Progress of Non−ferrous Metal Sulfide Ores Flotation in Low Alkaline Medium
-
摘要:
有色金属硫化矿中普遍共伴生硫化铁矿物,对其高效、清洁、低成本的选别分离一直是难点,高碱介质浮选分离是常规选矿工艺,但存在资源回收利用率低、环境污染大及生产成本高等不利影响。有色金属硫化矿的低碱介质浮选工艺日益成熟和完善,并表现出更好的适用性和先进性,已逐渐成为有色金属硫化矿选矿常规浮选工艺之一。基于此,分析了高碱介质浮选工艺存在的主要问题,概述了主要低碱浮选工艺,详细阐述了方铅矿、闪锌矿、黄铜矿及辉钼矿等有色金属硫化矿物与硫化铁矿物低碱介质浮选分离应用进展;然后指出:有色金属硫化矿低碱介质浮选的关键为选择使用硫化铁矿物的低碱抑制剂和有色金属硫化矿物的高选择性捕收剂,低碱条件可使有色金属硫化矿物保持天然可浮性和硫化铁矿物抑制后易于活化再选,使有用成分选矿回收更充分,其中高选择性捕收剂的使用,甚至可以不需对硫化铁矿物进行针对性的抑制或活化,即可实现有色金属硫化矿物与硫化铁矿物的浮选分离,以及实现从有色金属硫化矿浮选尾矿中采用高级黄药浮选回收硫化铁矿物。
Abstract:Iron sulfide minerals are widely associated with non−ferrous metal sulfide ores, and efficient, clean and low−cost separation has always been a challenge. High alkaline medium flotation separation is a conventional beneficiation process, but it has adverse effects such as low resource recovery, high environmental pollution and high cost. The low alkaline medium flotation of non−ferrous metal sulfide ore ore is been developed and improved, showing better applicability and superiority, which has gradually become one of the conventional flotation processes for non−ferrous metal sulfide ore. Based on this, the main problems in high alkaline medium flotation were analyzed, and the main processes of low alkaline flotation were summarized. The application progress of low alkaline medium flotation separation for non−ferrous metal sulfide minerals such as galena, sphalerite, chalcopyrite, and molybdenite was elaborated in detail. In summary, it is pointed out that the key to the low alkaline medium flotation of non−ferrous metal sulfide ores is to choose low alkaline depressants for iron sulfide minerals and high selective collectors for non−ferrous metal sulfide minerals. low alkaline conditions can maintain the natural floatability of non−ferrous metal sulfide minerals and make it easy to activate and reselect after inhibiting iron sulfide minerals, making the ore dressing recovery sufficient. The use of highly selective collectors can even achieve the flotation separation of non−ferrous metal sulfide minerals and iron sulfide minerals without the need for depressants and activators of iron sulfide minerals, and achieve the recovery of iron sulfide minerals from flotation tailings of non−ferrous metal sulfide ores using with xanthate.
