-
摘要:
浮选是一种根据物料表面物理化学性质(主要指润湿性)的差异在气、液、固三相流中对物料进行分离和提纯的技术,常用于矿物的分选。对矿物基本浮选行为、表面电性、吸附及溶液化学行为等的研究,是确定浮选药剂与矿物表面相互作用机理的基本方法,但对许多复杂浮选体系,更需要各种现代测试方法去表征或证明这些作用机理,更清楚地从微观层面揭示浮选药剂与矿物表面相互作用的本质。综合分析了成像分析技术如原子力显微镜(AFM)、透射电子显微镜(TEM)、扫描电子显微镜(SEM) 和表面成分分析技术如Zeta电位、红外光谱、拉曼光谱、X射线光电子能谱(XPS)、飞行时间二次离子质谱(TOF−SIMS) 等测试方法在浮选中的应用和研究现状,为今后浮选界面测试发展提供参考。
Abstract:Flotation is a technology that separates and purifies materials in a three−phase flow of gas, liquid, and solid based on the differences in physical and chemical properties (mainly referring to wettability) of the material surface. It is widely used for mineral separation. Studying the basic flotation behavior, wettability, surface electrical properties, adsorption, and solution chemistry of minerals is a fundamental method for determining the interaction mechanism between flotation agents and mineral surfaces. However, for many complex flotation systems, various modern testing methods are required to characterize or prove these interaction mechanisms, and to reveal the essence of the interaction between flotation agents and mineral surfaces more clearly at the microscopic level. This article comprehensively analyzes the application and research status of imaging analysis techniques such as atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and surface composition analysis techniques such as Zeta potential, infrared spectroscopy, Raman spectroscopy, X−ray photoelectron spectroscopy (XPS), time of flight secondary ion mass spectrometry (TOF−SIMS) in flotation, providing reference for the better development of flotation interface testing in the future.
-
Key words:
- flotation /
- test technology /
- imaging analysis /
- surface composition analysis
-
-
图 1 AFM工作原理[2]
Figure 1.
图 2 白云母样品的AFM二维平面剖面图和三维高度图像结构图像[7]
Figure 2.
图 3 STEM的成像示意图[13]
Figure 3.
图 4 氟碳铈矿(Bst)与新奇钙铈矿形(Syn)成纳米级的体衍生结构[20],图中左上角插图为map方框位置为Ce(红色)和Ca(绿色)叠加的元素面分布图
Figure 4.
图 5 扫描电子显微镜结构示意图[22]
Figure 5.
图 6 PAAS吸附后的赤铁矿表面SEM形貌[24]
Figure 6.
图 7 经Na2S处理的孔雀石(a)和(NH4)2SO4+Na2S处理的孔雀石(b)SEM图[27]
Figure 7.
图 8 (a)纯剂BHA/DDA的ATR−FTIR差异光谱;(b)BHA/DDA(浓度: 0.2 mmol/L)在不同pH下对钛铁矿的吸附[55]
Figure 8.
图 9 拉曼光谱结构示意图[60]
Figure 9.
图 10 方解石(a),霰石(b),白云石(c),菱镁矿(d),菱锰矿(e)和辉石(f)在1064 nm激发源下的拉曼光谱[62]
Figure 10.
图 11 XPS原理示意图[65]
Figure 11.
图 12 Na2S处理孔雀石的Cu 2p XPS光谱[27]
Figure 12.
图 13 (a)裸氟碳铈矿、(b)经氢化物处理的氟碳铈矿、(c) OAHD−Ce3+析出物和(d)OAHD的XPS扫描曲线[74]
Figure 13.
图 14 TOF−SIMS原理示意图[76]
Figure 14.
图 15 Fenton试剂氧化改性前后黄铁矿表面与EX捕收剂相互作用的TOF−SIMS图像数据[84]
Figure 15.
图 16 加入PASP前(a)后(b)砷黄铁矿表面阳离子碎片C2H5N2O+图像[85]
Figure 16.
