Carbonates and Evaporites, 2020, 35(2): 34.

    [14]

    RAJENDRAN V G. Corrosion inhibitor for potash solution mining [M]. Regina: The University of Regina (Canada), 2020.

    [15]

    王罗海, 王石军, 刘万平, 等. “固转液”技术应用及其对资源和环境的影响分析[J]. 化工矿产地质, 2020, 42(4): 378−381.

    WANG L H, WANG S J, LIU W P, et al. The application of "Immersion dissolution and transformation method for solid potassium ore" and its impact on resources and environment[J]. Geology of Chemical Minerals, 2020, 42(4): 378−381.

    [16]

    魏东岩. 美国新墨西哥州钾盐矿床及其开发[J]. 化工矿产地质, 2001(1): 31−38.

    WEI D Y. Potash deposit and its development of New Mexico of USA[J]. Industrial Minerals & Processin, 2001(1): 31−38.

    [17]

    王庐山. 博尔拜钾盐矿的地下开采[J]. 化工矿山技术, 1983(5): 57−58+49.

    WANG L S. Underground mining at the Borbay Potash Mine[J]. Geology of Chemical Minerals, 1983(5): 57−58+49.

    [18]

    亓昭英, 谢鹏飞. 加拿大萨省钾盐资源与钾肥生产考察报告[J]. 云南化工, 2013, 40(6): 25−32. doi: 10.3969/j.issn.1004-275X.2013.06.006

    QI Z Y, XIE P F. Inspection report on Canadian's potash resources and potash producers in Saskatchewan[J]. Yunnan Chemical Technology, 2013, 40(6): 25−32. doi: 10.3969/j.issn.1004-275X.2013.06.006

    [19]

    欧天明. 滇南勐野井钾盐矿床成因新解[J]. 云南地质, 2014, 33(1): 6−13. doi: 10.3969/j.issn.1004-1885.2014.01.002

    OU T M. A new recognition of genesis of Mengyejing potash deposit in YunNan[J]. Yunnan Geology, 2014, 33(1): 6−13. doi: 10.3969/j.issn.1004-1885.2014.01.002

    [20]

    刘小力, 吴国平. 充填采矿技术在井采钾盐矿应用的探讨[J]. 采矿技术, 2013, 13(3): 1−2+27. doi: 10.3969/j.issn.1671-2900.2013.03.001

    LIU X L, WU G P. Discussion on the application of in fill mining technology in shaft mining potash mine[J]. Mining Technology, 2013, 13(3): 1−2+27. doi: 10.3969/j.issn.1671-2900.2013.03.001

    [21]

    杨卉芃, 曹飞. 世界钾资源研究系列之一—资源概况及供需分析[J]. 矿产保护与利用, 2015(1): 75−78.

    YANG H P, CAO F. Series study on potassium resources in world: General situation and analysis of supply and demand[J]. Conservation and Utilization of Mineral Resources, 2015(1): 75−78.

    [22]

    余建荣, 李成宝, 汪云川, 等. 老挝固体钾盐矿选矿设计的优化与创新—以开元500kt/a氯化钾项目为例[J]. 盐湖研究, 2019, 27(4): 28−36.

    YU J R, LI C B, WANG Y C, et al. The optimization and innovation on design of KCl concentration plant in Laos: A case study from the 500 kt/a KCl production project in Laos Kaiyuan Mining Company[J]. Journal of Salt Lake Research, 2019, 27(4): 28−36.

    [23]

    BILIBIO C, RETZ S, SCHELLERT C, et al. Drainage properties of technosols made of municipal solid waste incineration bottom ash and coal combustion residues on potash−tailings piles: A lysimeter study[J]. Journal of cleaner production, 2021, 279: 123442. doi: 10.1016/j.jclepro.2020.123442

    [24]

    SAVON D Y, SHEVCHUK S, SHEVCHUK P. Reducing the impact of waste from potash industry on the environment[J]. Gorn Inform Anal Bull, 2016(8): 360−368.

