矿物浮选表面性质测试方法研究进展

王佳丽, 王介良, 时景阳, 吴旭, 曹钊. 矿物浮选表面性质测试方法研究进展[J]. 矿产保护与利用, 2025, 45(1): 101-113. doi: 10.13779/j.cnki.issn1001-0076.2025.01.004
引用本文: 王佳丽, 王介良, 时景阳, 吴旭, 曹钊. 矿物浮选表面性质测试方法研究进展[J]. 矿产保护与利用, 2025, 45(1): 101-113. doi: 10.13779/j.cnki.issn1001-0076.2025.01.004
WANG Jiali, WANG Jieliang, SHI Jingyang, WU Xu, CAO Zhao. Research Progress on Surface Property Testing Methods for Mineral Flotation[J]. Conservation and Utilization of Mineral Resources, 2025, 45(1): 101-113. doi: 10.13779/j.cnki.issn1001-0076.2025.01.004
Citation: WANG Jiali, WANG Jieliang, SHI Jingyang, WU Xu, CAO Zhao. Research Progress on Surface Property Testing Methods for Mineral Flotation[J]. Conservation and Utilization of Mineral Resources, 2025, 45(1): 101-113. doi: 10.13779/j.cnki.issn1001-0076.2025.01.004

矿物浮选表面性质测试方法研究进展

  • 基金项目: 国家重点研发计划项目(2021YFC2901000,2022YFC2905302);国家自然科学基金项目(52264033,52364034)
详细信息
    作者简介: 王佳丽(2001—),女,河南商丘人,博士研究生,主要从事矿产资源高效利用,E-mail:2022011025@stu.imust.edu.cn
    通讯作者: 曹钊(1985—),男,湖北随州人,博士,教授,主要从事战略矿产资源高效利用,E-mail:caozhao1217@163.com
  • 中图分类号: TD91

Research Progress on Surface Property Testing Methods for Mineral Flotation

More Information
  • 浮选是一种根据物料表面物理化学性质(主要指润湿性)的差异在气、液、固三相流中对物料进行分离和提纯的技术,常用于矿物的分选。对矿物基本浮选行为、表面电性、吸附及溶液化学行为等的研究,是确定浮选药剂与矿物表面相互作用机理的基本方法,但对许多复杂浮选体系,更需要各种现代测试方法去表征或证明这些作用机理,更清楚地从微观层面揭示浮选药剂与矿物表面相互作用的本质。综合分析了成像分析技术如原子力显微镜(AFM)、透射电子显微镜(TEM)、扫描电子显微镜(SEM) 和表面成分分析技术如Zeta电位、红外光谱、拉曼光谱、X射线光电子能谱(XPS)、飞行时间二次离子质谱(TOF−SIMS) 等测试方法在浮选中的应用和研究现状,为今后浮选界面测试发展提供参考。

  • 加载中
  • 图 1  AFM工作原理[2]

    Figure 1. 

    图 2  白云母样品的AFM二维平面剖面图和三维高度图像结构图像[7]

    Figure 2. 

    图 3  STEM的成像示意图[13]

    Figure 3. 

    图 4  氟碳铈矿(Bst)与新奇钙铈矿形(Syn)成纳米级的体衍生结构[20],图中左上角插图为map方框位置为Ce(红色)和Ca(绿色)叠加的元素面分布图

    Figure 4. 

    图 5  扫描电子显微镜结构示意图[22]

    Figure 5. 

    图 6  PAAS吸附后的赤铁矿表面SEM形貌[24]

    Figure 6. 

    图 7  经Na2S处理的孔雀石(a)和(NH4)2SO4+Na2S处理的孔雀石(b)SEM图[27]

    Figure 7. 

    图 8  (a)纯剂BHA/DDA的ATR−FTIR差异光谱;(b)BHA/DDA(浓度: 0.2 mmol/L)在不同pH下对钛铁矿的吸附[55]

    Figure 8. 

    图 9  拉曼光谱结构示意图[60]

    Figure 9. 

    图 10  方解石(a),霰石(b),白云石(c),菱镁矿(d),菱锰矿(e)和辉石(f)在1064 nm激发源下的拉曼光谱[62]

    Figure 10. 

    图 11  XPS原理示意图[65]

    Figure 11. 

    图 12  Na2S处理孔雀石的Cu 2p XPS光谱[27]

    Figure 12. 

