Flotation Recovery of Fine−grained Cassiterite from a Copper Tailings Using a Novel Combined Collector
-
摘要:
内蒙古某铜尾矿锡品位为0.47%,锡主要以锡石的形式存在,主要赋存于−0.043+0.005 mm细粒级中,具有较高的回收价值。为提升锡石矿物的浮选回收率,采用实验室自制的以羟肟酸为主的新型组合捕收剂KDK−1,对该尾矿开展了浮选实验研究。首先对该尾矿进行脱泥,然后浮选除硫后浮选锡,在调整剂六偏磷酸钠120 g/t、捕收剂KDK−1
2000 g/t、辅助捕收剂PBL 50 g/t、起泡剂松醇油10 g/t的粗选条件下,采用“一粗三精二扫”的闭路浮选实验流程,可获得锡品位为6.07%、回收率为73.10%的锡精矿。该组合捕收剂对锡石捕收效果良好,优于丁铵黑药,可高效回收铜尾矿中锡资源,并为今后低品位微细粒锡石的高效回收和新型捕收剂的开发提供了参考。Abstract:The flotation recovery of tin minerals in copper tailings with a tin grade of 0.47% was investigated through an experiment conducted in Inner Mongolia. Cassiterite, the primary form of tin, predominantly occurred in the fine grain size range of −0.043+0.005 mm and exhibited significant recovery potential. In order to improve the flotation recovery rate of cassiterite, a novel combined collector named KDK−1, composed mainly of hydroxamic acid and synthesized in the laboratory, was employed for conducting flotation experiments on the tailings. The tailings were first deslimed, followed by sulfur removal and subsequent tin flotation processes. Using 120 g/t sodium hexametaphosphate as a regulator, 2000 g/t KDK−1 as a collector, 50 g/t PBL as an auxiliary collector, and 10 g/t pine oil as a frother, closed circuit flotation experiments using "one rougher−three cleaners−two scavengers" process resulted in a tin concentrate with a grade of 6.07% and a recovery rate of 73.10%. The combined collector has a good collection effect on cassiterite, which is better than ammonium butyrate black, and can efficiently recover tin resources in copper tailings. It also provides a reference for the efficient recovery of low−grade fine cassiterite and the development of new collectors in the future.
-
Key words:
- hydroxamicacid /
- combined collector /
- flotation /
- fine cassiterite /
- copper tailings
-
-
表 1 化学多元素分析结果
Table 1. Chemical multielement analysis results
元素 Sn S Al2O3 SiO2 CaO MgO K2O 含量/% 0.47 0.33 18.62 68.35 0.82 0.77 1.62 表 2 样品中锡物相分析结果
Table 2. Results of tin phase analysis of ore
锡物相 黝锡矿 锡石 总锡 含量/% 0.12 0.43 0.55 分布率/% 21.82 78.18 100.00 表 3 样品粒度组成分析结果
Table 3. Analysis results of sample particle size composition
粒级/mm 产率/% Sn品位/% Sn分布率/% +0.043 6.36 0.75 9.98 −0.043+0.02 13.53 1.21 34.26 −0.02+0.01 14.13 0.71 20.99 −0.01+0.005 12.53 0.43 11.28 −0.005 53.45 0.21 23.49 小计 100.00 0.48 100.00 表 4 脱硫闭路实验结果
Table 4. Desulfurization closed−circuit experimental results
/% 产品名称 产率 品位 回收率 Sn S Sn S 硫精矿 3.93 0.73 8.25 4.87 84.92 硫尾矿 96.07 0.58 0.06 95.13 15.08 给矿 100.00 0.59 0.38 100.00 100.00 表 5 闭路实验结果
Table 5. Closed circuit experimental results
/% 产品名称 产率 Sn品位 Sn回收率 浮锡精矿 7.02 6.07 73.10 尾矿 92.98 0.17 26.90 给矿 100.00 0.58 100.00 -
[1] 郑其方, 刘殿文, 李佳磊, 等. 锡石浮选捕收剂机理研究进展[J]. 中国有色金属学报, 2021, 31(3): 785−795. doi: 10.11817/j.ysxb.1004.0609.2021-35978
ZHENG Q F, LIU D W, LI J L, et al. Research progress on collector mechanism of cassiterite flotation[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(3): 785−795. doi: 10.11817/j.ysxb.1004.0609.2021-35978
[2] 莫峰, 蓝卓越, 曹阳, 等. 铅组分活化锡石促进辛基羟肟酸吸附的量子化学计算研究[J]. 中国矿业大学学报, 2022, 51(6): 1193−1200.
MO F, LAN Z Y, CAO Y, et al. Quantum chemical calculation of lead−activated cassiterite promoting the adsorption of octyl hydroxamic acid[J]. Journal of China University of Mining & Technology, 2022, 51(6): 1193−1200.