    [25]

    GOROSTIZA S, SAURI D. Naturalizing pollution: A critical social science view on the link between potash mining and salinization in the Llobregat river basin, northeast Spain[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374(1764). DOI: 10.1098/rstb.2018.0006.

    [26]

    ZIEMANN H, SCHULZ C J. Methods for biological assessment of salt−loaded running waters–fundamentals, current positions and perspectives[J]. Limnologica, 2011, 41(2): 90−95. doi: 10.1016/j.limno.2010.09.005

    [27]

    高新. 固体钾盐矿地下开采中的问题探讨和解决对策[J]. 采矿技术, 2016, 16(6): 1−2+6.

    GAO X. Problem exploration and solution countermeasures in underground mining of solid potash mine[J]. Mining Technology, 2016, 16(6): 1−2+6.

    [28]

    朱明松. 老挝钾盐矿资源规模化开发的总体思路[J]. 云南化工, 2013, 40(6): 1−4.

    ZHU M S. General idea of the scale of exploiting Laos potash resources[J]. Yunnan Chemical Technology, 2013, 40(6): 1−4.

    [29]

    WANG J Q, ZHANG Q, Li M, et al. Effect of compressive behaviours of tail salt filling materials on roof deformation in potash mine[J]. Advances in Civil Engineering, 2021. DOI:10.1155/2021/6678258.

    [30]

    张超, 耿佃凯. 尾盐水力充填技术在老挝某固体钾盐矿的应用实践[J]. 中国矿业, 2020, 29(S2): 297−299.

    ZHANG C, GENG D K. The application of hydraulic filling in Laos sylvite mine[J]. China Mining Magazine. 2020, 29(S2): 297−299.

    [31]

    郭雷, 翟建波, 施士虎, 等. 固体钾盐矿地下开采充填工艺研究[J]. 中国矿山工程, 2017, 46(3): 46−48+51.

    GUO L, ZHAI J B, SHI S H, et al. Research on filling technology of underground mining of solid potash mine[J]. China Mine Engineering. 2017, 46(3): 46−48+51.

    [32]

    张声军, 石永奎, 李后蜀, 等. 矿山尾盐充填泵送试验研究[J]. 建筑机械化, 2012, 33(S1): 122−124.

    ZHANG S J, SHI Y K, LI H S, et al. Experimental research on pumping the salts backfill the mine[J]. Construction Mechanization, 2012, 33(S1): 122−124.

    [33]

    BODENSTEIN J, RAUCHE H A M, SCHREINER W, et al. Reduction of surface subsidence and brine inflow prevention in potash mines by subsequent backfilling[M]. Tailings and Mine Waste 2001. CRC Press, 2022: 171−176.

    [34]

    焦宏章, 王赟. 煤矿机械在固态钾盐地下开采中的应用研究[J]. 化工矿物与加工, 2014, 43(11): 31−33.

    JIAO H Z, WANG Y. Study and application of coal mining equipment in the underground mining process of solid potash[J]. Industrial Minerals & Processing, 2014, 43(11): 31−33.

    [35]

    王作鹏, 金爱兵, 孙文斌, 等. 水砂—胶结充填隔离矿柱稳定性及宽度研究[J]. 金属矿山, 2024(3): 19−28.

    WANG Z P, JIN A B, SUN W B, et al. Study on stability and width of isolated pillar between water sand backfill and cemented backfill[J]. Metal Mine, 2024(3): 19−28.

    [36]

    吴再海, 纪洪广, 姜海强, 等. 尾砂胶结含盐冻结充填体力学特性研究[J]. 岩土力学, 2020, 41(6): 1874−1880.

    WU Z H, JI H G, JIANG H Q, et al. Study of mechanical properties of frozen saline cemented tailings backfill[J]. Rock and Soil Mechanics, 2020, 41(6): 1874−1880.