    图 13  (a)裸氟碳铈矿、(b)经氢化物处理的氟碳铈矿、(c) OAHD−Ce3+析出物和(d)OAHD的XPS扫描曲线[74]

    Figure 13. 

    图 14  TOF−SIMS原理示意图[76]

    Figure 14. 

    图 15  Fenton试剂氧化改性前后黄铁矿表面与EX捕收剂相互作用的TOF−SIMS图像数据[84]

    Figure 15. 

    图 16  加入PASP前(a)后(b)砷黄铁矿表面阳离子碎片C2H5N2O+图像[85]

    Figure 16. 

    表 1  常见药剂的红外光谱分析

    Table 1.  Infrared spectroscopic analysis of common agents

    药剂 作用矿物 红外光谱分析 结论
    维纶胶WLG
    (抑制剂)
    滑石 3675.72 cm−1和665.07 cm−1处的特征峰是滑石中Mg−O的拉伸振动和弯曲振动导致,而在467.76 cm−1处的特征峰是滑石中Si−O的
    拉伸振动导致,而这两个位置的峰无明显变化
    WLG在矿物表面发
    生物理吸附[44]
    油酸钠NaOL
    (捕收剂)
    菱镁矿 2921.682852.50 cm−1处观察到条带,表明油酸钠被Mg表面
    吸收,在2921.312851.26 cm−1处有微小位移
    油酸钠在菱镁矿表面
    发生了化学吸附[45]
    水解马来酸酐HPMA(抑制剂) 白云石 HPMA分子中的1181.83 cm−1(C−O振动)和1726.58 cm−1(C−O振动)改变出现了1204.13 cm−11662.57 cm−1的新条带,发生22.30 cm−1
    和64.01 cm−1的显著位移
    HPMA与白云石发生化学吸附[46]
    下载: 导出CSV
  • [1]

    FILIPPOV L O, SEVEROV V V, FILIPPOVA I V. An overview of the beneficiation of iron ores via reverse cationic flotation[J]. International Journal of Mineral Processing, 2014, 127: 62−69.

    [2]

    赵春花. 原子力显微镜的基本原理及应用[J]. 化学教育(中英文), 2019(4): 10−15.

    ZHAO C H. Basic principles and applications of atomic force microscopy[J]. Chemistry Education (Chinese and English), 2019(4): 10−15.

    [3]

    LI L L L, ZHANG C Z C, YUAN Z Y Z, et al. AFM and DFT study of depression of hematite in oleate−starch−hematite flotation system[J]. Applied Surface Science, 2019(1): 749−758.

    [4]

    DONG L, WEI Q, QIN W, et al. Selective adsorption of sodium polyacrylate on calcite surface: Implications for flotation separation of apatite from calcite[J]. Separation and Purification Technology, 2020, 241.

    [5]

    DONG L D L, JIAO F J F, QIN W Q W, et al. Activation effect of lead ions on scheelite flotation: adsorption mechanism, AFM imaging and adsorption model[J]. Separation and Purification Technology, 2019, 209: 955−963. doi: 10.1016/j.seppur.2018.09.051

    [6]

    JIN S J S, SHI Q S Q, LI Q L Q, et al. Effect of calcium ionic concentrations on the adsorption of carboxymethyl cellulose onto talc surface: Flotation, adsorption and AFM imaging study[J]. Powder Technology, 2018, 331: 155−161. doi: 10.1016/j.powtec.2018.03.014

    [7]

    BAI T A, YANG F, WANG H, et al. Adhesion forces of shale oil droplet on mica surface with different roughness: An experimental investigation using atomic force microscopy[J]. Energies, 2022, 15(17): 6460. doi: 10.3390/en15176460

    [8]

    郭姚, 任嗣利. 原子力显微镜技术在矿物浮选中的应用现状[J]. 有色金属(选矿部分), 2022(1): 73−79.

    GUO Y, REN S L. Application status of atomic force microscopy technology in mineral flotation[J]. Nonferrous Metals (Mineral Processing Part), 2022(1): 73−79.

    [9]

    LI H, LONG J, XU Z, et al. Novel polymer aids for low−grade oil sand ore processing.[J]. Canadian Journal of Chemical Engineering, 2009(2): 168−176.