-
Key words:
- non−ferrous metal sulfide ore /
- iron sulfide minerals /
- galena /
- sphalerite /
- chalcopyrite /
- flotation /
- low alkaline
-
-
表 1 主要碱性介质pH值调整剂及作用
Table 1. Main alkaline medium pH adjusting agents and their effects
类型 名称 水解产物 主要用途 强碱性介质调整剂 石灰 Ca2+、Mg2+、Ca(OH)+、OH− 调节pH值;黄铁矿、磁黄铁矿、镍黄铁矿、闪锌矿、
脆硫锑铅矿等的抑制剂;矿泥絮凝剂氢氧化钠 Na+、OH− 调节pH值;黄铁矿、磁黄铁矿、镍黄铁矿、
闪锌矿等的抑制剂;矿泥分散剂中碱性介质调整剂 碳酸钠 Na+、HCO3−、CO32− 调节pH值;矿泥分散剂;矿浆金属离子调整剂 碳酸氢钠 Na+、OH−、HCO3−、CO32− 调节pH值;矿泥分散剂;矿浆金属离子调整剂 表 2 硫化铁矿物的抑制剂种类及主要作用机理
Table 2. Types and main mechanisms of inhibitors for iron sulfide minerals
种类 亚类 主要抑制剂名称 主要作用机理 无机抑制剂 氰化物 氰化钠、氰化钾 CN−强烈抑制黄药在硫化铁矿物表面作用 硫化物 硫化钠、硫氢化钠 HS−、S2−吸附于硫化铁矿物表面使其亲水 硫氧化物 亚硫酸钠、亚硫酸 降低Eh,阻碍双黄药的生成 氧化剂类 次氯酸钙、臭氧 促使硫化铁矿物表面氧化,使其亲水受抑制 有机抑制剂 含巯基类抑制剂 巯基乙酸、巯基乙酸钠 −SH基吸附在硫化铁矿物表面,阻碍黄药吸附 腐殖酸钠 含有大量的极性基可降低黄药在黄铁矿表面的吸附性 木质素磺酸盐 −OH基亲水使黄铁矿受抑制 壳聚糖 通过胺基和羟基与黄铁矿表面发生反应,以化学吸附作用形成
复合物附着在其表面上,阻碍捕收剂作用刺槐豆胶 物理吸附在黄铁矿表面,阻止捕收剂在黄铁矿表面作用 微生物 氧化亚铁硫杆菌 细菌细胞对黄铁矿的亲合力强,选择性黏附在黄铁矿表面,
阻碍捕收剂作用氧化硫硫杆菌 吸附在黄铁矿表面,阻碍捕收剂作用 草分枝杆菌 草分枝杆菌与黄铁矿的结合能力很强,选择性黏附在
黄铁矿表面,阻碍捕收剂作用表 3 硫化矿捕收剂种类及主要性能
Table 3. Types and main properties of sulfide ore collectors
分子结构特征 类型 名称 组分 捕收性能特点 阴离子型捕收剂 巯基捕收剂 黄药 ROCSSMe 对Cu、Pb、Zn、Fe等金属硫化矿物的捕收能力强;
且烃链愈长,捕收能力愈强黑药 (RO)2PSSMe 对金属硫化矿物的捕收能力比黄药弱,对Cu、Pb、Zn等
金属硫化矿物选择性强,对黄铁矿的捕收能力较弱硫氮 R2NCSSMe 对Cu、Pb等金属硫化矿物的选择性比黄药强,对黄铁矿的
捕收能力较弱,低碱介质中选择性较强硫脲 (RNH)2CS 对Cu、Mo等金属硫化矿物有较好的选择性,
对黄铁矿的捕收能力较弱白药 (C6H5NH)2CS 对Cu、Pb、Zn等金属硫化矿物有较好的选择性,
对黄铁矿的捕收能力较弱非离子型捕收剂 酯类捕收剂 硫氨酯 ROCSNHR 对Cu、Zn、Mo等金属硫化矿物有较好的选择性,
对黄铁矿的捕收能力较弱黄原酸酯 ROCSSR 金属硫化矿物的高效捕收剂 硫氮酯 R2NCSSR 金属硫化矿物的高选择性捕收剂 双硫化物捕收剂 双黄药 (ROCSS)2 对金属硫化矿物的捕收能力强于黄药 双黑药 [(RO)2OSS]2 对金属硫化矿物的选择性高于黑药 非极性捕收剂 烃油 煤油、变压器油等 对Mo金属硫化矿物有较好的选择性,Pb、Zn等金属硫化矿物的辅助捕收剂 -
[1] 《矿产资源工业要求手册》编委会. 矿产资源工业要求手册[M]. 北京: 地质出版社, 2014: 330−338.
Handbook for Industrial Requirements of Mineral Resources' Editors. Handbook for industrial requirements of mineral resources[M]. Beijing: Geological Publishing House, 2014: 330−338.
[2] 黄礼煌. 金属硫化矿物低碱介质浮选[M]. 北京: 冶金工业出版社, 2015.
HUANG L H. Low alkaline medium flotation of metal sulfide minerals[M]. Beijing: Metallurgical Industry Press, 2015.