    [37]

    马慧, 关博文, 王永维, 等. 氯氧镁水泥胶凝材料的研究进展[J]. 材料导报, 2015, 29(15): 103−107.

    MA H, GUAN B W, WANG Y W, et al. Research progress of magnesium oxychloride cement gelled material[J]. Materials Reports, 2015, 29(15): 103−107.

    [38]

    李国政, 李雨峰, 丁鹏, 等. 镁水泥与钾石盐尾矿胶结充填材料试验研究[J]. 中国矿山工程, 2010, 39(5): 23−25+37.

    LI G Z, Li Y F, DING P, et al. Backfill test study on oxy−chloride magnesium cement and potash tailings[J]. China Mine Engineering, 2010, 39(5): 23−25+37.

    [39]

    李雨峰, 李国政. 钾盐尾矿充填数值模拟计算探讨[J]. 矿冶, 2013, 22(2): 24−28.

    LI Y F, LI G Z. The numerical simulation of tailing filling for potash mines[J]. Mining and Metallurgy, 2013, 22(2): 24−28.

    [40]

    徐翔, 曾波. 老挝钾盐矿尾盐回填工程技术研究[J]. 云南化工, 2013, 40(6): 41−43.

    XU X, ZENG B. Study on the tailings backfill technology of potash mine in Laos[J]. Yunnan Chemical Technology, 2013, 40(6): 41−43.

    [41]

    郭会仙, 王国栋, 曾波. 老挝钾盐矿尾盐回填试验研究[J]. 化工矿物与加工, 2015, 44(5): 24−26.

    GUO H X, WANG G D, ZENG B. Experimental study on backfill of potash tail salt in Laos[J]. Industrial Minerals & Processing, 2015, 44(5): 24−26.

    [42]

    李永华, 朱孔金, 刘国举. 地下光卤石矿回填料浆制备与性能研究[J]. 化工矿物与加工, 2014, 43(9): 12−15.

    LI Y H, ZHU K J, LIU G J. Research on preparation and properties of backfill slurry for underground carnallite[J]. Industrial Minerals & Processing, 2014, 43(9): 12−15.

    [43]

    姚俊耀, 李志立, 左迪. 条带开采嗣后充填法充填膏体强度设计及工程应用[J]. 采矿技术, 2019, 19(5): 27−29.

    YAO J Y, LI Z L, ZUO D. Strength design and engineering application of filling paste by strip mining subsequent filling method[J]. Mining Technology, 2019, 19(5): 27−29.

    [44]

    高红波, 李涛. 老挝固体钾盐矿床开采尾矿低成本充填技术研究[J]. 中国矿业, 2020, 29(3): 140−143+148.

    GAO H B, LI T. Study on low cost filling technology of tailings on Laos solid sylvite deposit mining[J]. China Mining Magazine, 2020, 29(3): 140−143+148.

    [45]

    ERMOLOVICH E A, IVANNIKOV A L, KHAYRUTDINOV M M, et al. Creation of a nanomodified backfill based on the waste from enrichment of water−soluble ores[J]. Materials, 2022, 15(10): 3689. doi: 10.3390/ma15103689

    [46]

    GONG W, WANG N, ZHANG N. Effect of fly ash and metakaolin on the macroscopic and microscopic characterizations of magnesium oxychloride cement[J]. Construction and Building Materials, 2021, 267: 120957. doi: 10.1016/j.conbuildmat.2020.120957

    [47]

    HUANG Q, ZHENG W X, XIAO X Y, et al. Effects of fly ash, phosphoric acid, and nano−silica on the properties of magnesium oxychloride cement[J]. Ceramics International, 2021, 47(24): 34341−34351. doi: 10.1016/j.ceramint.2021.08.347

    [48]

    MA C, CHEN G G, SHI J Y, et al. Improvement mechanism of water resistance and volume stability of magnesium oxychloride cement: A comparison study on the influences of various gypsum[J]. Science of the Total Environment, 2022, 829: 154546. doi: 10.1016/j.scitotenv.2022.154546

    [49]

    王雪, 王全, 张滨, 等. 钢渣作为钾盐矿充填料胶结剂的固化机理[J]. 工程科学学报, 2018, 40(10): 1177−1186.