表 1 常见药剂的红外光谱分析
Table 1. Infrared spectroscopic analysis of common agents
药剂 作用矿物 红外光谱分析 结论 维纶胶WLG
(抑制剂)滑石 3675.72 cm−1和665.07 cm−1处的特征峰是滑石中Mg−O的拉伸振动和弯曲振动导致,而在467.76 cm−1处的特征峰是滑石中Si−O的
拉伸振动导致,而这两个位置的峰无明显变化WLG在矿物表面发
生物理吸附[44]油酸钠NaOL
(捕收剂)菱镁矿 在 2921.68 和2852.50 cm−1处观察到条带,表明油酸钠被Mg表面
吸收,在2921.31 和2851.26 cm−1处有微小位移油酸钠在菱镁矿表面
发生了化学吸附[45]水解马来酸酐HPMA(抑制剂) 白云石 HPMA分子中的 1181.83 cm−1(C−O振动)和1726.58 cm−1(C−O振动)改变出现了1204.13 cm−1和1662.57 cm−1的新条带,发生22.30 cm−1
和64.01 cm−1的显著位移HPMA与白云石发生化学吸附[46] -
[1] FILIPPOV L O, SEVEROV V V, FILIPPOVA I V. An overview of the beneficiation of iron ores via reverse cationic flotation[J]. International Journal of Mineral Processing, 2014, 127: 62−69.
[2] 赵春花. 原子力显微镜的基本原理及应用[J]. 化学教育(中英文), 2019(4): 10−15.
ZHAO C H. Basic principles and applications of atomic force microscopy[J]. Chemistry Education (Chinese and English), 2019(4): 10−15.
[3] LI L L L, ZHANG C Z C, YUAN Z Y Z, et al. AFM and DFT study of depression of hematite in oleate−starch−hematite flotation system[J]. Applied Surface Science, 2019(1): 749−758.
[4] DONG L, WEI Q, QIN W, et al. Selective adsorption of sodium polyacrylate on calcite surface: Implications for flotation separation of apatite from calcite[J]. Separation and Purification Technology, 2020, 241.
[5] DONG L D L, JIAO F J F, QIN W Q W, et al. Activation effect of lead ions on scheelite flotation: adsorption mechanism, AFM imaging and adsorption model[J]. Separation and Purification Technology, 2019, 209: 955−963. doi: 10.1016/j.seppur.2018.09.051
[6] JIN S J S, SHI Q S Q, LI Q L Q, et al. Effect of calcium ionic concentrations on the adsorption of carboxymethyl cellulose onto talc surface: Flotation, adsorption and AFM imaging study[J]. Powder Technology, 2018, 331: 155−161. doi: 10.1016/j.powtec.2018.03.014
[7] BAI T A, YANG F, WANG H, et al. Adhesion forces of shale oil droplet on mica surface with different roughness: An experimental investigation using atomic force microscopy[J]. Energies, 2022, 15(17): 6460. doi: 10.3390/en15176460
[8] 郭姚, 任嗣利. 原子力显微镜技术在矿物浮选中的应用现状[J]. 有色金属(选矿部分), 2022(1): 73−79.
GUO Y, REN S L. Application status of atomic force microscopy technology in mineral flotation[J]. Nonferrous Metals (Mineral Processing Part), 2022(1): 73−79.
[9] LI H, LONG J, XU Z, et al. Novel polymer aids for low−grade oil sand ore processing.[J]. Canadian Journal of Chemical Engineering, 2009(2): 168−176.
[10] YANG J Y, QI S, SONG B, et al. The interaction force between scheelite and scheelite/fluorite/calcite measured using atomic force microscopy[J]. Journal of Chemistry, 2020.https://doi.org/10.1155/2020/3163415.
[11] SUN X, LIU W, ZHUO Q, et al. Probing the interaction between coal particle and collector using atomic force microscope and density functional theory calculation[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2023, 660: 130916.
[12] 廖立兵, 王丽娟, 尹京武等. 矿物材料现代测试技术[M]. 北京化学工业出版社, 2010: 259.
LIAO L B, WANG L J, YIN J W, et al. Modern testing technology for mineral materials[M]. Beijing Chemical Industry Press, 2010: 259.