[3] 彭玉林. 高效铜捕收剂在永平铜矿铜硫分离应用试验研究[D]. 赣州: 江西理工大学, 2010.
PENG Y L. Experimental study on the application of high efficiency copper collector in copper sulfur separation at yongping copper mine[D]. Ganzhou: Jiangxi University of Science and Technology, 2010.
[4] 张贺. 葫芦岛八家矿业低硫高锌硫精矿提质降杂试验研究[J]. 现代矿业, 2021, 37(4): 244−245.
ZHANG H. Huludao eight mining low sulfur high zinc sulfur concentrate quality improvement and impurity reduction pilot study[J]. Modern Mining, 2021, 37(4): 244−245.
[5] 罗良士, 周加和, 刘侦德. 高碱度分离高硫铅锌矿石工艺的研究与实践[J]. 有色金属工程, 1998(S1): 100−111.
LUO L S, ZHOU J H, LIU Z D. The study and practice of technology on high lead zinc sulfide minerals with high alkalinity separation[J]. Nonferrous Metals Engineering, 1998(S1): 100−111.
[6] 黄红军. 低活性难选硫铁矿高效活化应用基础研究[D]. 长沙: 中南大学, 2011.
HUANG H J. Applied basic research on high−efficiency activation of low−activity refractory pyrite[D]. Changsha: Central South University, 2011.
[7] 覃武林. 高碱抑制硫铁矿及活化浮选机理研究[D]. 长沙: 中南大学, 2009.
QIN W L. Mechanism of pyrite depression and activation flotation in high alkali environment[D]. Changsha: Central South University, 2009.
[8] MU Y, PENG Y, LAUTEN R A. The depression of pyrite in selective flotation by different reagent systems: A literature review[J]. Minerals Engineering, 2016, 96/97: 143−156. doi: 10.1016/j.mineng.2016.06.018
[9] 刘承杰, 邵延海, 李金辉, 等. 锌硫分离低碱浮选药剂研究进展[J]. 矿产保护与利用, 2024, 44(3): 38−48.
LIU C J, SHAO Y H, LI J H, et al. Research progress on low−alkaline flotation reagents for zinc−sulfur separation[J]. Conservation and Utilization of Mineral Resources, 2024, 44(3): 38−48.
[10] 敖顺福. 有色金属矿中伴生金银选矿进展[J]. 贵金属, 2024, 45(3): 83−92.
AO S F. Research progress in the mineral processing of associated gold and silver in nonferrous metal mines[J]. Precious Metals, 2024, 45(3): 83−92.
[11] 邓政斌, 童雄, 王晓, 等. 铟和锗的载体锌矿物及黄铁矿的浮选行为差异研究[J]. 稀有金属, 2015, 39(2): 169−177.
DENG Z B, TONG X, WANG X, et al. Differences of flotation behavior between indium and germanium carrier zinc minerals and pyrite[J]. Chinese Journal of Rare Metals, 2015, 39(2): 169−177.
[12] 朱德庆, 陈建华, 冯其明, 等. 高碱高钙介质中黄铁矿活化浮选机理研究[J]. 矿产保护与利用, 1995, 15(5): 34−36.
ZHU D Q, CHEN J H, FENG Q M, et al. Mechanism study on pyrite activation flotation in high alkali and high cacium media[J]. Conservation and Utilization of Mineral Resources, 1995, 15(5): 34−36.
[13] 覃文庆, 龙怀中, 邱冠周, 等. 高碱(石灰)体系中黄铁矿表面性质及其活化[J]. 有色金属工程, 1996(4): 35−38.
QIN W Q, LONG H Z, QIU G Z, et al. Surface characteristics and activation of pyrite in high alkaline and calcium medium[J]. Nonferrous Metals Engineering, 1996(4): 35−38.
[14] 马忠臣, 杨长颖, 马延全. 铅锌硫化矿中伴生银综合回收试验研究[J]. 黄金, 2014, 35(11): 64−68.