[3] 常自勇, 李玉娇, 沈政昌, 等. 微细粒矿物浮选捕收剂的应用及其机理研究进展[J]. 工程科学学报, 2023, 45(11): 1807−1819.
CHANG Z Y, LI Y J, SHEN Z C, et al. Research progress on application and mechanism of flotation collectors for fine−grained minerals[J]. Chinese Journal of Engineering, 2023, 45(11): 1807−1819.
[4] MIAO Y Q , HE J Y , ZHU X R , et al. Hardness of surface hydroxyls and its pivotal role in the flotation of cassiterite from quartz via lead ions activation[J]. Separation and Purification Technology, 2024, 347: 127565.
[5] MIAO Y C, FENG Q C , WEN S M. Experimental and MD study on the effect of SDS/OHA mixed collector co−adsorption on cassiterite flotation[J]. Separation and Purification Technology, 2024, 339: 126635.
[6] YAO C Y , LI Y C , LI P , et al. Flotation Separation of cassiterite from calcite using low molecular weight citrus pectin as depressant[J]. Separations, 2024, 11(4).
[7] 曾勇, 程恺, 韩海生, 等. 苯甲羟肟酸在浮选中的应用及作用机理研究进展[J]. 中国有色金属学报, 2024, 34(3): 877−898.
ZENG Y, CHENG K, HAN H S, et al. Research progress on the application and mechanism of benzohydroxamic acid in flotation[J]. The Chinese Journal of Nonferrous Metals, 2024, 34(3): 877−898.
[8] 杨波, 王晓, 谢贤, 等. 云南某含锡多金属矿尾矿回收微细粒锡石实验[J]. 矿物学报, 2023, 43(4): 433−440.
YANG B, WANG X, XIE X, et al. Experiment on recovering fine cassiterite from tailings of a tin−containing polymetallic ore in Yunnan[J]. Acta Mineralogica Sinica, 2023, 43(4): 433−440.
[9] 肖静晶, 吴经芝, 刘思思, 等. 二丁基(2−(羟基氨基)−2−氧乙基)膦酸酯的制备及在锡石浮选中的吸附机理(英文)[J]. Journal of Central South University, 2023, 30(5): 1569−1580. doi: 10.1007/s11771-023-5318-4
XIAO J J, WU J Z, LIU S S, et al. Preparation of dibutyl (2− (hydroxyamino) −2−oxoethyl ) phosphonate and its adsorption mechanism in cassiterite flotation[J]. Journal of Central South University, 2023, 30(5): 1569−1580. doi: 10.1007/s11771-023-5318-4
[10] 孙爱辉, 彭志兵. 某摇床尾矿中细粒锡石的回收实验[J]. 有色金属(选矿部分), 2013(6): 40−44.
SUN A H, PENG Z B. Recovery test of fine cassiterite in a shaking table tailings[J]. Nonferrous Metals(Mineral Processing Section), 2013(6): 40−44.
[11] 江时锋, 童雄, 谢贤, 等. 微细粒锡石浮选药剂及工艺研究进展[J]. 有色金属工程, 2023, 13(10): 61−73.
JIANG S F, TONG X, XIE X, et al. Research progress of fine cassiterite flotation reagents and process[J]. Nonferrous Metals Engineering, 2023, 13(10): 61−73.
[12] 莫广得, 廖幸锦, 陈建华. 广西某尾矿回收微细粒锡石浮选试验研究[J]. 有色金属(选矿部分), 2024(6): 70−77.
MO G D, LIAO X J, CHEN J H. Experimental study on flotation of fine cassiterite recovered from a tailings in Guangxi[J]. Nonferrous Metals(Mineral Processing Section), 2024(6): 70−77.
[13] 袁帅, 刘杰, 李艳军, 等. 内蒙古某铜锡硫化矿石选矿实验[J]. 金属矿山, 2016(2): 87−90.
YUAN S, LIU J, LI Y J, et al. Mineral processing test of a copper−tin sulfide ore in Inner Mongolia[J]. Metal Mine, 2016(2): 87−90.
[14] 李英, 董天龙. 提高云南某选矿厂细粒锡石回收率的实验研究[J]. 有色金属(选矿部分), 2019(2): 46−50.
LI Y, DONG T L. Experimental study on improving the recovery rate of fine cassiterite in a concentrator in Yunnan[J]. Nonferrous Metals(Mineral Processing Section), 2019(2): 46−50.
[15] ZHAO G, ZHOU X T, LI F X, et al. Study on the flotation performance of a new fennel hydroxamic acid collector for tungsten and tin minerals[J]. Journal of Central South University, 2022, 29(11): 3645−3655.