    [10]

    YANG J Y, QI S, SONG B, et al. The interaction force between scheelite and scheelite/fluorite/calcite measured using atomic force microscopy[J]. Journal of Chemistry, 2020.https://doi.org/10.1155/2020/3163415.

    [11]

    SUN X, LIU W, ZHUO Q, et al. Probing the interaction between coal particle and collector using atomic force microscope and density functional theory calculation[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2023, 660: 130916.

    [12]

    廖立兵, 王丽娟, 尹京武等. 矿物材料现代测试技术[M]. 北京化学工业出版社, 2010: 259.

    LIAO L B, WANG L J, YIN J W, et al. Modern testing technology for mineral materials[M]. Beijing Chemical Industry Press, 2010: 259.

    [13]

    李金华, 潘永信. 透射电子显微镜在地球科学研究中的应用[J]. 中国科学(地球科学), 2015(9): 1359−1382.

    LI J H, PAN Y X. Application of transmission electron microscopy in earth science research[J]. Chinese Science (Earth Science), 2015(9): 1359−1382.

    [14]

    叶美芳, 刘三, 解古巍, 等. 应用扫描电镜−X射线衍射−电子探针研究北山斑岩铜矿区绢英岩中白色云母的特征[J]. 岩矿测试, 2016(2): 166−177.

    YE M F, LIU S, Jie G W, et al. Study on the characteristics of white mica in sericite in Beishan porphyry copper deposit area using scanning electron microscopy X−ray diffraction electron probe[J]. Rock and Mineral Testing, 2016(2): 166−177.

    [15]

    丁秀云, 马啸华, 王淑英, 等. 纳米级铁氧磁流体磁性粒子的制备工艺及其性能测试[J]. 信阳师范学院学报(自然科学版), 2005(4): 452−453.

    DING X Y, MA X H, WANG S Y, et al. Preparation process and performance testing of nanoscale ferrite magnetic fluid magnetic particles[J]. Journal of Xinyang Normal University (Natural Science Edition), 2005(4): 452−453.

    [16]

    JIAN W, MAO J, LEHMANN B, et al. Lingbaoite, AgTe3, a new silver telluride from the Xiaoqinling gold district, central China[J]. American Mineralogist, 2020(5): 745−755.

    [17]

    HE H, YANG Y, MA L, et al. Evidence for a two−stage particle attachment mechanism for phyllosilicate crystallization in geological processes[J]. American Mineralogist, 2021(6): 983−993.

    [18]

    GAO WG, CIOBANU, COOK N, et al. Nanoscale study of lamellar exsolutions in clinopyroxene from olivine gabbro: Recording crystallization sequences in iron−rich layered intrusions[J]. American Mineralogist, 2019(2): 244−261.

    [19]

    JOHNSON, MURAYAMA, KUSEL K, et al. Polycrystallinity of green rust minerals and their synthetic analogs: Implications for particle formation and reactivity in complex systems[J]. American Mineralogist, 2015(10): 2091−2105.

    [20]

    CIOBANU C L, COOK N J, SLATTERY A D, et al. Nanoscale intergrowths in the bastnäsite–synchysite series record transition toward thermodynamic equilibrium[J]. MRS Bulletin, 2022(3): 250−257.

    [21]

    于洪, 王登红, 李文渊, 等. 透射电子显微镜在关键矿产成因机制研究中的应用进展[J]. 矿床地质, 2023(3): 565−578.

    YU H, WANG D H, LI W Y, et al. Progress in the application of transmission electron microscopy in the study of key mineral genesis mechanisms[J]. Mineral Geology, 2023(3): 565−578.

    [22]

    陈莉, 徐军, 陈晶. 扫描电子显微镜显微分析技术在地球科学中的应用[J]. 中国科学(地球科学), 2015(9): 1347−1358.

    CHEN L, XU J, CHEN J. Application of scanning electron microscopy microscopic analysis technology in earth science[J]. Chinese Science (Earth Science), 2015(9): 1347−1358.

    [23]

    YANG B Y B, WANG D W D, WANG T W T, et al. Effect of Cu2+ and Fe3+ on the depression of molybdenite in flotation[J]. Minerals Engineering, 2019, 130: 101−109. doi: 10.1016/j.mineng.2018.10.012

    [24]

    CHENG K, WU X, TANG H, et al. The flotation of fine hematite by selective flocculation using sodium polyacrylate[J]. Minerals Engineering, 2022, 176.