MA Z C, YANG C Y, MA Y Q. Experimental research on comprehensive recovery of associated silver in lead−zinc sulfide ores[J]. Gold, 2014, 35(11): 64−68.
[15] 刘建华, 刘述忠. 福建某难选铜铅锌多金属矿石浮选研究[J]. 有色金属(选矿部分), 2017(4): 11−16.
LIU J H, LIU S Z. Flotation of refractory Cu−Pb−Zn polymetallic ore in Fujian[J]. Nonferrous Metals(Mineral Processing Section), 2017(4): 11−16.
[16] LI Y Q, CHEN J H, KANG D, et al. Depression of pyrite in alkaline medium and its subsequent activation by copper[J]. Minerals Engineering, 2012, 26: 64−69. doi: 10.1016/j.mineng.2011.11.001
[17] 王毓华. 石灰抑制镍黄铁矿机理的研究[J]. 矿冶工程, 1998, 18(2): 23−26.
WANG Y H. Mechanism on lime's depression of pentlandite − a study[J]. Mining and Metallurgical Engineering, 1998, 18(2): 23−26.
[18] 孙伟, 胡岳华, 邱冠周, 等. 闪锌矿(110)表面离子吸附的动力学模拟[J]. 中国有色金属学报, 2002, 12(1): 187−190.
SUN W, HU Y H, QIU G Z, et al. Dynamic simulation of ion adsorption on ZnS(110)[J]. The Chinese Journal of Nonferrous Metals, 2002, 12(1): 187−190.
[19] 权斌. 镇安木桐沟铅锌矿选矿工艺研究[D]. 西安: 西安科技大学, 2019.
QUAN B. Research on mineral processing technology of Mutonggou lead zinc mine in Zhenan[D]. Xi'an: Xi'an University of Science and Technology, 2019.
[20] 刘子帅. 低铜含砷难选铜锌硫化矿浮选分离工艺研究[D]. 赣州: 江西理工大学, 2013.
LIU Z S. Research on flotation separation process of low copper and arsenic containing refractory copper zinc sulfide ore[D]. Ganzhou: Jiangxi University of Technology, 2013.
[21] 薛晨, 魏志聪. 闪锌矿抑制剂的作用机理及研究进展[J]. 矿产综合利用, 2017(3): 38−43.
XUE C, WEI Z C. Reaction mechanism and research progress of depressants in sphalerite flotation[J]. Multipurpose Utilization of Mineral Resources, 2017(3): 38−43.
[22] SUN W, SUN C, LIU R Q, et al. Electrochemical behavior of galena and jamesonite flotation in high alkaline pulp[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(2): 551−556. doi: 10.1016/S1003-6326(16)64114-6
[23] 宋宝旭, 邱显扬, 冉金城, 等. 硫化矿浮选体系中辉银矿的浮选行为研究[J]. 贵金属, 2018, 39(2): 24−28.
SONG B X, QIU X Y, RAN J C, et al. Behavior of argentite in the sulphide flotation system[J]. Precious Metals, 2018, 39(2): 24−28.
[24] 龚惠娟, 陈泽智, 赵红芬, 等. 用于铜精矿过滤的陶瓷过滤机滤板堵塞成因分析[J]. 有色金属(选矿部分), 2013(5): 64−67.
GONG H J, CHEN Z Z, ZHAO H F, et al. Analysis on the formation of blocked filtration in ceramic filter during dewatering of copper ore slurry[J]. Nonferrous Metals(Mineral Processing Section), 2013(5): 64−67.
[25] 斯尔詹M·布拉托维奇, 魏明安. 浮选药剂手册[M]. 北京: 化学工业出版社, 2014: 40−44.
SRDJAN M·B, WEI M A. Flotation reagent handbook[M]. Beijing: Chemical Industry Press, 2014: 40−44.
[26] 张英, 覃武林, 孙伟, 等. 石灰和氢氧化钠对黄铁矿浮选抑制的电化学行为[J]. 中国有色金属学报, 2011, 21(3): 675−679.
ZHANG Y, QIN W L, SUN W, et al. Electrochemical behaviors of pyrite flotation using lime and sodium hydroxide as depressantors[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(3): 675−679.
