Optimizing the Key Parameters of Roof Cutting in Gob−side Entry Driving
-
摘要:
经坊煤矿八采区西部运输巷为沿空掘巷,平均埋深约为420 m,护巷煤柱压力大、巷道容易变形失稳,为有效解决上述问题,以经坊煤矿八采区西部运输巷为工程背景,建立沿空掘巷切顶参数计算模型,对切顶高度和切顶角度的合理范围进行理论计算,得出切顶高度在14~32 m范围内,最小切顶角度为9°。采用FLAC3D数值模拟软件建立三维模拟计算力学模型,对比分析沿空掘巷不同切顶高度和切顶角度对巷道围岩应力及位移的变化规律,结果表明:在煤柱上方切断顶板可以降低煤柱的集中应力,减小护巷煤柱承担的载荷,阻断采空区的侧向支承压力向巷道传递,减小巷道的变形量,坚硬顶板切顶卸压存在一个最佳切顶方案,达到最佳卸压效果。经坊煤矿八采区西部运输巷最佳切顶高度为25 m、切顶角度为26°,该参数下,护巷煤柱最大垂直应力为24.2 MPa,巷道两帮收敛量为0.28 m,顶底板收敛量为0.17 m。
Abstract:The Western Transportation Roadway in the eighth mining area of Jingfang Coal Mine is a gob−side entry driving roadway with a buried depth of about 420 meters. The protective coal pillar of Western Transportation Roadway undertakes lots of load, and the roadway is easily destabilized. In order to effectively solve the above problems, taking the Western Transportation Roadway as the engineering background, the calculation models of roof cutting parameters were established, and the reasonable range of cutting height and angle were theoretically calculated, the results show that the roof cutting height is in the range of 14~32 meters, and the minimum roof cutting angle is 9°. FLAC3D numerical simulation software was used to establish three−dimensional simulation calculation mechanical models, and the variation law of stress and displacement of roadway surrounding rock under different roof cutting height and roof cutting angle were compared and analyzed. The results show that cutting the roof above the coal pillar can not only reduce the concentrated stress of the coal pillar, but also reduce the load borne by the coal pillar of the roadway, block the lateral abutment pressure of the goaf to the roadway, and reduce the deformation of the roadway. There is an optimal roof cutting scheme for hard roof cutting and pressure relief to achieve the best pressure relief effect. The optimal roof cutting height of the western transportation roadway in the eighth mining area of Jingfang Coal Mine is 25 meters, and the roof cutting angle is 26°. Under this parameter, the maximum vertical stress of the coal pillar is 24.2 MPa, the convergence of the two sides of the roadway is 0.28 meter, and the convergence of the roof and the floor is 0.17 m.
-
-
表 1 工程地质岩层力学参数
Table 1. Rock mechanical parameters of engineering geology
岩性 平均
厚度
/m密度
/(kg∙m−3)体积
模量
/GPa剪切
模量
/GPa抗拉
强度
/MPa黏聚力
/MPa内摩擦
角/(°)细粒砂岩 16.3 2600 16.3 8.5 2.1 2.1 32 细砂岩 10 2650 17.1 7.8 2.5 3.1 31 粉砂岩 12.5 2600 18.0 8.4 2.0 2.5 32 细砂岩 15.2 2100 16.5 3.1 0.6 1.3 32 细粒砂岩 9.3 2100 16.2 3.1 0.6 1.3 28 砂质泥岩 7.1 2600 15.6 8.5 2.3 2.1 32 细粒砂岩 3.2 2100 15.2 3.1 0.6 1.3 28 砂质泥岩 2.4 2600 15.6 8.5 2.3 2.1 32 粉砂岩 5.2 2600 18.0 8.4 2.0 2.5 32 砂质泥岩 1.8 2600 15.6 8.5 2.3 2.1 32 中粒砂岩 4.8 2700 17.6 7.9 2.1 2.3 31 砂质泥岩 6.8 2600 15.6 8.5 2.3 2.1 32 泥岩 1.3 2500 7.6 2.5 2.1 2.1 30 3煤 6.4 2400 3.27 0.9 0.72 0.7 26 泥质砂岩 12.3 2600 15.6 8.5 2.3 2.1 32 中砂岩 17.7 2700 17.6 7.9 2.1 2.3 31 表 2 不同切顶角度实验方案
Table 2. Experimental scheme of cutting angle
序号 切顶角度/(°) 切顶高度/m 1 18 25 2 22 25 3 26 25 4 30 25 5 34 25 -
[1] 程利兴, 康红普, 姜鹏飞, 等. 深井沿空掘巷围岩变形破坏特征及控制技术研究[J]. 采矿与安全工程学报, 2021, 38(5): 227−236.
CHENG L X, KANG H P, JIANG P F, et al. Deformation and failure characteristics and control technology of surrounding rocks in deeply gob−side entry driving[J]. Journal of Mining & Safety Engineering, 2021, 38(5): 227−236.