    [25]

    温利刚, 贾木欣, 王清, 等. 基于扫描电子显微镜的自动矿物学新技术−BPMA及其应用前景[J]. 有色金属(选矿部分), 2021(2): 12−23.

    WEN L G, JIA M X, WANG Q, et al. A new automatic mineralogy technology based on scanning electron microscopy − BPMA and its application prospects[J]. Nonferrous Metals (Mineral Processing Section), 2021(2): 12−23.

    [26]

    曹玉璐, 曾宇轲, 张元元. 基于扫描电子显微镜的重矿物物源分析方法对比[J]. 现代地质, 2023(2): 475−485.

    CAO Y L, ZENG Y K, ZHANG Y Y. Comparison of heavy mineral source analysis methods based on scanning electron microscopy[J]. Modern Geology, 2023(2): 475−485.

    [27]

    LIU M, CHEN D, HU B, et al. New insights into the activation mechanism of ammonium ions on the malachite sulfidization flotation[J]. Minerals Engineering, 2024: 205.

    [28]

    KAMBLE S, AGRAWAL S, CHERUMUKKIL S, et al. Revisiting Zeta potential, the key feature of interfacial phenomena, with applications and recent advancements[J]. Chemistry Select, 2022, 7(1): 1−40.

    [29]

    FENG Q F Q, WEN S W S, ZHAO W Z W, et al. Effect of calcium ions on adsorption of sodium oleate onto cassiterite and quartz surfaces and implications for their flotation separation[J]. Separation and Purification Technology, 2018, 200: 300−306. doi: 10.1016/j.seppur.2018.02.048

    [30]

    ZHAO Q Z Q, LIU W L W, WEI D W D, et al. Effect of copper ions on the flotation separation of chalcopyrite and molybdenite using sodium sulfide as a depressant[J]. Minerals Engineering, 2018, 115: 44−52. doi: 10.1016/j.mineng.2017.10.008

    [31]

    TIAN M T M, LIU R L R, GAO Z G Z, et al. Activation mechanism of Fe(Ⅲ) ions in cassiterite flotation with benzohydroxamic acid collector[J]. Minerals Engineering, 2018(1): 31−37.

    [32]

    SHI Q S Q, FENG Q F Q, ZHANG G Z G, et al. Electrokinetic properties of smithsonite and its floatability with anionic collector[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2012, 410, 178−183.

    [33]

    JORDENS A, MARION C, KUZMINA O, et al. Surface chemistry considerations in the flotation of bastnasite[J]. Minerals Engineering, 2014, 66/67/68: 119−129.

    [34]

    JORDENS A, MARION C, KUZMINA O, et al. Physicochemical aspects of allanite flotation[J]. Journal of Rare Earths, 2014(5): 476−486.

    [35]

    TIAN M, ZHANG C, HAN H, et al. Novel insights into adsorption mechanism of benzohydroxamic acid on lead (Ⅱ) activated cassiterite surface: An integrated experimental and computational study[J]. Minerals Engineering, 2018(1): 327−338.

    [36]

    HAN H H H, HU Y H Y, SUN W S W, et al. Novel catalysis catalysis mechanisms of benzohydroxamic acid adsorption by lead ions and changes in the−surface of scheelite particles[J]. Minerals Engineering, 2018, 119: 11−22. doi: 10.1016/j.mineng.2018.01.005

    [37]

    QUAST K K Q U. Literature review on the interaction of oleate with non−sulphide minerals using zeta potential[J]. Minerals Engineering, 2016(3): 10−20.

    [38]

    QUAST K. The use of zeta potential to investigate the interaction of oleate on hematite(Article)[J]. Minerals Engineering, 2016(1): 130−137.

    [39]

    KUBETZKA A, BODE M, PIETZSCH O. Spin−polarized scanning tunneling microscopy with antiferromagnetic probe tips[J]. Physical Review Letters, 2002, 88(5): 057201.

    [40]

    TERNES M, LUTZ C P, HIRJIBEHEDIN C F, et al. The force needed to move an atom on a surface[J]. Science, 2008(5866): 1066−1069.

    [41]

    孙鑫, 黄凌云, 胡博, 等. 新型羟肟酸捕收剂的合成及其对孔雀石的捕收机理研究[J]. 矿产保护与利用, 2022(1): 52−60.