[27] 杨子轩, 谢贤, 童雄, 等. 石灰在浮选过程中的作用[J]. 矿产综合利用, 2015(2): 17−21.
YANG Z X, XIE X, TONG X, et al. Research on the effect of lime in flotation process[J]. Multipurpose Utilization of Mineral Resources, 2015(2): 17−21.
[28] 李强, 李淑菲. 黄铁矿低碱度浮选抑制剂的研究进展[J]. 中国矿业, 2024, 33(1): 212−217.
LI Q, LI S F. The development of research on pyrite low alkalinity flotation depressants[J]. China Mining Magazine, 2024, 33(1): 212−217.
[29] 何桂春, 吴艺鹏, 冯金妮. 低碱环境铜硫分离研究进展[J]. 有色金属科学与工程, 2012, 3(3): 47−50.
HE G C, WU Y P, FENG J N. Research advances of copper−sulphur separation in low alkaline medium[J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 47−50.
[30] 吴海祥, 邵延海, 张铂华, 等. 低碱度铜硫分离浮选药剂的研究进展[J]. 矿冶, 2021, 30(4): 33−40.
WU H X, SHAO Y H, ZHANG B H, et al. Research progress of flotation reagents for low alkalinity copper−sulfur separation[J]. Mining And Metallurgy, 2021, 30(4): 33−40.
[31] 杨旭, 李育彪, 彭樱, 等. 黄铁矿抑制剂与活化剂研究进展[J]. 金属矿山, 2020(10): 34−40.
YANG X, LI Y B, PENG Y, et al. Research progress on depressants and activators for pyrite flotation[J]. Metal Mine, 2020(10): 34−40.
[32] 苏超, 申培伦, 李佳磊, 等. 黄铁矿浮选的抑制与解抑活化研究进展[J]. 化工进展, 2019, 38(4): 1921−1929.
SU C, SHEN P L, LI J L, et al. A review on depression and derepression of pyrite flotation[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1921−1929.
[33] 张泾生, 阙煊兰. 矿用药剂[M]. 北京: 冶金工业出版社, 2008.
ZHANG J S, QUE X L. Mining reagents[M]. Beijing: Metallurgical Industry Press, 2008.
[34] 黄晟. 典型铜硫单矿物电化学浮选行为及实际矿石浮选研究[J]. 矿山机械, 2023, 51(12): 39−45.
HUANG S. Study on electrochemical flotation behavior of typical copper−sulfur single minerals and actual ore flotation[J]. Mining & Processing Equipment, 2023, 51(12): 39−45.
[35] 耿连胜. 控制矿浆电位提高铜浮选回收率的研究[J]. 矿业快报, 2001(9): 13−15.
GENG L S. Research on the increasement of the recovery of the copper flotation through controlling the pulp potential[J]. Express Information of Mining Industry, 2001(9): 13−15.
[36] 胡岳华, 冯其明. 矿物资源加工技术与设备[M]. 北京: 科学出版社, 2006: 242−243.
HU Y H, FENG Q M. Mineral resource processing technology and equipment[M]. Beijing: Science Press, 2006: 242−243.
[37] 小山内英世, 等. 黄铁矿加温浮选的抑制效果[J]. 国外金属矿选矿, 1999, 36(7): 2−5.
HIDEYOSHI KOYAMA, et al. The inhibitory effect of heated flotation of pyrite[J]. Metallic Ore Dressing Abroad, 1999, 36(7): 2−5.
[38] 钱天任. 国外加温浮选概况[J]. 有色金属(冶炼部分), 1974(3): 61−63.
QIAN T R. Overview of heating flotation abroad[J]. Nonferrous Metals (Smelting Part), 1974(3): 61−63.
[39] 梁李晓, 陈建华, 温凯. 云南某硫化铅锌矿低碱条件下浮选分离试验[J]. 金属矿山, 2020(12): 119−124.
LIANG L X, CHEN J H, WEN K. Flotation separation test of a sulfide lead−zinc ore in Yunnan under low alkali conditions[J]. Metal Mine, 2020(12): 119−124.
