Improved Carrier Buffer for AC Arc Direct Reading Atomic Emission Spectrometry Based on the SEM Technique
-
摘要: 原子发射光谱粉末固体进样法由于样品处理方法简单,检出限低,环境污染小,被大量应用于痕量Ag、B、Sn等多种元素的同时测定,但显著的基体效应制约了方法的适用性。本文基于扫描电镜微区检测技术,对比分析了特定配方与不同样品、在不同时段反应产物的组成差异,结合蒸发曲线反推反应过程,研制了适用于不同基体类型地球化学样品的载体缓冲剂。在实现前人致力改善弧烧过程的基础上,研制的载体缓冲剂是以K2S2O7、NaF作为助熔剂,“催化”基体分解,与聚四氟乙烯、沉降S等协同促进待测元素以多种形式快速蒸发;缓冲剂在与样品基体作用过程中形成的Al2O3-SiO2-CaO-BaO互熔体降低了Tammann温度,能够原位吸收CaO、SiO等基体氧化物,抑制了其干扰。相比已有方法,灵敏度提高1.2倍以上,精密度、准确度、检出限等优于各类地球化学调查规范要求。Abstract: Powder solid sampling atomic emission spectrometry is a simple sample pretreatment method with high sensitivity, low detection limit, and little environmental pollution. This method has been applied to the simultaneous analysis of trace Ag, B and Sn in geochemical samples. However, the serious matrix effect limits the application of this method. Based on the Scanning Electron Microscopy (SEM) technique, the differences in the composition of the reaction products at different times for specific formulations and different samples was compared. Combined with the evaporation curve to reverse the reaction process, a carrier buffer suitable for different types of geochemical samples was developed. In order to realize the improvement of the arc burning process, K2S2O7 and NaF were used as flux during preparing carrier buffer to catalytically decompose the matrix. Synergizing with PTFE and sedimentation S promotes rapid evaporation of analyzed elements in various forms. The formation of Al2O3-SiO2-CaO-BaO mutual melt lowers the Tammann temperature and can absorb matrix oxides in-situ, suppressing the interferences. Compared with the available method, the sensitivity increased by 1.2 times, and the precision, accuracy and detection limit are superior to a number of geochemical survey specifications.
-
-
表 1 GBW07108与新载体缓冲剂不同反应时段熔渣组分对比
Table 1. A comparison of fusing beads components in GBW07108 at different reaction times with new carrier buffer by SEM
元素 反应30 s时的表面成分(%) 反应30 s时熔渣内部成分(%) 反应60 s时熔渣内部成分(%) 原子比 换算成氧化物含量 原子比 换算成氧化物含量 原子比 换算成氧化物含量 O 56.65 - 56.96 - 57.22 - Na 1.01 1.27 1.65 2.16 1.21 1.57 Mg 0.85 1.4 2.55 4.33 2.6 4.4 Al 15.33 31.7 16.03 34.48 15.87 33.97 Si 4.36 10.65 6.54 16.58 6.42 16.2 S 1.07~0.46 3.48~1.53 0.37 1.26 0.54 1.82 K 0.72 1.62 1.09 2.17 0.79 1.57 Ca 18.23 41.5 13.1 30.98 13.56 31.92 Fe 0.72 2.11 0.86 2.62 0.85 2.55 Ba 1.06 6.57 0.84 5.41 0.93 5.99 合计 100 100.3 99.99 99.99 99.99 99.99 表 2 GBW07407与新载体缓冲剂不同预反应时间对谱线强度及背景的影响
Table 2. Effect of different prereaction time with the new carrier buffer on spectral line intensity and background for GBW07407
平行测定次数 4.5 A电弧加热预反应2 s 4.5 A电弧加热预反应4 s 271线 背景 327线 背景 271线 背景 327线 背景 1 1292 175 511 198 2004 518 837 369 2 629 70 244 81 2170 514 906 343 3 1160 148 421 118 1924 586 874 426 4 1016 157 437 186 1710 293 664 239 5 871 177 378 163 2168 375 863 321 6 1880 309 635 285 2110 477 867 353 7 827 146 347 79 2072 350 791 279 8 1472 372 551 216 1804 209 585 146 9 2803 296 904 412 2209 293 782 240 10 867 111 316 109 1671 293 621 210 11 615 87 245 106 1893 744 957 519 12 1241 502 566 292 1973 392 795 267 RSD(%) 50.37 61.03 40.39 54.01 9.16 36.19 14.59 32.69 表 3 GBW07706与新载体缓冲剂反应15 s时熔体残渣表面与内部组分扫描电镜分析结果