[16] 陈国浩, 任浏祎, 曾维能, 等. 微细粒锡石的微泡浮选及动力学研究[J]. 有色金属(选矿部分), 2022(3): 20−25.
CHEN G H, REN L Y, ZENG W N, et al. Study on microbubble flotation and kinetics of fine cassiterite[J]. Nonferrous Metals(Mineral Processing Section), 2022(3): 20−25.
[17] 曾国旺, 庄故章, 张校熔, 等. 微细粒锡石浮选药剂研究现状[J]. 金属矿山, 2019(1): 115−119.
ZENG G W, ZHUANG G Z, ZHANG J R, et al. Research status of fine cassiterite flotation reagents[J]. Metal Mine, 2019(1): 115−119.
[18] 熊宗彪, 蒋泽斌, 李春林, 等. 用新型锡石捕收剂CS−6优化广西某细粒锡石的回收[J]. 金属矿山, 2018(9): 117−120.
XIONG Z B, JIANG Z B, LI C L, et al. A new cassiterite collector CS−6 was used to optimize the recovery of fine cassiterite in Guangxi[J]. Metal Mine, 2018(9): 117−120.
[19] 杨凯志, 汪泰, 胡真, 等. 云南某低品位难选铁锡矿选矿实验研究[J]. 金属矿山, 2021(9): 72−78.
YANG K Z, WANG T, HU Z, et al. Experimental study on beneficiation of a low−grade refractory iron−tin ore in Yunnan[J]. Metal Mine, 2021(9): 72−78.
[20] 张文杰, 华中宝, 谢贤, 等. 锡石选别工艺和药剂研究进展[J]. 金属矿山, 2021(8): 116−121.
ZHANG W J, HUA Z B, XIE X, et al. Research progress of cassiterite separation process and reagent[J]. Metal Mine, 2021(8): 116−121.
[21] 郑永兴, 宁继来, 吕晋芳, 等. 云南某铜锡尾矿脱硫选锡实验研究[J]. 金属矿山, 2021(5): 103−108.
ZHENG Y X, NING J L, LV J F, et al. Experimental study on desulfurization and tin separation of a copper−tin tailings in Yunnan[J]. Metal Mine, 2021(5): 103−108.
[22] 曾维能. 微纳米气泡对微细粒锡石浮选的影响及其机理[D]. 武汉: 武汉理工大学, 2021.
ZENG W N. Effect of micro−nano bubbles on flotation of fine cassiterite and its mechanism[D]. Wuhan: Wuhan university of technology, 2021.
[23] 葛英勇, 鱼光辉, 邓坤, 等. 新型锡石捕收剂SN−705浮选实验研究[J]. 金属矿山, 2020(10): 184−189.
GE Y Y, YU G H, DENG K, et al. Experimental study on flotation of new cassiterite collector SN−705[J]. Metal Mine, 2020(10): 184−189.
[24] GONG G C, LIU J , HUA Y X, et al. Study on flotation performances and adsorption mechanism of 2−carboxyethylphenylphosphinic acid to cassiterite[J]. Separation Science and Technology, 2019, 54 (11): 1815−1828.
[25] 陈华萍, 黄渝芝, 王丛正, 等. 高效细粒锡石捕收剂YK−Sn实验研究[J]. 世界有色金属, 2023(22): 143−147. doi: 10.3969/j.issn.1002-5065.2023.22.046
CHEN H P, HUANG Y Z, WANG C Z, et al. Experimental study on high efficient fine cassiterite collector YK−Sn[J]. World Nonferrous Metals, 2023(22): 143−147. doi: 10.3969/j.issn.1002-5065.2023.22.046
[26] 罗红莹, 张英, 陈荣, 等. 细粒锡石浮选组合药剂研究与应用进展[J]. 金属矿山, 2019(3): 30−34.
LUO H Y, ZHANG Y, CHEN R, et al. Research and application progress of combined reagents for fine cassiterite flotation[J]. Metal Mine, 2019(3): 30−34.
[27] MATVEEVA N T, GETMAN V V, RYAZANTSEVA V M, et al. Rebellious tin ore processing with new agents for nonferrous and noble metal recovery[J]. Journal of Mining Science, 2019, 55(10): 832−838.
[28] QI J, DONG Y, LIU S, et al. A selective flotation of cassiterite with a dithiocarbamate−hydroxamate molecule and its adsorption mechanism[J]. Applied Surface Science, 2021, 538: 147996−148014. doi: 10.1016/j.apsusc.2020.147996
[29] ZHENG Q, ZHOU Y, QIAO L, et al. Selective adsorption of soluble starch on the cassiterite surface for effective flotation separation of scheelite from cassiterite[J]. Surfaces and Interfaces, 2024, 48: 104238−104249. doi: 10.1016/j.surfin.2024.104238
-