中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

改性磁铁矿对水体中砷的吸附特性研究

吴昆明, 郭华明, 魏朝俊. 改性磁铁矿对水体中砷的吸附特性研究[J]. 岩矿测试, 2017, 36(6): 624-632. doi: 10.15898/j.cnki.11-2131/td.201709110147
引用本文: 吴昆明, 郭华明, 魏朝俊. 改性磁铁矿对水体中砷的吸附特性研究[J]. 岩矿测试, 2017, 36(6): 624-632. doi: 10.15898/j.cnki.11-2131/td.201709110147
Kun-ming WU, Hua-ming GUO, Chao-jun WEI. Adsorption Characteristics of Arsenic in Water by Modified Magnetite[J]. Rock and Mineral Analysis, 2017, 36(6): 624-632. doi: 10.15898/j.cnki.11-2131/td.201709110147
Citation: Kun-ming WU, Hua-ming GUO, Chao-jun WEI. Adsorption Characteristics of Arsenic in Water by Modified Magnetite[J]. Rock and Mineral Analysis, 2017, 36(6): 624-632. doi: 10.15898/j.cnki.11-2131/td.201709110147

改性磁铁矿对水体中砷的吸附特性研究

  • 基金项目:
    北京市教育委员会科技计划项目(KM201510020016);北京市委组织部优秀人才培养项目(2013D005021000005)
详细信息
    作者简介: 吴昆明, 副教授, 在读博士研究生, 主要从事地下水与土壤污染控制。E-mail:wkm_001@126.com
    通讯作者: 郭华明, 教授, 博士生导师, 主要从事地下水与土壤污染控制。E-mail:hmguo@cugb.edu.cn
  • 中图分类号: P578.46;O613.63

Adsorption Characteristics of Arsenic in Water by Modified Magnetite

More Information
  • 经过酸化改性后的天然磁铁矿,由于比表面积和内部结构发生变化,从而表现出很好的除砷性能,进一步研究其对水体中砷的吸附特征,为实际工程应用提供数据是十分必要的。本文对经0.5 mol/L盐酸浸泡、150℃温度下灼烧10 min的改性磁铁矿吸附砷的特征进行了表征,绘制吸附速率曲线图。吸附影响因素实验结果显示:当初始pH为6~9时,吸附性能强;Cl-、Ca2+、Mg2+、HCO3-、CO32-离子与As(Ⅲ)、As(Ⅴ)不会产生竞争吸附,PO43-、NO3-、SO42-离子与As(Ⅲ)产生竞争性吸附,且PO43- > SO42- > NO3-;PO43-、NO3-离子与As(Ⅴ)产生竞争性吸附。结合X射线衍射、扫描电镜等研究结果,初步探讨了改性磁铁矿的除砷机理,认为改性后的磁铁矿比表面积明显增大,表面生成物含有Fe(Ⅱ)和Fe(Ⅲ)是其吸附砷能力提高的主要原因。实验结果证实,改性天然磁铁矿是一种值得进一步研究并实际应用的水体除砷材料。
  • 加载中
  • 图 1  改性天然磁铁矿对砷的吸附量随时间的变化曲线

    Figure 1. 

    图 2  砷形态对改性磁铁矿吸附反应的影响实验结果

    Figure 2. 

    图 3  砷初始浓度的变化对改性磁铁矿吸附砷量的影响

    Figure 3. 

    图 4  溶液初始pH值对改性磁铁矿吸附砷量的影响

    Figure 4. 

    图 5  共存阴离子对改性天然磁铁矿吸附砷的影响

    Figure 5. 

    图 6  共存阳离子对改性天然磁铁矿吸附砷的影响

    Figure 6. 

    图 7  改性前(左)和改性后(右)天然磁铁矿的扫描电镜图像

    Figure 7. 

    表 1  Lagergren准一级和假二级吸附动力学模型拟合参数

    Table 1.  Kinetic parameters for As adsorption on the modified magnetite

    As形态温度
    (℃)
    准一级动力学模型假二级动力学模型qe(exp)
    (μg/g)
    R2K1(h-1)qe(cal)(μg/g)R2K2[(g/μg)h]q2(μg/g)
    As(Ⅲ)150.91262.101754.970.98130.010892.5991.53
    250.99202.284543.770.98090.011884.7591.12
    350.94082.166718.920.99830.010694.3494.10
    450.90902.093418.920.99790.010892.5998.29
    As(Ⅴ)150.99090.05071.120.92890.0068147.0697.49
    250.90920.06541.160.99530.010397.0898.00
    350.97010.02091.050.93830.0093107.5394.20
    450.90921.227116.870.99330.0088113.6497.89
    下载: 导出CSV
  • [1]

    Mahanta R, Chowdhury J, Nath H K.Health costs of arsenic contamination of drinking water in Assam, India[J].Economic Analysis & Policy, 2016, 49:30-42. https://www.sciencedirect.com/science/article/pii/S0313592615300436

    [2]

    Ouédraogo I W K, Pehlivan E, Tran H T, et al.Removal of arsenic(Ⅴ) from aqueous medium using manganese oxide coated lignocellulose/silica adsorbents[J].Toxicological & Environmental Chemistry, 2015:1-21. https://www.researchgate.net/publication/233611863_Chrome_Waste_as_Sorbent_for_the_Removal_of_ArsenicV_from_Aqueous_Solution

    [3]