Table 3. The SEM data of surface residue and inner compositions on GBW07706 rereacted with the new carrier buffer at 15 s
元素 熔渣上表面成分(%) 熔渣内部成分(%) 原子比 换算成氧化物含量 原子比 换算成氧化物含量 O 63.04 - 64.56 - Na 4.12 7.48 0.88 1.34 Al 4.34 13.09 19.76~11.43 49.9~26.11 Si 17.3 61.65 9.05~21.39 27.03~50.48 K 3.08 10.07 1.14 3.12 Ca 未检出 未检出 0.51 1.42~4.0 F 6.55 - 未检出 未检出 S 1.4 6.08 未检出 未检出 Fe 未检出 未检出 0.34~2.75 1~15.3 Ba 0.18 1.63 0.69 5.22 Ti 未检出 未检出 0.53 2.1 合计 100 100 100 100 -
[1] Babos D V, Barros A I, Ferreira E C, et al.Evaluation of solid sampling for determination of Mo, Ni, Co, and V in soil by high-resolution continuum source graphite furnace atomic absorption spectrometry[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2017, 130(1):39-44. http://adsabs.harvard.edu/abs/2017AcSpe.130...39B
[2] Dobrowolski R, Mróz A, Dąbrowska M, et al.Solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for gold determination in geological samples after preconcentration onto carbon nanotubes[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2017, 132:13-18. doi: 10.1016/j.sab.2017.03.011
[3] Soares B M, Santos R F, Bolzan R C, et al.Simultaneous determination of iron and nickel in fluoropolymers by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry[J].Talanta, 2016, 160:454-460. doi: 10.1016/j.talanta.2016.07.040
[4] Shotyk W, Kempter H, Krachler M, et al.Stable (206Pb, 207Pb, 208Pb) and radioactive (210Pb) lead isotopes in 1year of growth of Sphagnum moss from four ombrotrophic bogs in Southern Germany:Geochemical significance and environmental implications[J].Geochimica et Cosmochimica Acta, 2015, 163:101-125. doi: 10.1016/j.gca.2015.04.026
[5] 徐鹏, 王青柏, 姜雅红.固体进样-石墨炉原子吸收光谱法测定土壤中重金属[J].分析试验室, 2015, 34(5):554-557. http://www.cqvip.com/QK/92693X/201503/665043062.html
Xu P, Wang Q B, Jiang Y H.Direct determination of heavy metals in soil by graphite furnace atomic absorption spectrometry with solid sampling[J].Chinese Journal of Analysis Laboratory, 2015, 34(5):554-557. http://www.cqvip.com/QK/92693X/201503/665043062.html
[6] 王鹤龄, 李光一, 曲少鹏, 等.氟化物固体缓冲剂-交流电弧直读发射光谱法测定化探样品中易挥发难挥发微量元素[J].岩矿测试, 2017, 36(4):367-373. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201608230125
Wang H L, Li G Y, Qu S P, et al.Determination of volatile and nonvolatile trace elements in geochemical samples by fluoride solid buffer-AC direct reading emission spectrometry[J].Rock and Mineral Analysis, 2017, 36(4):367-373. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201608230125
[7] 俞晓峰, 李锐, 寿淼钧, 等.E5000型全谱直读型电弧发射光谱仪研制及其在地球化学样品分析中应用[J].岩矿测试, 2015, 34(1):40-47. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.01.005
Yu X F, Li R, Shou M J, et al.Development and application of full spectrum direct reading arc emission spectrometer E5000 and its application in geochemical sample analysis[J].Rock and Mineral Analysis, 2015, 34(1):40-47. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.01.005
