Determination of Total Mercury in Gold-loaded Carbon by Solid Mercury Analyzer
-
摘要: 载金炭对汞有较强的吸附性,易造成黄金生产工艺污染及活性炭吸附金的活性降低,需测定载金炭中的汞含量以监控汞的危害。应用目前测定汞的分析方法在样品前处理过程中需要高温去除基体炭,但容易造成汞的挥发损失。本文采用固体测汞仪在不需样品前处理及不加入其他试剂的情况下实现了载金炭中总汞的直接测定,载金炭最优热解条件为空气流速0.8~1.2 L/min,蒸发温度680~740℃,汞的回收率达到99%以上。样品在热解过程中基体炭转化成二氧化碳,二氧化碳的干扰可由仪器自动消除,所以基体炭对汞的测定无明显影响。全流程的管道不足50 cm,且整个管道处于较高温度之下,通过加大空气流速可快速消除管道上残余的汞,减少了记忆效应的影响。本方法的相对标准偏差小于8.0%,测定下限为0.014 μg/g,汞的测试结果与原子荧光光谱法基本吻合。Abstract: Gold-loaded carbon has a strong adsorption ability of mercury, which will result in the pollution of the gold extraction process and reduce the absorption of gold by activated carbon. Therefore, it's necessary to determine the mercury content in gold-loaded carbon to monitor the hazards of mercury. In the available method for Hg determination, the carbon matrix should be removed by high temperature ashing, but the mercury is readily lost due to volatilization. Total mercury can be directly determined by Solid Mercury Analyzer without sample preparation and the addition of other reagents. The best pyrolysis conditions for gold-loaded carbon are defined that air flow is 0.8-1.2 L/min, evaporation temperature is 680-740℃, and the recovery of mercury is up to 99%. Carbon matrix in samples will be changed into carbon dioxide and the interferences of carbon dioxide can be automatically eliminated by Solid Mercury Analyzer, so that carbon matrix has little effect on the determination of total mercury. The pipeline length is less than 50 cm with high temperature. It is easy to eliminate the residual mercury rapidly on the pipe and reduce memory effects. The method has a relative standard deviation (RSD) of less than 8.0% and the minimum detection limit of 0.014 μg/g, which is consistent with the AFS's results.
-
Key words:
- Solid Mercury Analyzer /
- gold-loaded carbon /
- mercury /
- memory effect
-
-
表 1 热解模式
Table 1. The pyrolysis mode
热解运行 模式 空气流速 (L/min) 蒸发温度 (℃) Mode 1 0.8~1.2 680~740 Mode 2 0.8~1.2 520~580 Mode 3 0.8~1.2 370~430 Mode 4 0.8~1.2 170~230 Mode 5 2.5~3.5 560~620 Mode 6 0.8~1.2 300~400 Mode 7 0.8~1.2 350~450 Mode 8 2.5~3.5 500~580 表 2 基体炭的干扰情况
Table 2. The interference effect of matrix carbon
被加 标物 基体炭量 (mg) 汞本底量 (ng) 汞加标量 (ng) 汞测得量 (ng) 汞加标回收率 (%) 样品1 150.0 0 2.000 1.996 99.8 150.0 0 3.000 2.982 99.4 150.0 0 4.000 3.974 99.4 样品2 116.4 1.746 2.000 3.713 98.3 106.2 1.593 4.000 5.483 97.2 88.2 1.323 6.000 7.113 96.5 样品3 22.4 73.41 100 177.58 104.2 21.6 70.78 200 270.13 99.7 17.9 58.51 300 343.67 95.0 样品4 15.5 582.4 500 1096.8 102.9 11.2 419.4 1000 1428.6 100.9 10.0 375.1 2000 2278.8 95.2 表 3 方法精密度及准确度
Table 3. Precision and accuracy tests of the method
样品编号 原子荧光光谱法汞的测定值 本文方法 汞的测定平均值 RSD(%) 样品1 13.2 ng/g 13.7 ng/g 8.0 样品2 3.3 μg/g 3.23 μg/g 1.2 样品3 37.3 μg/g 37.25 μg/g 2.1 -
[1] 夏珍珠.电感耦合等离子体发射光谱法测定载金炭中铜铁钙镁[J].岩矿测试,2012,31(2):263-267. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20120212&flag=1
Xia Z Z.Determination of Copper,Iron,Calcium and Magnesium in Gold-loaded Carbon by Inductively Coupled Plasma-Atomic Emission Spectrometry[J].Rock and Mineral Analysis,2012,31(2):263-267. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20120212&flag=1
[2] 夏珍珠.火焰原子吸收光谱法测定载金炭中金[J].黄金,2012,33(4):52-54. http://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201204013.htm
Xia Z Z.Determination of Gold in Gold-loaded Carbon by Flame Atomic Absorption Spectrometry[J].Gold,2012,33(4):52-54. http://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201204013.htm