[13] 李金华, 潘永信. 透射电子显微镜在地球科学研究中的应用[J]. 中国科学(地球科学), 2015(9): 1359−1382.
LI J H, PAN Y X. Application of transmission electron microscopy in earth science research[J]. Chinese Science (Earth Science), 2015(9): 1359−1382.
[14] 叶美芳, 刘三, 解古巍, 等. 应用扫描电镜−X射线衍射−电子探针研究北山斑岩铜矿区绢英岩中白色云母的特征[J]. 岩矿测试, 2016(2): 166−177.
YE M F, LIU S, Jie G W, et al. Study on the characteristics of white mica in sericite in Beishan porphyry copper deposit area using scanning electron microscopy X−ray diffraction electron probe[J]. Rock and Mineral Testing, 2016(2): 166−177.
[15] 丁秀云, 马啸华, 王淑英, 等. 纳米级铁氧磁流体磁性粒子的制备工艺及其性能测试[J]. 信阳师范学院学报(自然科学版), 2005(4): 452−453.
DING X Y, MA X H, WANG S Y, et al. Preparation process and performance testing of nanoscale ferrite magnetic fluid magnetic particles[J]. Journal of Xinyang Normal University (Natural Science Edition), 2005(4): 452−453.
[16] JIAN W, MAO J, LEHMANN B, et al. Lingbaoite, AgTe3, a new silver telluride from the Xiaoqinling gold district, central China[J]. American Mineralogist, 2020(5): 745−755.
[17] HE H, YANG Y, MA L, et al. Evidence for a two−stage particle attachment mechanism for phyllosilicate crystallization in geological processes[J]. American Mineralogist, 2021(6): 983−993.
[18] GAO WG, CIOBANU, COOK N, et al. Nanoscale study of lamellar exsolutions in clinopyroxene from olivine gabbro: Recording crystallization sequences in iron−rich layered intrusions[J]. American Mineralogist, 2019(2): 244−261.
[19] JOHNSON, MURAYAMA, KUSEL K, et al. Polycrystallinity of green rust minerals and their synthetic analogs: Implications for particle formation and reactivity in complex systems[J]. American Mineralogist, 2015(10): 2091−2105.
[20] CIOBANU C L, COOK N J, SLATTERY A D, et al. Nanoscale intergrowths in the bastnäsite–synchysite series record transition toward thermodynamic equilibrium[J]. MRS Bulletin, 2022(3): 250−257.
[21] 于洪, 王登红, 李文渊, 等. 透射电子显微镜在关键矿产成因机制研究中的应用进展[J]. 矿床地质, 2023(3): 565−578.
YU H, WANG D H, LI W Y, et al. Progress in the application of transmission electron microscopy in the study of key mineral genesis mechanisms[J]. Mineral Geology, 2023(3): 565−578.
[22] 陈莉, 徐军, 陈晶. 扫描电子显微镜显微分析技术在地球科学中的应用[J]. 中国科学(地球科学), 2015(9): 1347−1358.
CHEN L, XU J, CHEN J. Application of scanning electron microscopy microscopic analysis technology in earth science[J]. Chinese Science (Earth Science), 2015(9): 1347−1358.
[23] YANG B Y B, WANG D W D, WANG T W T, et al. Effect of Cu2+ and Fe3+ on the depression of molybdenite in flotation[J]. Minerals Engineering, 2019, 130: 101−109. doi: 10.1016/j.mineng.2018.10.012
[24] CHENG K, WU X, TANG H, et al. The flotation of fine hematite by selective flocculation using sodium polyacrylate[J]. Minerals Engineering, 2022, 176.
[25] 温利刚, 贾木欣, 王清, 等. 基于扫描电子显微镜的自动矿物学新技术−BPMA及其应用前景[J]. 有色金属(选矿部分), 2021(2): 12−23.
WEN L G, JIA M X, WANG Q, et al. A new automatic mineralogy technology based on scanning electron microscopy − BPMA and its application prospects[J]. Nonferrous Metals (Mineral Processing Section), 2021(2): 12−23.