    SUN X, HUANG L Y, HU B, et al. Synthesis of a novel hydroxamic acid collector and its mechanism for capturing malachite[J]. Mineral Protection and Utilization, 2022(1): 52−60.

    [42]

    LINH T, CUBA−CHIEM, HUYNH L, RALSTON J, et al. In situ particle film ATR−FTIR studies of CMC adsorption on talc: The effect of ionic strength and multivalent metal ions[J]. Minerals Engineering, 2008(12−14): 1013−1019.

    [43]

    许鹏云, 李晶, 陈洲, 等. 红外光谱分析技术在浮选过程中的应用研究进展[J]. 光谱学与光谱分析, 2017(8): 2389−2396.

    XU P Y, LI J, CHEN Z, et al. Research progress on the application of infrared spectroscopy analysis technology in flotation process[J]. Spectroscopy and Spectral Analysis, 2017(8): 2389−2396.

    [44]

    饶金山, 何晓娟, 罗传胜, 等. 辛基羟肟酸浮选氟碳铈矿机制研究[J]. 中国稀土学报, 2015(3): 370−377.

    RAO J S, HE X J, LUO C S, et al. Study on the mechanism of octylhydroxamic acid flotation of fluorocarbon cerium ore[J]. Chinese Journal of Rare Earth Sciences, 2015(3): 370−377.

    [45]

    YIN W, SUN H, HONG J, et al. Effect of Ca selective chelator BAPTA as depressant on flotation separation of magnesite from dolomite[J]. Minerals Engineering, 2019: 144.

    [46]

    YANG B, YIN W, ZHU Z. Differential adsorption of hydrolytic polymaleic anhydride as an eco−friendly depressant for the selective flotation of apatite from dolomite[J]. Separation and Purification Technology, 2021(256): 117803.

    [47]

    周枫然, 韩桥, 张体强, 等. 傅里叶变换红外光谱技术的应用及进展[J]. 化学试剂, 2021(8): 1001−1009.

    ZHOU F R, HAN Q, ZHANG T Q, et al. Application and progress of Fourier transform infrared spectroscopy technology[J]. Chemical Reagents, 2021(8): 1001−1009.

    [48]

    叶军建, 张覃, 侯波, 等. 显微−反射傅里叶变换红外光谱研究油酸钠与胶磷矿吸附机理[J]. 光谱学与光谱分析, 2018(10): 3036−3040.

    YE J J, ZHANG Q, HOU B, et al. Study on the adsorption mechanism of sodium oleate and collophane by micro reflection Fourier transform infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2018(10): 3036−3040.

    [49]

    CHENG Q, MEI G, XU W, et al. Flotation of quartz using imidazole ionic liquid collectors with different counterions[J]. Minerals Engineering, 2022: 180.

    [50]

    SAHOO H, RATH S S, DAS B, et al. Flotation of quartz using ionic liquid collectors with different functional groups and varying chain lengths[J]. Minerals Engineering, 2016: 107−112.

    [51]

    WANG X, LIU W, LIU W, et al. Understanding adsorption of amine surfactants on the solvated quartz (101) surface by a jointed Dreiding−ClayFF force field[J]. Applied Surface Science, 2021, 566.

    [52]

    YANG K, KAS R, SMITH W A. In situ infrared spectroscopy reveals persistent alkalinity near electrode surfaces during CO2 electroreduction[J]. Journal of the American Chemical Society, 2019(40): 15891−15900.

    [53]

    MENG J, XU L, WANG D, et al. The activation mechanism of metal ions on spodumene flotation from the perspective of in situ ATR−FTIR and ToF−SIMS[J]. Minerals Engineering, 2022: 182.

    [54]

    GAO J, SUN W, LYU F. Understanding the activation mechanism of Ca2+ ion in sodium oleate flotation of spodumene: A new perspective[J]. Chemical Engineering Science, 2021(244): 116742.

    [55]

    LUO L, WU H, XU L, et al. An in situ ATR−FTIR study of mixed collectors BHA/DDA adsorption in ilmenite−titanaugite flotation system[J]. International Journal of Mining Science and Technology, 2021(4): 689−697.

    [56]

    FREDRIKSSON A, LARSSON M L, HOLMGREN A. N−Heptyl xanthate adsorption on a ZnS layer synthesized on germanium: An in situ attenuated total reflection IR study[J]. Journal of Colloid and Interface Science, 2005(1): 1−6.