[40] 蒋传生, 凌石生. 低碱度选铅提高伴生银回收率的试验研究[J]. 铜业工程, 2021(3): 36−39.
JIANG C S, LING S S. Study on improving recovery rate of associated silver by lead flotation at low basicity[J]. Copper Engineering, 2021(3): 36−39.
[41] 谭欣, 王中明, 肖巧斌, 等. 银铅无碱混选工艺分选含银低品位铅锌硫化矿石[J]. 矿产保护与利用, 2021, 41(2): 89−98.
TAN X, WANG Z M, XIAO Q B, et al. Separation of Ag−Pb alkali−free bulk flotation process on a silver−bearing low−grade lead&zinc sulfide ore[J]. Conservation and Utilization of Mineral Resources, 2021, 41(2): 89−98.
[42] 杨慧武. 和谐选矿低碱度条件选锌生产实践[J]. 铜业工程, 2021(6): 34−37.
YANG H W. Practice of harmonious zinc flotation in low alkalinity[J]. Copper Engineering, 2021(6): 34−37.
[43] 第旺平, 李艳秋, 尹万里. 白音诺尔铅锌矿低碱选锌技术工业优化试验[J]. 有色矿冶, 2024, 40(1): 25−27.
DI W P, LI Y Q, YIN W L. Industrial optimization test of low alkali zinc separation technology for Baiyinnuoer lead zinc mine[J]. Non−Ferrous Mining and Metallurgy, 2024, 40(1): 25−27.
[44] 胡生福, 彭鑫, 冯媛媛, 等. 四川某铅锌矿选锌新型捕收剂工业试验研究[J]. 金属矿山, 2023(12): 154−157.
HU S F, PENG X, FENG Y Y, et al. Industrial experimental study on new reagent of zinc collector for a lead−zinc mine in Sichuan[J]. Metal Mine, 2023(12): 154−157.
[45] 陈金中, 宣道中. 铁闪锌矿与磁黄铁矿浮选分离新方法研究[J]. 有色金属, 1994, 46(1): 34−40.
CHEN J Z, XUAN D Z. A new method for separation of marmatite from pyrrhotite by flotation[J]. Nonferrous Metals, 1994, 46(1): 34−40.
[46] 何名飞, 高玉德, 吴迪, 等. 硫化铅锌矿伴生银铟的高效回收利用研究[J]. 有色金属(选矿部分), 2020(4): 82−87.
HE M F, GAO Y D, WU D, et al. Study on efficient recycling of associated silver−indium with lead−zinc sulfide ore[J]. Nonferrous Metals(Mineral Processing Section), 2020(4): 82−87.
[47] 李希掌, 曾娜, 向平, 等. 湖南某铅锌矿无碱浮选试验研究[J]. 矿冶工程, 2021, 41(3): 75−78.
LI X Z, ZENG N, XIANG P, et al. Experimental study for lime−free beneficiation of a lead−zinc ore from Hu’nan[J]. Mining and Metallurgical Engineering, 2021, 41(3): 75−78.
[48] 李广利, 惠世和, 张红英, 等. 云南某高硫铅锌矿选矿工艺流程方案对比试验研究[J]. 矿业研究与开发, 2023, 43(7): 212−216.
LI G L, HUI S H, ZHANG H Y, et al. Comparative experimental study on mineral processing of a high sulfur lead−zinc ore in yunnan[J]. Mining Research and Development, 2023, 43(7): 212−216.
[49] 喻贵芳. 城门山铜矿低碱度铜硫分离技术[J]. 有色冶金设计与研究, 2013, 34(6): 7−10.
YU G F. Research on process of copper−sulphur separating with low alkalinit from copper ore in chengmenshan copper mine[J]. Nonferrous Metals Engineering & Research, 2013, 34(6): 7−10.
[50] 方夕辉, 朱冬梅, 赵冠飞, 等. 清洁回收铜硫矿石原浆中硫铁矿的浮选试验研究[J]. 矿业研究与开发, 2013, 33(2): 60−62.
