Numerical Simulation on Optimization of Mining Scheme for Deep, Sharply Inclined−thin Ore Bodies at the Asher Copper Mine
-
摘要:
为了解决深部急倾斜薄矿体回采方案优化难题,以新疆哈巴河阿舍勒铜矿50m中段和00m中段13线以北急倾斜薄矿体为研究对象,通过工程地质调查,设计了回采方案,并利用数值模拟软件建立了数值模型,对回采过程中位移演化、应力分布以及塑性区分布规律进行了研究。结果表明:本次数值模拟一次性回采3 m、4 m、5 m的3种方案所形成的位移演化、应力分布和塑性区分布规律大致相同,对矿山回采工作影响较小。综合考虑阿舍勒铜矿的生产工时以及经济成本,本次选定了一次性回采5 m矿体作为阿舍勒铜矿急倾斜薄矿体的回采方案。研究为本矿及同类矿山矿体回采提供了理论依据。
Abstract:In order to study the difficulty of mining the deep sharply inclined−thin ore body, the sharply inclined thin ore body north of the 13th line of the 50 m middle section and 00 m middle section of the Habaha Ashele Copper Mine in Xinjiang was taken as the research object. The engineering geology was investigated, the mining scheme was designed, numerical simulation software was utilized, numerical models were developed, and finally the displacement evolution, stress distribution and plastic zone distribution patterns during the mining process were investigated. Optimization of the sharply inclined thin ore body mining plan for the Asher copper mine was elaborated. The results showed that this numerical simulation of one time mining 3 m, 4 m, 5 m of the three scenarios formed by the displacement evolution, stress distribution and plastic zone distribution law was more or less the same. The law did not have much influence on the mining work. The production man hours and the economic costs of the Ashele Copper Mine were taken into account, the option of mining the 5 m ore body in one go was selected as the option for mining the sharply inclined thin ore body at the Ashele Copper Mine.
-
-
表 1 本次数值模拟模型主要岩组岩体力学参数
Table 1. Mechanical parameters of the main rock groups in this numerical simulation model
岩性 抗拉强
度/MPa抗压强
度/MPa弹性模
量/GPa黏结力
/MPa内摩擦
角/(°)容重
/(kN·m−3)泊松比 凝灰岩 0.07 2.70 11.46 3.01 31.26 27.41 0.25 铜硫矿 0.30 12.35 22.45 7.18 40.40 44.66 0.32 黄铁矿 0.24 9.50 15.78 6.09 38.59 37.22 0.26 表 2 设计回采结构参数
Table 2. Design mining structure parameters
一步骤回采/m 二步骤回采/m 三步骤回采/m 四步骤回采/m 3 3 3 3 4 4 4 4 5 5 5 5 -
[1] 张家林, 杨帆, 张望, 等. 深部资源开采创新成效分析与思考[J]. 采矿与安全工程学报, 2024, 41(3): 450−461.
ZHANG J L, YANG F, ZHANG W, et al. Analysis and reflection on the effectiveness of innovation in deep resource extraction[J]. Journal of Mining and Safety Engineering, 2024, 41(3): 450−461.
[2] 杨小聪, 蒋合国. 新质生产力引领深部金属矿山安全高效开采: 以毛坪铅锌矿深部开采实践为例[J]. 中国矿业, 2024, 33(5): 9−21. doi: 10.12075/j.issn.1004-4051.20240905
YANG X C, JIANG H G. New quality productivity leads safe and efficient mining in deep metal mines: an example of deep mining practice in maoping lead−zinc mine[J]. China Mining Industry, 2024, 33(5): 9−21. doi: 10.12075/j.issn.1004-4051.20240905
[3] 颜家成, 张杰, 雷战. 我国有色金属矿地下开采方法概述及发展趋势[J]. 世界有色金属, 2023(24): 80−83. doi: 10.3969/j.issn.1002-5065.2023.24.025
YAN J C, ZHANG J, LEI Z. Overview of underground mining methods and development trend of nonferrous metal mines in China[J]. World Nonferrous Metals, 2023(24): 80−83. doi: 10.3969/j.issn.1002-5065.2023.24.025
[4] 王勇, 吴爱祥, 杨军, 等. 深部金属矿开采关键理论技术进展与展望[J]. 工程科学学报, 2023, 45(8): 1281−1292.
WANG Y, WU A X, YANG J, et al. Progress and prospects of key theoretical technologies for deep metal mining[J]. Journal of Engineering Science, 2023, 45(8): 1281−1292.
[5] 张芫涛, 林卫星, 欧任泽, 等. 深埋复杂倾斜薄矿体高效回采方案研究[J]. 矿业研究与开发, 2023, 43(10): 1−5.
ZHANG Y T, LIN W X, OU R Z, et al. Study on the efficient recovery program of deeply buried complex inclined thin ore body[J]. Mining Research and Development, 2023, 43(10): 1−5.
[6] 陈能飞. 倾斜薄矿体房柱采矿法的实践[J]. 中国锰业, 2021, 39(5): 26−28.