[2] 严超超, 张国恩, 常通, 等. 浅埋中厚煤层沿空留巷底板变形力学分析及底鼓控制技术[J]. 煤炭科学技术, 2024, 52(10): 11−20. doi: 10.12438/cst.20231382
YAN C C, ZHANG G E, CHANG T, et al. Mechanical analysis of floor deformation and floor heave control technology for gob−side entry retaining in medium thick coal seam with shallow cover depth[J]. Coal Science and Technology, 2024, 52(10): 11−20. doi: 10.12438/cst.20231382
[3] 曹秀龙, 赵利安. 水力压裂切顶技术在巷道超前支护中的应用研究[J]. 煤炭工程, 2020, 52(12): 42−45.
CAO X L, ZHAO L A. Application of hydraulic fracturing roof cutting in advance support of mining roadway[J]. Coal Engineering, 2020, 52(12): 42−45.
[4] 王辉, 陈召, 王小梁, 等. 坚硬岩层顶板切顶留巷关键参数确定与应用研究[J]. 煤矿安全, 2023, 54(6): 153−162.
WANG H, CHEN Z, WANG X L, et al. Study on determination and application of key parameters of gob−side entry retaining by hard stratum roof cutting[J]. Safety in Coal Mines, 2023, 54(6): 153−162.
[5] 孙利辉, 纪全财, 王中海, 等. 切顶沿空留巷卸压机理及支护技术研究[J]. 煤炭工程, 2024, 56(2): 105−113.
SUN L H, JI Q C, WANG Z H, et al. Pressure relief mechanism and support technology of immediate roof cutting gob side entry retaining[J]. Coal Engineering, 2024, 56(2): 105−113.
[6] 辛亚军, 吴春浩, 杨俊鹏, 等. 基于力学模型构建的留巷切顶高度确定与围岩控制技术[J]. 煤炭工程, 2024, 56(1): 119−126.
XIN Y J, WU C H, YANG J P, et al. Roof cutting height determination and surrounding rock control technology of gob−side entry retaining based on mechanical modelling[J]. Coal Engineering, 2024, 56(1): 119−126.
[7] 葛帅帅, 孙亮, 贺丽峰, 等. 综采坚硬顶板分段水力压裂卸压护巷技术研究[J]. 矿业研究与开发, 2024, 44(7): 165−173.
GE S S, SUN L, HE L F, et al. Investigation on the pressure relief and roadway support by segmented hydraulic fracturing technique in hard roof of fulling mechanized mining.[J]. Mining R & D, 2024, 44(7): 165−173.
[8] 任霄洋, 郭俊庆, 张百胜, 等. 多层坚硬顶板动压巷道矿压显现规律及深浅孔组合爆破切顶控制技术研究[J]. 矿业研究与开发, 2024, 44(9): 48−55.
REN X Y, GUO J Q, ZHANG B S, et al. Mine pressure manifestation law of dynamic pressure roadway with multi−layer hard roof and roof cutting control technology of deep and shallow hole combination blasting[J]. Mining R & D, 2024, 44(9): 48−55.
[9] 孟显伟, 曲泉, 李子波, 等. 集贤煤矿切顶留巷关键参数及留巷稳定性分析[J]. 煤矿安全, 2024, 55(6): 160−168.
MENG X W, QU Q, LI Z B, et al. Key parameters and stability analysis of roof cutting and roadway retaining in Jixian Coal Mine[J]. Safety in Coal Mines, 2024, 55(6): 160−168.
[10] 杨敬轩, 张瑞, 卢硕, 等. 工作面顶板超前预裂应力阻隔护巷机理[J]. 中国矿业大学学报, 2024, 53(2): 264−276.
YANG J X, ZHANG R, LU S, et al. Insight into the mechanism of roadway protection against high advance stress by roof pre−splitting[J]. Journal of China University of Mining & Technology, 2024, 53(2): 264−276.
[11] 李汉璞, 张百胜, 郭俊庆, 等. 两次采动影响下小煤柱巷道切顶卸压围岩控制技术[J]. 矿业安全与环保, 2024, 51(2): 90−97.
LI H P, ZHANG B S, GUO J Q, et al. Surrounding rock control technology of roof cutting for pressure relief in small coal pillar roadway under secondary mining[J]. Mining Safety & Environmental Protection, 2024, 51(2): 90−97.
[12] 盛奉天, 张勇, 魏文胜, 等. 切顶参数对沿空留巷围岩稳定性的影响研究[J]. 矿业科学学报, 2022, 7(3): 322−332. doi: 10.19606/j.cnki.jmst.2022.03.007
SHENG F T, ZHANG Y, WEI W S, et al. Influence of roof cutting parameters on stability of surrounding rock of gob−side entry retaining[J]. Journal of Mining Science and Technology, 2022, 7(3): 322−332. doi: 10.19606/j.cnki.jmst.2022.03.007
[13] 陈上元, 赵菲, 王洪建, 等. 深部切顶沿空成巷关键参数研究及工程应用[J]. 岩土力学, 2019, 40(1): 332−342+350.
CHEN S Y, ZHAO F, WANG H J, et al. De termination of key parameters of gob−side entry retai ning by cutting roof and its application to a deep mine[J]. Rock and Soil Mechanics, 2019, 40(1): 332−342+350.
[14] 钱鸣高, 石平五, 许家林. 矿山压力与岩层控制[M]. 徐州: 中国矿业大学出版社, 2010.
QIAN M G, SHI P W, XU J L. Mine pressure and strata control[M]. Xuzhou: China University of Mining and Technology Press, 2010.
-