FANG X H, ZHU D M, ZHAO G F, et al. Experimental research on cleanly recovering sulphur from the tailings of copper−sulfide ore[J]. Mining Research and Development, 2013, 33(2): 60−62.
[51] 熊道陵, 张辉, 汪杨, 等. 一种新型有机抑制剂的铜硫分离效果[J]. 金属矿山, 2015, 44(6): 59−64.
XIONG D L, ZHANG H, WANG Y, et al. Effects of a new organic inhibitor on separation of pyrite from chalcopyrite[J]. Metal Mine, 2015, 44(6): 59−64.
[52] 朱贤文, 冯博, 彭金秀, 等. 以羟乙基纤维素为抑制剂浮选分离铜硫[J]. 金属矿山, 2017, 46(7): 97−100.
ZHU X W, FENG B, PENG J X, et al. Flotation separation of chalcopyrite and pyrite by hydroxyethyl cellulose as inhibitor[J]. Metal Mine, 2017, 46(7): 97−100.
[53] 甘恒, 陈建华. 自然pH值下铜硫分离试验[J]. 现代矿业, 2016(11): 71−73.
GAN H, CHEN J H. Experiment on Cu−S separation under natural pH[J]. Modern Mining, 2016(11): 71−73.
[54] 周源, 余新阳. 无机氧化剂对黄铁矿和黄铜矿可浮性的影响[J]. 金属矿山, 2005, 34(2): 33−35.
ZHOU Y, YU X Y. Effect of inorganic oxidizer on flotability of pyrite and chalcopyrite[J]. Metal Mine, 2005, 34(2): 33−35.
[55] XU Y, LI Y B, FAN R. Separation mechanism of chalcopyrite and pyrite due to H2O2 treatment in low−alkaline seawater fotation system[J]. Minerals Engineering, 2022, 176: 107356. doi: 10.1016/j.mineng.2021.107356
[56] KHOSO S A, HU Y H, LI F, et al. Xanthate interaction and flotation separation of H2O2−treated chalcopyrite and pyrite[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(12): 2604−2614. doi: 10.1016/S1003-6326(19)65167-8
[57] 解志锋, 艾光华, 严华山, 等. 某高铁铜硫矿石的选矿试验工艺研究[J]. 有色金属科学与工程, 2014, 5(5): 135−140.
XIE Z F, AI G H, YAN H S, et al. Mineral processing technology of a high iron−Cu−S ore[J]. Nonferrous Metals Science and Engineering, 2014, 5(5): 135−140.
[58] 李超, 凌石生. 内蒙古某铜矿低碱度铜硫分离浮选试验研究[J]. 矿冶, 2024, 33(1): 39−45.
LI C, LING S S. Experimental study on low alkalinity copper sulfur separation flotation of a copper mine in Inner Mongolia[J]. Mining And Metallurgy, 2024, 33(1): 39−45.
[59] 曹焱鹏, 汶小飞, 王福奎, 等. 某高硫铜锌矿石低碱度浮选试验研究[J]. 有色金属(选矿部分), 2013(5): 6−9.
CAO Y P, WEN X F, WANG F K, et al. experimental study of the flotation of high−sulfur copper−zinc ore under low alkalinity condition[J]. Nonferrous Metals(Mineral Processing Section), 2013(5): 6−9.
[60] 郑思勇, 安昌, 戚华强, 等. 某铜锌硫多金属硫化矿高效分离浮选试验研究[J]. 中国矿业, 2023, 32(3): 118−124.
ZHENG S Y, AN C, QI H Q, et al. Experimental study on high−efficiency separation and flotation of a copper−zinc−sulfur polymetallic sulfide ore[J]. China Mining Magazine, 2023, 32(3): 118−124.
[61] 袁航, 何廷树, 李慧, 等. Ca2+在粗细粒辉钼矿表面吸附及对可浮性影响[J]. 有色金属工程, 2019, 9(8): 59−65.