[26] 曹玉璐, 曾宇轲, 张元元. 基于扫描电子显微镜的重矿物物源分析方法对比[J]. 现代地质, 2023(2): 475−485.
CAO Y L, ZENG Y K, ZHANG Y Y. Comparison of heavy mineral source analysis methods based on scanning electron microscopy[J]. Modern Geology, 2023(2): 475−485.
[27] LIU M, CHEN D, HU B, et al. New insights into the activation mechanism of ammonium ions on the malachite sulfidization flotation[J]. Minerals Engineering, 2024: 205.
[28] KAMBLE S, AGRAWAL S, CHERUMUKKIL S, et al. Revisiting Zeta potential, the key feature of interfacial phenomena, with applications and recent advancements[J]. Chemistry Select, 2022, 7(1): 1−40.
[29] FENG Q F Q, WEN S W S, ZHAO W Z W, et al. Effect of calcium ions on adsorption of sodium oleate onto cassiterite and quartz surfaces and implications for their flotation separation[J]. Separation and Purification Technology, 2018, 200: 300−306. doi: 10.1016/j.seppur.2018.02.048
[30] ZHAO Q Z Q, LIU W L W, WEI D W D, et al. Effect of copper ions on the flotation separation of chalcopyrite and molybdenite using sodium sulfide as a depressant[J]. Minerals Engineering, 2018, 115: 44−52. doi: 10.1016/j.mineng.2017.10.008
[31] TIAN M T M, LIU R L R, GAO Z G Z, et al. Activation mechanism of Fe(Ⅲ) ions in cassiterite flotation with benzohydroxamic acid collector[J]. Minerals Engineering, 2018(1): 31−37.
[32] SHI Q S Q, FENG Q F Q, ZHANG G Z G, et al. Electrokinetic properties of smithsonite and its floatability with anionic collector[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2012, 410, 178−183.
[33] JORDENS A, MARION C, KUZMINA O, et al. Surface chemistry considerations in the flotation of bastnasite[J]. Minerals Engineering, 2014, 66/67/68: 119−129.
[34] JORDENS A, MARION C, KUZMINA O, et al. Physicochemical aspects of allanite flotation[J]. Journal of Rare Earths, 2014(5): 476−486.
[35] TIAN M, ZHANG C, HAN H, et al. Novel insights into adsorption mechanism of benzohydroxamic acid on lead (Ⅱ) activated cassiterite surface: An integrated experimental and computational study[J]. Minerals Engineering, 2018(1): 327−338.
[36] HAN H H H, HU Y H Y, SUN W S W, et al. Novel catalysis catalysis mechanisms of benzohydroxamic acid adsorption by lead ions and changes in the−surface of scheelite particles[J]. Minerals Engineering, 2018, 119: 11−22. doi: 10.1016/j.mineng.2018.01.005
[37] QUAST K K Q U. Literature review on the interaction of oleate with non−sulphide minerals using zeta potential[J]. Minerals Engineering, 2016(3): 10−20.
[38] QUAST K. The use of zeta potential to investigate the interaction of oleate on hematite(Article)[J]. Minerals Engineering, 2016(1): 130−137.
[39] KUBETZKA A, BODE M, PIETZSCH O. Spin−polarized scanning tunneling microscopy with antiferromagnetic probe tips[J]. Physical Review Letters, 2002, 88(5): 057201.
[40] TERNES M, LUTZ C P, HIRJIBEHEDIN C F, et al. The force needed to move an atom on a surface[J]. Science, 2008(5866): 1066−1069.
[41] 孙鑫, 黄凌云, 胡博, 等. 新型羟肟酸捕收剂的合成及其对孔雀石的捕收机理研究[J]. 矿产保护与利用, 2022(1): 52−60.
SUN X, HUANG L Y, HU B, et al. Synthesis of a novel hydroxamic acid collector and its mechanism for capturing malachite[J]. Mineral Protection and Utilization, 2022(1): 52−60.
[42] LINH T, CUBA−CHIEM, HUYNH L, RALSTON J, et al. In situ particle film ATR−FTIR studies of CMC adsorption on talc: The effect of ionic strength and multivalent metal ions[J]. Minerals Engineering, 2008(12−14): 1013−1019.
