Numerical Simulation on the Poverty Reduction Scheme for Pillar Back Mining at the Ashele Copper Mine
-
摘要:
为解决阿舍勒铜矿大直径深孔空场嗣后充填采矿法中二步骤回采矿柱的充填体失稳破坏、造成矿石贫化率高的问题,提出了在充填前于侧翼添加支护网的降贫方案。利用FLAC3D数值模拟软件,对阿舍勒铜矿−50~−100 m“隔一采一”方案进行了数值模拟。利用Geogrid模块构建矿用钢塑网、矿用塑性网和矿用柔性网,分别添加在充填体两翼进行数值模拟研究。结果表明,与无支护网相比,支护网的添加,有效减少了采空区两翼充填体的X方向位移,其中矿用柔性网使得位移减小了24.1%;计算了四种情况下采场的塑性区大小,支护网作用下的塑性区均有减小,柔性网效果最显著,降低了93.1%。该研究成果为矿山解决矿柱回采过程中充填体坍塌问题提供了理论依据。
-
关键词:
- 空场嗣后充填 /
- 柔性支护 /
- 降贫方案优选 /
- FLAC3D数值模拟 /
- 阿舍勒铜矿
Abstract:In order to solve the problem of high depletion rate of ore caused by destabilization and destruction of the filling body in the process of two−step back−mining pillars in the large−diameter deep−hole air−field subsequent filling mining method of Ashele Copper Mine, a solution of poverty reduction by adding supporting nets to the flanks before filling is proposed. Using FLAC3D numerical simulation software, numerical simulation was carried out for the −50 m~−100 m “Drill from one to the next” scenario of Ashele Copper Mine. The “Geogrid” module was used to construct mining steel−plastic mesh, mining plastic mesh and mining flexible mesh, which were added to the two wings of the filling body for numerical simulation. Comparing the numerical simulation results of the three types of support nets and the unsupported nets, the addition of the support nets effectively reduces the X−direction displacement of the filling body on both flanks of the extraction zone. Mining flexible mesh makes the displacement reduced by 24.1%; calculated the size of the plastic zone of the quarry in four cases, the plastic zone under the action of the supporting nets are reduced, and the flexible network has the most significant effect, reduced by 93.1%. The research results provide a theoretical basis for mines to solve the problem of filling body collapse during pillar mining.
-
-
表 1 支护网物理学参数
Table 1. Physical parameters of the supporting nets
网 矿用钢塑网 矿用塑性网 矿用柔性网 变形/mm 330 400 600 承载能力/kN 6.64 6.4 23.64 表 2 模拟参数
Table 2. Simulation parameters
岩体 抗压强度
/MPa抗拉强度
/MPa弹性
模量/GPa内聚力
/MPa内摩擦
角/(°)矿岩 178.44 11.54 78.03 23.46 36.9 充填体 2.83 0.11 0.5 1.46 29.6 -
[1] 陈霖, 黄明清, 唐绍辉, 等. 大直径深孔空场嗣后充填法采场结构参数优化及稳定性分析[J]. 金属矿山, 2022(11): 44−51.
CHEN L, HUANG M Q, TANG S H, et al. Optimization and stability analysis of stope structure parameters of large−diameter deep hole open stoping with subsequent filling[J]. Metal Mine, 2022(11): 44−51.
[2] 马金亚, 廖九波, 王筱添. 黄沙坪矿区阶段空场嗣后充填法采场结构参数研究[J]. 采矿技术, 2022, 22(4): 1−3. doi: 10.3969/j.issn.1671-2900.2022.04.001
MA J Y, LIAO J B, WANG X T. Study on the structural parameters of the mining site of Huangshaping mining area by the stage−empty field subsequent filling method[J]. Mining Technology, 2022, 22(4): 1−3. doi: 10.3969/j.issn.1671-2900.2022.04.001
[3] 林逸晖, 李广涛, 张希, 等. 两步骤分段空场嗣后充填法在落凼矿应用研究[J]. 有色金属(矿山部分), 2023, 75(3): 84−89.
LIN Y H, LI G T, ZHANG X, et al. Application of two step sublevel open stoping and subsequent fillingmethod in Luodang mine[J]. Nonferrous Metals(Mining Section), 2023, 75(3): 84−89.
[4] 王社光, 杨志强, 王立杰, 等. 阶段嗣后充填采场充填体合理强度设计[J]. 现代矿业, 2023, 39(8): 79−81+85.
WANG S G, YANG Z Q, WANG L J, et al. Reasonable strength design of filling body in stage subsequent filling stope[J]. Modern Mining, 2023, 39(8): 79−81+85.
[5] 余昕, 熊朝辉, 宋卫东, 等. 高阶段嗣后胶结充填法矿柱与充填体动态稳定性研究[J]. 矿业研究与开发, 2022, 42(4): 26−31.
YU X, XIONG Z H, SONG W D, et al. Study on dynamic stability of mine pillar and filling body in high−stage subsequent cemented filling method[J]. Mining R& D, 2022, 42(4): 26−31.
[6] 贾尚伟, 王海洋, 徐壮飞, 等. 采动扰动下阶段嗣后充填采场失稳模式综合分析[J]. 矿冶, 2024, 33(3): 371−377+408.
JIA S W, WANG H Y, XU Z F, et al. Comprehensive analysis of failure modes in sublevel backfill stopes under mining disturbance[J]. Mining and Metallurgy, 2024, 33(3): 371−377+408.
[7] 王冠男, 童大志, 黄开飞. 阶段嗣后充填采场护壁矿稳定性研究[J]. 有色金属(矿山部分), 2023, 75(3): 5−13+29.
WANG G N, TONG D Z, HUANG K F. Study on stability of protection pillar in stope with stage subsequent filling[J]. Nonferrous Metals(Mining Section), 2023, 75(3): 5−13+29.
[8] 何磊, 马维清, 李军峰, 等. 深孔落矿阶段空场嗣后充填法矿柱回采工艺[J]. 中国金属通报, 2021(10): 35−36.
HE L, MA W Q, LI J F, et al. Deep hole falling stage empty field subsequent filling method ore pillar back mining process[J]. Mine Engineering, 2021(10): 35−36.
[9] 徐伟兰, 孙飞, 何维剑. 大直径深孔阶段空场嗣后充填采场稳定性研究[J]. 有色金属(矿山部分), 2020, 72(4): 38−42+53.
XU W L, SUN F, HE W J. Study on the stability of large diameter deep hole stope &backfill mining method[J]. Nonferrous Metals(Mining Section), 2020, 72(4): 38−42+53.
[10] 郭伟革, 丘永富. 大直径深孔阶段空场嗣后充填采矿法二步骤回采边孔装药结构优化[J]. 新疆有色金属, 2020, 43(1): 18−19.
GUO W G, QIU Y F. Optimization of side−hole charging structure for two−step back mining by large−diameter deep−hole stage air−field subsequent filling mining method[J]. Xinjiang Non−Ferrous Metals, 2020, 43(1): 18−19.
-