[3] 潘克臣.原子荧光光谱法直接测定载金炭样品中的砷[J].吉林地质,2011,30(3):91-93. http://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ201103018.htm
Pan K C.Direct Determination of Arsenic in Gold-Carbon by Atomic Fluorescence Spectrometry[J].Jilin Geology,2011,30(3):91-93. http://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ201103018.htm
[4] 孙晓丽.氢化物发生原子荧光法同时测定土壤中痕量汞和铋[J].应用化工,2011,40(5):909-911. http://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201105046.htm
Sun X L.Simultaneous Determination of Trace Hg and Bi in Soil by HG-AFS[J].Applied Chemical Industry,2011,40(5):909-911. http://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201105046.htm
[5] 于瑞莲,陈丽萍,胡恭任,等.超声辅助硝酸提取-冷原子吸收光谱法测定土壤/沉积物中汞[J].冶金分析,2010,30(12):56-59. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201012019.htm
Yu R L,Chen L P,Hu G R,et al.Determination of Mercury in Soil/Sediment by Cold Vapor Atomic Absorption Spectrometry after Ultrasonic Assisted Nitric Acid Extraction[J].Metallurgical Analysis,2010,30(12):56-59. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201012019.htm
[6] 曹晓燕,何颖贤,陈强,等.微波消解样品-电感耦合等离子体原子发射光谱法测定锌精矿中镉、砷和汞[J].理化检验(化学分册),2011,47(6):731-735. http://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201106042.htm
Cao X Y,He Y X,Chen Q,et al.Determination of Cadmium,Arsenic and Mercury in Zinc Concentrates with Microwave Assisted Sample Digestion by ICP-AES[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis),2011,47(6):731-735. http://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201106042.htm
[7] 李艳辉,刘英红,许兴友,等.3,5-二甲基-4-磺酸基苯基重氮氨基偶氮苯的合成及其在分光光度测定汞中的应用[J].冶金分析,2008,28(11):32-35. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX200811006.htm
Li Y H,Liu Y H,Xu X Y,et al.Synthesis of 3,5-dimethyl-4'-sulfobenzenediazoaminoazobenzene and Its Application to Spectrophotometric Determination of Mercury[J].Metallurgical Analysis,2008,28(11):32-35. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX200811006.htm
[8] 于灏,汪发文,马忠强,等.原子荧光法与直读测汞仪法测定汞的比较分析[J].现代科学仪器,2014(1):112-116.
Yu H,Wang F W,Ma Z Q,et al.Comparative Analysis of Atomic Fluorescence Spectrometry and Direct Mercury Analyzer Method for Mercury Determination[J].Modern Scientific Instruments,2014(1):112-116.
[9] 王海凤,佘小林,冯玲玲,等.DMA-80测汞仪直接测定土壤中的痕量汞[J].现代仪器,2012,18(3):107-109. http://www.cnki.com.cn/Article/CJFDTOTAL-XDYI201203034.htm
Wang H F,She X L,Feng L L,et al.Direct Determination of Trace Mercury in Soil Samples by DMA-80 Mercury Analyzer[J].Modern Instruments,2012,18(3):107-109. http://www.cnki.com.cn/Article/CJFDTOTAL-XDYI201203034.htm
[10] 郉巍巍,刘少玉.RA-915+型汞分析仪测定海水中的总汞[J].环境保护与循环经济,2011,31(8):59-60. http://www.cnki.com.cn/Article/CJFDTOTAL-LNCX201108021.htm
Xing W W,Liu S Y.The Determination of Total Mercury in Seawater with RA-915+ Mercury Analyzer[J].Environmental Protection and Circular Economy,2011,31(8):59-60. http://www.cnki.com.cn/Article/CJFDTOTAL-LNCX201108021.htm
[11] 孙仓,卢雁,刘畅.便携式测汞仪应急监测地表水中的汞[J].环境保护科学,2014,40(2):104-106. http://www.cnki.com.cn/Article/CJFDTOTAL-HJBH201402025.htm
Sun C,Lu Y,Liu C.Emergency Monitoring of Mercury in Surface Water by Portable Mercury Analyzer[J].Environmental Protection Science,2014,40(2):104-106. http://www.cnki.com.cn/Article/CJFDTOTAL-HJBH201402025.htm
[12] 王翠萍,闫海鱼,刘鸿雁,等.使用Lumex测汞仪快速测定固体样品中总汞的方法[J].地球与环境,2010,38(3): 378-382. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201003019.htm
Wang C P,Yan H Y,Liu H Y,et al.The Method of Rapidly Measuring Total Mercury in Solid Samples Using Lumex Analytical Equipment[J].Earth and Environment,2010,38(3): 378-382. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201003019.htm
-