    [57]

    SE A F A F, HOLMGREN A, FORSLING W. Kinetics of collector adsorption on mineral surfaces[J]. Minerals Engineering, 2006(6/7/8): 784−789.

    [58]

    李小军, 卢雪, 任宏江, 等. HmTiSin(m=1~2; n=2~8)团簇结构、电子性质和红外光谱的密度泛函理论研究[J]. 光谱学与光谱分析, 2019(1): 65−72.

    LI X J, LU X, REN H J, et al. HmTiSin(m=1~2; density functional theory study oncluster structure, electronic properties, and infrared spectroscopy (n=2~8)[J]. Spectroscopy and Spectral Analysis, 2019 (1): 65−72.

    [59]

    WANHALA A K, DOUGHTY B, BRYANTSEV V S, et al. Adsorption mechanism of alkyl hydroxamic acid onto bastnäsite: Fundamental steps toward rational collector design for rare earth elements[J]. Journal of Colloid and Interface Science, 2019, 553: 210−219. doi: 10.1016/j.jcis.2019.06.025

    [60]

    张曦, 南瑞华, 坚佳莹, 等. 拉曼光谱技术及其应用进展[J]. 化学研究, 2024(1): 1−15.

    ZHANG X, NAN R H, JIAN J Y, et al. Raman spectroscopy technology and its application progress[J]. Chemical Research, 2024(1): 1−15.

    [61]

    杨丽萍, 薛绍秀. 拉曼光谱在磷矿加工过程中的应用[J]. 矿冶, 2013(2): 114−117.

    YNG L P, XUE S X. Application of Raman spectroscopy in phosphate ore processing[J]. Mining and Metallurgy, 2013(2): 114−117.

    [62]

    ALVES J F, EDWARDS H G M, KORSAKOV A, et al. Revisiting the Raman Spectra of Carbonate Minerals[J]. Minerals, 2023, 13, (11).

    [63]

    陈铄, 苏志华, 周永章, 等. 谱学分析在造山带硅质岩中的应用及其地质意义[J]. 光谱学与光谱分析, 2019(4): 1128−1135.

    CHEN S, SU Z H, ZHOU Y Z, et al. Application and geological significance of spectroscopic analysis in siliceous rocks in orogenic belts[J]. Spectroscopy and Spectral Analysis, 2019(4): 1128−1135.

    [64]

    赵晓轩, 张聪, 刘晓瑜, 等. 显微激光拉曼光谱锆石定年方法及其应用[J]. 岩石矿物学杂志, 2024, 43(2): 450−468.

    ZHAO X X, ZHANG C, LIU X Y, et al. Microscopic laser Raman spectroscopy zircon dating method and its application[J]. Journal of Rock Mineralogy, 2024, 43(2): 450−468.

    [65]

    GHOBEIRA R, TABAEI P S E, MORENT R, et al. Chemical characterization of plasma−activated polymeric surfaces via XPS analyses: A review[J]. Surfaces and Interfaces, 2022, 31.

    [66]

    BIESINGER M C, HART B R, POLACK R. Analysis of mineral surface chemistry in flotation separation using imaging XPS[J]. Minerals Engineering, 2007(2): 152−162.

    [67]

    MIELCZARSKI J A, CASES J M, ALNOT M, et al. XPS characterization of chalcopyrite, tetrahedrite, and tennantite surface products after different conditioning. 2. amyl Xanthate solution at pH 10[J]. LANGMUIR, 1996(10): 2531−2543.

    [68]

    KARTIO I J, BASILIO C I, YOON R H. An XPS study of sphalerite activation by copper[J]. Langmuir, 1998(18): 5274−5278.

    [69]

    PRESTIDGE C A, SKINNER W M, RALSTON J, et al. Copper(Ⅱ) activation and cyanide deactivation of zinc sulphide under mildly alkaline conditions[J]. Applied Surface Science, 1997(3): 333−344.

    [70]

    A. BOULTON D F J R. Characterisation of sphalerite and pyrite flotation samples by XPS and ToF−SIMS[J]. International Journal of Mineral Processing, 2003(1): 205−219.

    [71]

    YANG Z, GENG L, ZHOU H, et al. Improving the flotation separation of chalcopyrite from galena through high−temperature air oxidation pretreatment[J]. Minerals Engineering, 2022, 176.