[43] 许鹏云, 李晶, 陈洲, 等. 红外光谱分析技术在浮选过程中的应用研究进展[J]. 光谱学与光谱分析, 2017(8): 2389−2396.
XU P Y, LI J, CHEN Z, et al. Research progress on the application of infrared spectroscopy analysis technology in flotation process[J]. Spectroscopy and Spectral Analysis, 2017(8): 2389−2396.
[44] 饶金山, 何晓娟, 罗传胜, 等. 辛基羟肟酸浮选氟碳铈矿机制研究[J]. 中国稀土学报, 2015(3): 370−377.
RAO J S, HE X J, LUO C S, et al. Study on the mechanism of octylhydroxamic acid flotation of fluorocarbon cerium ore[J]. Chinese Journal of Rare Earth Sciences, 2015(3): 370−377.
[45] YIN W, SUN H, HONG J, et al. Effect of Ca selective chelator BAPTA as depressant on flotation separation of magnesite from dolomite[J]. Minerals Engineering, 2019: 144.
[46] YANG B, YIN W, ZHU Z. Differential adsorption of hydrolytic polymaleic anhydride as an eco−friendly depressant for the selective flotation of apatite from dolomite[J]. Separation and Purification Technology, 2021(256): 117803.
[47] 周枫然, 韩桥, 张体强, 等. 傅里叶变换红外光谱技术的应用及进展[J]. 化学试剂, 2021(8): 1001−1009.
ZHOU F R, HAN Q, ZHANG T Q, et al. Application and progress of Fourier transform infrared spectroscopy technology[J]. Chemical Reagents, 2021(8): 1001−1009.
[48] 叶军建, 张覃, 侯波, 等. 显微−反射傅里叶变换红外光谱研究油酸钠与胶磷矿吸附机理[J]. 光谱学与光谱分析, 2018(10): 3036−3040.
YE J J, ZHANG Q, HOU B, et al. Study on the adsorption mechanism of sodium oleate and collophane by micro reflection Fourier transform infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2018(10): 3036−3040.
[49] CHENG Q, MEI G, XU W, et al. Flotation of quartz using imidazole ionic liquid collectors with different counterions[J]. Minerals Engineering, 2022: 180.
[50] SAHOO H, RATH S S, DAS B, et al. Flotation of quartz using ionic liquid collectors with different functional groups and varying chain lengths[J]. Minerals Engineering, 2016: 107−112.
[51] WANG X, LIU W, LIU W, et al. Understanding adsorption of amine surfactants on the solvated quartz (101) surface by a jointed Dreiding−ClayFF force field[J]. Applied Surface Science, 2021, 566.
[52] YANG K, KAS R, SMITH W A. In situ infrared spectroscopy reveals persistent alkalinity near electrode surfaces during CO2 electroreduction[J]. Journal of the American Chemical Society, 2019(40): 15891−15900.
[53] MENG J, XU L, WANG D, et al. The activation mechanism of metal ions on spodumene flotation from the perspective of in situ ATR−FTIR and ToF−SIMS[J]. Minerals Engineering, 2022: 182.
[54] GAO J, SUN W, LYU F. Understanding the activation mechanism of Ca2+ ion in sodium oleate flotation of spodumene: A new perspective[J]. Chemical Engineering Science, 2021(244): 116742.
[55] LUO L, WU H, XU L, et al. An in situ ATR−FTIR study of mixed collectors BHA/DDA adsorption in ilmenite−titanaugite flotation system[J]. International Journal of Mining Science and Technology, 2021(4): 689−697.
[56] FREDRIKSSON A, LARSSON M L, HOLMGREN A. N−Heptyl xanthate adsorption on a ZnS layer synthesized on germanium: An in situ attenuated total reflection IR study[J]. Journal of Colloid and Interface Science, 2005(1): 1−6.
[57] SE A F A F, HOLMGREN A, FORSLING W. Kinetics of collector adsorption on mineral surfaces[J]. Minerals Engineering, 2006(6/7/8): 784−789.