    WANG X, WANG Q, ZHANG B, et al. Hydration mechanism of using steel slag as binder for backfill materials in potash mines[J]. Chinese Journal of Engineering, 2018, 40(10): 1177−1186.

    [50]

    丁红霞, 吴国平, 苗润田. 钾盐矿尾矿充填技术研究[J]. 化工矿物与加工, 2016, 45(6): 44−46+50.

    DING H X, WU G P, MIAO R T. Study on potash tailings filling technology[J]. Industrial Minerals & Processing, 2016, 45(6): 44−46+50.

    [51]

    王宇斌, 文堪, 王森, 等. 同离子效应对半水硫酸钙形貌的调控机理[J]. 高校化学工程学报, 2018, 32(6): 1444−1449. doi: 10.3969/j.issn.1003-9015.2018.06.027

    WANG Y B, WEN K, WANG S, et al. Regulation mechanism of common ion effect on the morphology of calcium sulphate hemihydrate[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(6): 1444−1449. doi: 10.3969/j.issn.1003-9015.2018.06.027

    [52]

    赖敏明, 徐先宝, 李响. 工业废盐的处理及其资源化研究进展[J]. 应用化工, 2023, 52(1): 215−218+222. doi: 10.3969/j.issn.1671-3206.2023.01.041

    LAI M M, XU X B, LI X. Research progress on the treatment and resource utilization of industrial waste salt[J]. Applied Chemical Industry, 2023, 52(1): 215−218+222. doi: 10.3969/j.issn.1671-3206.2023.01.041

    [53]

    邓德华, 张传镁. 氯氧镁水泥水化物形成反应历程[J]. 华南建设学院西院学报, 1996(2): 22−29.

    DENG D H, ZHANG C M. Reaction history of hydrate formation in magnesium chloride cement[J]. Journal of South China Construction University, 1996(2): 22−29.

    [54]

    余海燕, 胡林童. 氯氧镁水泥研究新进展[J]. 天津城建大学学报, 2021, 27(3): 161−167+184.

    YU H Y, HU L T. New progress in research of magnesium oxychloride cement[J]. Journal of Tianjin Chengjian University, 2021, 27(3): 161−167+184.

    [55]

    WALLING S A, PROVIS J L. Magnesia−based cements: A journey of 150 years, and cements for the future?[J]. Chemical reviews, 2016, 116(7): 4170−4204. doi: 10.1021/acs.chemrev.5b00463

    [56]

    ZHENG W X, XIAO X Y, CHANG C G, et al. Characterizing properties of magnesium oxychloride cement concrete pavement[J]. Journal of Central South University, 2019, 26(12): 3410−3419. doi: 10.1007/s11771-019-4263-8

    [57]

    TANG S W, HU Y, REN W, et al. Modeling on the hydration and leaching of eco−friendly magnesium oxychloride cement paste at the micro−scale[J]. Construction and Building Materials, 2019, 204: 684−690. doi: 10.1016/j.conbuildmat.2019.01.232

    [58]

    李国栋. 粉煤灰的结构、形态与活性特征[J]. 粉煤灰综合利用, 1998(3): 37−40.

    LI G D. Characteristics of structure, shape and activity of fly ash[J]. Fly Ash Comprehensive Utilization, 1998(3): 37−40.