YUAN H, HE T S, LI H, et al. Adsorption of Ca2+ on the surface of coarse−fine molybdenum ore and its effect on floatability[J]. Nonferrous Metals Engineering, 2019, 9(8): 59−65.
[62] 宛鹤, 何廷树, 杨剑波, 等. 钼钨浮选生产回水对脂肪烃类捕收剂选钼效果的影响[J]. 有色金属工程, 2018, 8(1): 66−70.
WAN H, HE T S, YANG J B, et al. Influence of process water from molybdenum−tungsten flotation on molybdenite floatation for aliphatic hydrocarbon oil as collectors[J]. Nonferrous Metals Engineering, 2018, 8(1): 66−70.
[63] 王明芳, 徐涛, 赵留成, 等. 某斑岩铜钼矿低碱度铜硫浮选分离研究[J]. 金属矿山, 2012, 41(11): 80−83.
WANG M F, XU T, ZHAO L C, et al. Study on the flotation in low alkalinity and the effect of alkalinity for a low grade copper−molybdenum ore[J]. Metal Mine, 2012, 41(11): 80−83.
[64] 曾令明, 欧乐明, 李文涛, 等. 某斑岩铜钼矿无石灰铜硫分离研究[J]. 有色金属(选矿部分), 2017(2): 5−8.
ZENG L M, OU L M, LI W T, et al. study the separation of copper and sulfur without lime on a porphyry copper molybdenum deposit[J]. Nonferrous Metals(Mineral Processing Section), 2017(2): 5−8.
[65] 宛鹤. 复杂多金属矿石共(伴)生金银综合利用的试验研究[D]. 西安: 西安建筑科技大学, 2009.
WAN H. Experimental Study on Comprehensive Recovery of Symbiosis Gold and Silver from Complication Polymetallic Ore[D]. Xi'an: Xi'an University of Architecture and Technology, 2009.
[66] 魏宗武, 黄涛, 杨谦, 等. 低碱条件下高硫铅锑锌多金属的高效分离[J]. 矿业研究与开发, 2023, 43(6): 191−196.
WEI Z W, HUANG T, YANG Q, et al. Efficient separation of high sulfur lead−antimony−zinc polymetallics under low alkali condition[J]. Mining Research and Development, 2023, 43(6): 191−196.
[67] 庞威. 硫化铜与含钴黄铁矿低碱度分离新工艺研究[J]. 湖南有色金属, 2014, 30(1): 5−8.
PANG W. New mineral processing research on the separation between copper sulphide and cobalt−bearing pyrites under a low alkalinity[J]. Hunan Nonferrous Metals, 2014, 30(1): 5−8.
[68] 王洪君. 组合抑制剂对乙硫氨酯浮选分离黄铜矿和镍黄铁矿作用机理研究[D]. 昆明: 昆明理工大学, 2017.
WANG H J. Study on the mechanism of combination inhibitors in the separation of chalcopyrite and nickelpyrite by ethylthiocyanate flotation [D]. Kunming: Kunming University of Science and Technology, 2017.
[69] 李宁钧, 罗彩艳, 卢琳. 铜镍浮选分离新型抑制剂NJ的试验研究[J]. 矿业研究与开发, 2016, 36(9): 27−30.
LI N J, LUO C Y, LU L. experimental study on a new depressant NJ for flotation separation of copper−nickel ore[J]. Mining Research and Development, 2016, 36(9): 27−30.
[70] 王成行, 胡真, 邱显扬, 等. 抑砷浮铜工艺过程强化回收银的试验研究[J]. 矿冶工程, 2017, 37(2): 64−67.
WANG C X, HU Z, QIU X Y, et al. Enhanced recovery of silver from chalcopyrite flotation process by depressing arsenopyrite[J]. Mining and Metallurgical Engineering, 2017, 37(2): 64−67.
[71] 李伟. 高砷硫化铜矿降砷试验研究[J]. 中国矿业, 2012, 21(2): 89−92.
LI W. Study on removal of arsenic from high arsenic content sulfide copper mineral[J]. China Mining Magazine, 2012, 21(2): 89−92.
-