    Taleb K, Markovski J, Milosavljević M, et al.Efficient arsenic removal by cross-linked macroporous polymer impregnated with hydrous iron oxide:Material performance[J].Chemical Engineering Journal, 2015, 279:66-78. doi: 10.1016/j.cej.2015.04.147

    [4]

    Michael H A.An arsenic forecast for China[J].Science, 2013, 341(6148):852-853. doi: 10.1126/science.1242212

    [5]

    Rodríguez-Lado L, Sun G, Berg M, et al.Groundwater arsenic contamination throughout China[J].Science, 2013, 341(6148):866-868. doi: 10.1126/science.1237484

    [6]

    Baig S A, Sheng T, Hu Y, et al.Arsenic removal from natural water using low cost granulated adsorbents:A review[J].CLEAN-Soil, Air, Water, 2015, 43(1):13-26. doi: 10.1002/clen.201200466

    [7]

    Bora A J, Mohan R, Dutta R K.Simultaneous removal of arsenic, iron and manganese from groundwater by oxidation-coagulation-adsorption at optimized pH[J].Water Science & Technology Water Supply, 2017:ws2017092. http://pubs.acs.org/doi/abs/10.1021/es048991u

    [8]

    Mohan D, Sharma R, Singh V K, et al.Fluoride removal from water using bio-char, a green waste, low-cost adsorbent:Equilibrium uptake and sorption dynamics modeling[J].Industrial & Engineering Chemistry Research, 2012, 51(2):900-914. http://pubs.acs.org/doi/abs/10.1021/ie202189v

    [9]

    Basu A, Saha D, Saha R, et al.A review on sources, toxicity and remediation technologies for removing arsenic from drinking water[J].Cheminform, 2014, 40(2):447-485. https://link.springer.com/content/pdf/10.1007/s11164-012-1000-4.pdf

    [10]

    吴昆明, 郭华明, 魏朝俊.天然磁铁矿化学改性及其在水体除砷中的应用[J].岩矿测试, 2017, 36(1):32-39. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2017.01.005

    Wu K M, Guo H M, Wei C J.Chemical modification of natural magnetite and its application in arsenic removal from water[J].Rock and Mineral Analysis, 2017, 36(1):32-39. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2017.01.005

    [11]

    Wang Y, Shen F, Qi X.A corn stalk-derived porous carbonaceous adsorbent for adsorption of ionic liquids from aqueous solution[J].RSC Advances, 2016, 39:32505-32513. http://pubs.rsc.org/en/Content/ArticleLanding/RA/2016/C6RA06908H#!

    [12]

    Yamani J S, Lounsbury A W, Zimmerman J B.Towards a selective adsorbent for arsenate and selenite in the presence of phosphate:Assessment of adsorption efficiency, mechanism, and binary separation factors of the chitosan-copper complex[J].Water Research, 2016, 88:889. doi: 10.1016/j.watres.2015.11.017

    [13]

    Zhu N, Yan T, Qiao J, et al.Adsorption of arsenic, ph-osphorus and chromium by bismuth impregnated biochar:Adsorption mechanism and depleted adsorbent utilization[J].Chemosphere, 2016, 164:32-40. doi: 10.1016/j.chemosphere.2016.08.036

    [14]

    Lagergren S.About the theory of so-called adsorption of soluble substances[J].Kungliga Svenska Vetenskapsakademiens Handlingar Band, 1989, 24(4):1-39. http://www.sciepub.com/reference/163936

    [15]

    Ho Y S, Mckay G.Pseudo-second order model for sorp-tion processes[J].Process Biochemistry, 1999, 34(5):451-465. doi: 10.1016/S0032-9592(98)00112-5

    [16]

    Lladó J, Lao-Luque C, Ruiz B, et al.Role of activated carbon properties in atrazine and paracetamol adsorption equilibrium and kinetics[J].Process Safety & Environmental Protection, 2015, 95:51-59. http://pubs.rsc.org/en/Content/Database/HAZ3507001554

    [17]

    赵凯, 郭华明, 李媛, 等.天然菱铁矿改性及强化除砷研究[J].环境科学, 2012, 33(2):459-468. http://www.oalib.com/references/17743116

    Zhao K, Guo H M, Li Y, et al.Modification of natural siderite and enhanced adsorption of arsenic[J].Environmental Science, 2012, 33(2):459-468. http://www.oalib.com/references/17743116

    [18]

    Qiao J, Jiang Z, Sun B, et al.Arsenate and arsenite re-moval by FeCl3:Effects of pH, As/Fe ratio, initial As concentration and co-existing solutes[J].Separation & Purification Technology, 2012, 92(1):106-114.

    [19]

    Amstaetter K, Borch T, Laresecasanova P, et al.Redox transformation of arsenic by Fe(Ⅱ)-activated goethite (α-FeOOH)[J].Environmental Science & Technology, 2010, 44(1):102-108.

    [20]

    Hcry M, Van Dongen B E, Gill F, et al.Arsenic release and attenuation in low organic carbon aquifer sediments from West Bengal[J].Geobiology, 2010, 8(2):155-168. doi: 10.1111/gbi.2010.8.issue-2

  • 加载中

(7)

(1)

计量
  • 文章访问数:  2048
  • PDF下载数:  47
  • 施引文献:  0
出版历程
收稿日期:  2017-09-11
修回日期:  2017-10-20
录用日期:  2017-10-24

目录