[58] 李小军, 卢雪, 任宏江, 等. HmTiSin(m=1~2; n=2~8)团簇结构、电子性质和红外光谱的密度泛函理论研究[J]. 光谱学与光谱分析, 2019(1): 65−72.
LI X J, LU X, REN H J, et al. HmTiSin(m=1~2; density functional theory study oncluster structure, electronic properties, and infrared spectroscopy (n=2~8)[J]. Spectroscopy and Spectral Analysis, 2019 (1): 65−72.
[59] WANHALA A K, DOUGHTY B, BRYANTSEV V S, et al. Adsorption mechanism of alkyl hydroxamic acid onto bastnäsite: Fundamental steps toward rational collector design for rare earth elements[J]. Journal of Colloid and Interface Science, 2019, 553: 210−219. doi: 10.1016/j.jcis.2019.06.025
[60] 张曦, 南瑞华, 坚佳莹, 等. 拉曼光谱技术及其应用进展[J]. 化学研究, 2024(1): 1−15.
ZHANG X, NAN R H, JIAN J Y, et al. Raman spectroscopy technology and its application progress[J]. Chemical Research, 2024(1): 1−15.
[61] 杨丽萍, 薛绍秀. 拉曼光谱在磷矿加工过程中的应用[J]. 矿冶, 2013(2): 114−117.
YNG L P, XUE S X. Application of Raman spectroscopy in phosphate ore processing[J]. Mining and Metallurgy, 2013(2): 114−117.
[62] ALVES J F, EDWARDS H G M, KORSAKOV A, et al. Revisiting the Raman Spectra of Carbonate Minerals[J]. Minerals, 2023, 13, (11).
[63] 陈铄, 苏志华, 周永章, 等. 谱学分析在造山带硅质岩中的应用及其地质意义[J]. 光谱学与光谱分析, 2019(4): 1128−1135.
CHEN S, SU Z H, ZHOU Y Z, et al. Application and geological significance of spectroscopic analysis in siliceous rocks in orogenic belts[J]. Spectroscopy and Spectral Analysis, 2019(4): 1128−1135.
[64] 赵晓轩, 张聪, 刘晓瑜, 等. 显微激光拉曼光谱锆石定年方法及其应用[J]. 岩石矿物学杂志, 2024, 43(2): 450−468.
ZHAO X X, ZHANG C, LIU X Y, et al. Microscopic laser Raman spectroscopy zircon dating method and its application[J]. Journal of Rock Mineralogy, 2024, 43(2): 450−468.
[65] GHOBEIRA R, TABAEI P S E, MORENT R, et al. Chemical characterization of plasma−activated polymeric surfaces via XPS analyses: A review[J]. Surfaces and Interfaces, 2022, 31.
[66] BIESINGER M C, HART B R, POLACK R. Analysis of mineral surface chemistry in flotation separation using imaging XPS[J]. Minerals Engineering, 2007(2): 152−162.
[67] MIELCZARSKI J A, CASES J M, ALNOT M, et al. XPS characterization of chalcopyrite, tetrahedrite, and tennantite surface products after different conditioning. 2. amyl Xanthate solution at pH 10[J]. LANGMUIR, 1996(10): 2531−2543.
[68] KARTIO I J, BASILIO C I, YOON R H. An XPS study of sphalerite activation by copper[J]. Langmuir, 1998(18): 5274−5278.
[69] PRESTIDGE C A, SKINNER W M, RALSTON J, et al. Copper(Ⅱ) activation and cyanide deactivation of zinc sulphide under mildly alkaline conditions[J]. Applied Surface Science, 1997(3): 333−344.
[70] A. BOULTON D F J R. Characterisation of sphalerite and pyrite flotation samples by XPS and ToF−SIMS[J]. International Journal of Mineral Processing, 2003(1): 205−219.
[71] YANG Z, GENG L, ZHOU H, et al. Improving the flotation separation of chalcopyrite from galena through high−temperature air oxidation pretreatment[J]. Minerals Engineering, 2022, 176.