CHEN N F. Practice of room−and−pillar mining method for inclined thin ore bodies[J]. China Manganese Industry, 2021, 39(5): 26−28.
[7] 林友, 尤本勇, 董继德, 等. 观天厂铜矿倾斜薄矿体开采工艺研究[J]. 金属矿山, 2018(2): 46−49.
LIN Y, YOU B Y, DONG J D, et al. Research on mining process of inclined thin ore body in Guantianchang copper mine[J]. Metal Mining, 2018(2): 46−49.
[8] 万孝衡, 林卫星, 欧任泽, 等. 谦比希铜矿薄矿体采场结构参数优化及应用[J]. 黄金, 2021, 42(2): 48−51.
WAN X H, LIN W X, OU R Z, et al. Optimization and application of structural parameters of thin ore body mining in Kempisch copper mine[J]. Gold, 2021, 42(2): 48−51.
[9] 李华, 荣辉, 何荣兴, 等. 急倾斜薄矿体采场围岩及假底应力分布规律研究[J]. 现代矿业, 2024, 40(4): 182−186. doi: 10.3969/j.issn.1674-6082.2024.04.043
LI H, RONG H, HE R X, et al. Study on the distribution law of stress in the surrounding rock and false bottom of quarry of sharply inclined thin ore body[J]. Modern Mining Industry, 2024, 40(4): 182−186. doi: 10.3969/j.issn.1674-6082.2024.04.043
[10] 胡建非, 郭忠林, 龚原, 等. 基于博弈论−改进TOPSIS模型的采场结构参数优化[J]. 矿业研究与开发, 2020, 40(12): 11−17.
HU J F, GUO Z L, GONG Y, et al. Optimization of structural parameters of quarry based on game theory−improved TOPSIS model[J]. Mining Research and Development, 2020, 40(12): 11−17.
[11] 李朝军. 凤凰山银矿急倾斜薄矿体安全高效开采技术研究[J]. 采矿技术, 2019, 19(3): 1−3. doi: 10.3969/j.issn.1671-2900.2019.03.001
LI C J. Research on safe and efficient mining technology of sharply inclined thin ore body in Fenghuangshan silver mine[J]. Mining Technology, 2019, 19(3): 1−3. doi: 10.3969/j.issn.1671-2900.2019.03.001
[12] 王寅. 缓倾斜薄矿体采场结构参数优化研究[J]. 世界有色金属, 2023(6): 142−145. doi: 10.3969/j.issn.1002-5065.2023.06.043
WANG Y. Optimization study of structural parameters of quarry in gently inclined thin ore bodies[J]. World Nonferrous Metals, 2023(6): 142−145. doi: 10.3969/j.issn.1002-5065.2023.06.043
[13] 戚伟. 高海拔急倾斜薄矿体精细开采关键技术研究与应用[D]. 北京: 北京科技大学, 2021.
QI W. Research and application of key technology for fine mining of high−altitude sharp inclined thin ore body[D]. Beijing: University of Science and Technology Beijing, 2021.
[14] 翟会超, 杨勇, 胡巍巍, 等. 陡倾斜薄矿体浅孔留矿法采场围岩稳定性分析[J]. 矿冶, 2020, 29(4): 9−13. doi: 10.3969/j.issn.1005-7854.2020.04.002
ZHAI H C, YANG Y, HU W W, et al. Stability analysis of the peripheral rock in the mining field of steeply inclined thin ore body with shallow hole retention method[J]. Mining and Metallurgy, 2020, 29(4): 9−13. doi: 10.3969/j.issn.1005-7854.2020.04.002
[15] 王磊, 闫刚, 付佳杰, 等. 基于Flac3D的某金矿回采方案优化数值模拟研究[J]. 黄金, 2024, 45(6): 11−15. doi: 10.11792/hj20240603
WANG L, YAN G, FU J J, et al. Numerical simulation study on the optimization of a gold mine recovery scheme based on Flac3D[J]. Gold, 2024, 45(6): 11−15. doi: 10.11792/hj20240603
[16] 韩斌, 吴爱祥, 刘同有, 等. 金川二矿区多中段机械化盘区回采顺序的数值模拟优化研究[J]. 矿冶工程, 2004(2): 4−7. doi: 10.3969/j.issn.0253-6099.2004.02.002
HAN B, WU A X, LIU T Y, et al. Numerical simulation optimization study on mining sequence of multi−middle mechanized plate area in Jinchuan Ⅱ mine[J]. Mining and Metallurgical Engineering, 2004(2): 4−7. doi: 10.3969/j.issn.0253-6099.2004.02.002
[17] 李鹏飞, 王苏龙. 深部巷道围岩变形破坏机理数值模拟研究[J]. 建井技术, 2021, 42(1): 45−48.
LI P F, WANG S L. Numerical simulation study on deformation and damage mechanism of surrounding rock in deep tunnel[J]. Well Construction Technology, 2021, 42(1): 45−48.
-