    [59]

    RAO B K, REDDY M A K, RAO A V. Effect of flyash as cement replacement material and pore filling material in concrete[J]. Materials Today: Proceedings, 2022, 52: 1775−1780. doi: 10.1016/j.matpr.2021.11.444

    [60]

    YIN B, KANG T, KANG J T, et al. Analysis of active ion−leaching behavior and the reaction mechanism during alkali activation of low−calcium fly ash[J]. International Journal of Concrete Structures, 2018, 12: 1−13.

    [61]

    时雅倩, 关渝珊, 葛伟哲, 等. 粉煤灰建材化增值利用: 最新技术与未来展望[J/OL]. 煤炭学报, 1−19. [2024−04−05]. https://doi.org/10.13225/j.cnki.jccs.ZZ23.1224.

    SHI Y Q, GUAN Y S, GE W Z, et al. Value−added utilization of pulverized fuel ash as construction materials: state−of−the−art technologies and future prospects[J/OL]. Journal of China Coal Society, 1−19[2024−04−05]. https://doi.org/10.13225/j.cnki.jccs.ZZ23.1224.

    [62]

    饶运章, 王炳文, 熊正明, 等. 高盐卤矿山提高尾砂胶结充填体强度的研究[J]. 矿业研究与开发, 2004(S1): 170−173.

    RAO Y Z, WANG B W, XIONG Z M, et al. Study on improving the strength of tailings cemented fill in high salt brine mines[J]. Mining Research and Development, 2004(S1): 170−173.

    [63]

    阎培渝. 粉煤灰在复合胶凝材料水化过程中的作用机理[C]//《硅酸盐学报》创刊50周年暨中国硅酸盐学会2007年学术年会. 北京: 2007.

    YAN P Y. Mechanism of fly ash's effects during hydration process of composite binder[C]//50th Anniversary of the Journal of Silicates and 2007 Annual Conference of the Chinese Society of Silicates, Beijing: 2007.

    [64]

    TEMUUJIN J, RIESSEN A V, WILLIAMS R. Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes[J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 8.

    [65]

    赵华, 王永维, 关博文, 等. 粉煤灰对氯氧镁水泥早期性能的影响[J]. 材料导报, 2015, 29(18): 117−121+135.

    ZHAO H, WANG Y W, GUAN B W, et al. Effect of fly ash on early properties of magnesium oxychloride cement[J]. Materials Reports, 2015, 29(18): 117−121+135.

    [66]

    薛伟, 张斌斌. 粉煤灰掺量对氯氧镁水泥保温材料的改性研究[J]. 混凝土, 2018(11): 67−70.

    XUE W, ZHANG B B. Thermal insulation material of magnesium oxychloride cement dosage of fly ash modification research[J]. Concrete, 2018(11): 67−70.

    [67]

    WU J H, CHEN H X, GUAN B W, et al. Effect of fly ash on rheological properties of magnesium oxychloride cement[J]. Journal of Materials in Civil Engineering, 2019, 31(3): 04018405.1−04018405.10. DOI: 10.1061/(ASCE)MT.1943-5533.0002597

    [68]

    CASTRO−SUAREZ J R, COLPAS−CASTILLO F, TARON−DUNOYER A. Chemical and morphologic characterization of sylvite (KCl) mineral from different deposits used in the production of fertilizers[J]. Agronomy, 2023, 13(1): 52.

    [69]

    SEGNI R, VIEILLE L, LEROUX F, et al. Hydrocalumite−type materials: 1. Interest in hazardous waste immobilization[J]. Journal of Physics and Chemistry of Solids, 2006, 67(5/6): 1037−1042. doi: 10.1016/j.jpcs.2006.01.081

    [70]

    HOURI B, LEGROURI A, BARROUG A, et al. Removal of chromate ions from water by Anionicc CLAYS[J]. Journal de Chimie Physique et de Physico−Chimie Biologique, 1999, 96(3): 455−463.

  • 加载中

(3)

计量
  • 文章访问数:  59
  • PDF下载数:  7
  • 施引文献:  0
出版历程
收稿日期:  2024-04-06
刊出日期:  2025-02-15

目录