[72] ZHU H, YANG B, MARTIN R, et al. Flotation separation of galena from sphalerite using hyaluronic acid (HA) as an environmental−friendly sphalerite depressant[J]. Minerals Engineering, 2022, 187.
[73] ZHAO X, MENG Q, ZHANG Y, et al. Surface adsorption investigation of dodecylbenzenesulfonate isopropanolamine a novel collector during flotation separation of ilmenite from titanaugite[J]. Minerals Engineering, 2022, 180.
[74] QI J, LIU G, DONG Y. Probing the hydrophobic mechanism of N−[(3−hydroxyamino)−propoxy]−N−octyl dithiocarbamate toward bastnaesite flotation by in situ AFM, FTIR and XPS[J]. Journal of Colloid & Interface Science, 2020, 572: 179−189.
[75] 李展平. 飞行时间二次离子质谱(TOF−SIMS)分析技术[J]. 矿物岩石地球化学通报, 2020(6): 1173−1190.
LI Z P. Time of Flight Secondary ion mass spectrometry (TOF−SIMS) analysis technology[J]. Mineral and Rock Geochemistry Bulletin, 2020(6): 1173−1190.
[76] 王梦琴, 蔡克大, 李展平. 飞行时间二次离子质谱(TOF−SIMS)在矿物包裹体研究中的应用[J]. 岩石矿物学杂志, 2023(3): 451−464.
WAN M Q, CAI K D, LI Z P. Application of time of flight secondary ion mass spectrometry (TOF−SIMS) in mineral inclusion research[J]. Journal of Rock Mineralogy, 2023(3): 451−464.
[77] 袁航, 何廷树, 李慧, 等. Ca2+在粗细粒辉钼矿表面吸附及对可浮性影响[J]. 有色金属工程, 2019(8): 59−65.
YUAN H, HE T, LI H, et al. Adsorption of Ca2+ on the surface of coarse−grained molybdenite and its effect on floatability[J]. Nonferrous Metals Engineering, 2019 (8): 59−65.
[78] CHEHREH CHELGANI S, HART B. TOF−SIMS studies of surface chemistry of minerals subjected to flotation separation − A review[J]. Minerals Engineering, 2014(1): 1−11.
[79] HART B, BIESINGER M, SMART R S C. Improved statistical methods applied to surface chemistry in minerals flotation[J]. Minerals Engineering, 2006(6/7/8): 790−798.
[80] A A R G, A R S C S, A J L, et al. Diagnosis of the surface chemical influences on flotation performance: Copper sulfides and molybdenite[J]. International Journal of Mineral Processing, 2012, 106: 16−30.
[81] LOTTER N O, BRADSHAW D J, BECKER M, et al. A discussion of the occurrence and undesirable flotation behaviour of orthopyroxene and talc in the processing of mafic deposits[J]. Minerals Engineering, 2008(12/13/14): 905−912.
[82] JASIENIAK M M J U, SMART R S C R. Surface chemical mechanisms of inadvertent recovery of chromite in UG2 ore flotation: Residual layer identification using statistical ToF−SIMS analysis[J]. International Journal of Mineral Processing, 2010(1/2): 72−82.
[83] WEEDON D D W U, GRANO S, AKROYD T, et al. Effects of high Mg2+ concentration on KCl flotation: Part I − Laboratory research.[J]. Minerals Engineering, 2007(7): 675−683.
[84] DING Z, CHEN M, YUAN J, et al. Fenton oxidation modification mechanism of pyrite and its response to Cu−S flotation separation: Experiment, DFT, XPS and ToF−SIMS studies[J]. Applied Surface Science, 2024, 652.
[85] DAI Z, ZHENG Y, PENG J, et al. Effect of polyaspartic acid as an environmental−friendly depressant on flotation separation of chalcopyrite from arsenopyrite[J]. Separation and Purification Technology, 2024, 335.
[86] LAI H, DENG J, LIU Q. Surface chemistry investigation of froth flotation products of lead−zinc sulfide ore using ToF−SIMS and multivariate analysis[J]. Separation and Purification Technology, 2021, 254.
-