    [72]

    ZHU H, YANG B, MARTIN R, et al. Flotation separation of galena from sphalerite using hyaluronic acid (HA) as an environmental−friendly sphalerite depressant[J]. Minerals Engineering, 2022, 187.

    [73]

    ZHAO X, MENG Q, ZHANG Y, et al. Surface adsorption investigation of dodecylbenzenesulfonate isopropanolamine a novel collector during flotation separation of ilmenite from titanaugite[J]. Minerals Engineering, 2022, 180.

    [74]

    QI J, LIU G, DONG Y. Probing the hydrophobic mechanism of N−[(3−hydroxyamino)−propoxy]−N−octyl dithiocarbamate toward bastnaesite flotation by in situ AFM, FTIR and XPS[J]. Journal of Colloid & Interface Science, 2020, 572: 179−189.

    [75]

    李展平. 飞行时间二次离子质谱(TOF−SIMS)分析技术[J]. 矿物岩石地球化学通报, 2020(6): 1173−1190.

    LI Z P. Time of Flight Secondary ion mass spectrometry (TOF−SIMS) analysis technology[J]. Mineral and Rock Geochemistry Bulletin, 2020(6): 1173−1190.

    [76]

    王梦琴, 蔡克大, 李展平. 飞行时间二次离子质谱(TOF−SIMS)在矿物包裹体研究中的应用[J]. 岩石矿物学杂志, 2023(3): 451−464.

    WAN M Q, CAI K D, LI Z P. Application of time of flight secondary ion mass spectrometry (TOF−SIMS) in mineral inclusion research[J]. Journal of Rock Mineralogy, 2023(3): 451−464.

    [77]

    袁航, 何廷树, 李慧, 等. Ca2+在粗细粒辉钼矿表面吸附及对可浮性影响[J]. 有色金属工程, 2019(8): 59−65.

    YUAN H, HE T, LI H, et al. Adsorption of Ca2+ on the surface of coarse−grained molybdenite and its effect on floatability[J]. Nonferrous Metals Engineering, 2019 (8): 59−65.

    [78]

    CHEHREH CHELGANI S, HART B. TOF−SIMS studies of surface chemistry of minerals subjected to flotation separation − A review[J]. Minerals Engineering, 2014(1): 1−11.

    [79]

    HART B, BIESINGER M, SMART R S C. Improved statistical methods applied to surface chemistry in minerals flotation[J]. Minerals Engineering, 2006(6/7/8): 790−798.

    [80]

    A A R G, A R S C S, A J L, et al. Diagnosis of the surface chemical influences on flotation performance: Copper sulfides and molybdenite[J]. International Journal of Mineral Processing, 2012, 106: 16−30.

    [81]

    LOTTER N O, BRADSHAW D J, BECKER M, et al. A discussion of the occurrence and undesirable flotation behaviour of orthopyroxene and talc in the processing of mafic deposits[J]. Minerals Engineering, 2008(12/13/14): 905−912.

    [82]

    JASIENIAK M M J U, SMART R S C R. Surface chemical mechanisms of inadvertent recovery of chromite in UG2 ore flotation: Residual layer identification using statistical ToF−SIMS analysis[J]. International Journal of Mineral Processing, 2010(1/2): 72−82.

    [83]

    WEEDON D D W U, GRANO S, AKROYD T, et al. Effects of high Mg2+ concentration on KCl flotation: Part I − Laboratory research.[J]. Minerals Engineering, 2007(7): 675−683.

    [84]

    DING Z, CHEN M, YUAN J, et al. Fenton oxidation modification mechanism of pyrite and its response to Cu−S flotation separation: Experiment, DFT, XPS and ToF−SIMS studies[J]. Applied Surface Science, 2024, 652.

    [85]

    DAI Z, ZHENG Y, PENG J, et al. Effect of polyaspartic acid as an environmental−friendly depressant on flotation separation of chalcopyrite from arsenopyrite[J]. Separation and Purification Technology, 2024, 335.

    [86]

    LAI H, DENG J, LIU Q. Surface chemistry investigation of froth flotation products of lead−zinc sulfide ore using ToF−SIMS and multivariate analysis[J]. Separation and Purification Technology, 2021, 254.

  • 加载中

(16)

(1)

计量
  • 文章访问数:  211
  • PDF下载数:  0
  • 施引文献:  0
出版历程
收稿日期:  2024-09-05
刊出日期:  2025-02-15

目录