[8] 王彦东, 张文华, 吴冬梅, 等.电弧直读光谱仪的开发与应用[J].中国无机化学, 2014, 4(4):65-71. http://www.cqvip.com/QK/91534X/199912/3852395.html
Wang Y D, Zhang W H, Wu D M, et al.Development and application of an arc direct-reading spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2014, 4(4):65-71. http://www.cqvip.com/QK/91534X/199912/3852395.html
[9] 郝志红, 姚建贞, 唐瑞玲, 等.交流电弧直读原子发射光谱法测定地球化学样品中银、硼、锡、钼、铅的方法研究[J].地质学报, 2016, 90(8):2070-2082. http://www.cnki.com.cn/Article/CJFDTOTAL-GPSS199302011.htm
Hao Z H, Yao J Z, Tang R L, et al.Study on the method for the determination of silver, boron, tin, molybdenum, lead in geochemical samples by AC-arc direct reading atomic emission spectroscopy[J].Acta Geologica Sinica, 2016, 90(8):2070-2082. http://www.cnki.com.cn/Article/CJFDTOTAL-GPSS199302011.htm
[10] 陈波, 胡兰, 陈园园, 等.地质样品中总锡测定方法的研究进展[J].理化检验(化学分册), 2017, 53(2):236-241. http://www.cnki.com.cn/Article/CJFDTotal-YJFX199106010.htm
Chen B, Hu L, Chen Y Y, et al.Recent progress of research on methods for determination of total tin in geological samples[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(2):236-241. http://www.cnki.com.cn/Article/CJFDTotal-YJFX199106010.htm
[11] 王学求, 周建, 徐善法, 等.全国地球化学基准网建立与土壤地球化学基准值特征[J].中国地质, 2016, 43(5):1469-1480. http://www.cnki.com.cn/Article/CJFDTOTAL-AHDZ201304014.htm
Wang X Q, Zhou J, Xu S F, et al.China soil geochemical baselines networks:Data characteristics[J].Geology in China, 2016, 43(5):1469-1480. http://www.cnki.com.cn/Article/CJFDTOTAL-AHDZ201304014.htm
[12] 刘雪敏, 王学求.全球尺度地球化学填图计划对比研究[J].地学前缘, 2014, 21(2):275-285. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201402020
Liu X M, Wang X Q.A comparison of global-scale geochemical mapping projects[J].Earth Science Frontiers, 2014, 21(2):275-285. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201402020
[13] 张勤, 白金峰, 王烨.地壳全元素配套分析方案及分析质量监控系统[J].地学前缘, 2012, 19(3):33-42. http://www.cnki.com.cn/Article/CJFDTotal-BJNY201424135.htm
Zhang Q, Bai J F, Wang Y.Analytical scheme and quality monitoring system for China geochemical bascelines[J].Earth Science Frontiers, 2012, 19(3):33-42. http://www.cnki.com.cn/Article/CJFDTotal-BJNY201424135.htm
[14] Yao W S, Xie X J, Wang X Q.Comparison of results analyzed by Chinese and European laboratories for FOREGS geochemical baselines mapping samples[J].Geoscience Frontiers, 2011, 2(2):247-259. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gsft201102014&dbname=CJFD&dbcode=CJFQ
[15] 叶家瑜, 江宝林.区域地球化学勘查样品分析方法[M].北京:地质出版社, 2004:78-85.
Ye J Y, Jiang B L.Regional Geochemical Exploration Sample Analysis Method[M].Beijing:Geological Publishing House, 2004:78-85.
[16] 张雪梅, 张勤.发射光谱法测定勘查地球化学样品中银硼锡钼铅[J].岩矿测试, 2006, 25(4):323-326. http://www.ykcs.ac.cn/article/id/ykcs_200604107
Zhang X M, Zhang Q.Determination of silver, boron, tin, molybdenum and lead in geochemical exploration samples by emission spectrometry[J].Rock and Mineral Analysis, 2006, 25(4):323-326. http://www.ykcs.ac.cn/article/id/ykcs_200604107
[17] Claisse F, Blanchette J S(著). 卓尚军(译). 硼酸盐熔融的物理与化学[M]. 上海: 华东理工大学出版社, 2006: 60-88.
Claisse F, Blanchette J S (Editor). Zhuo S J (Translator). Physics and Chemistry of Borate Fusion[M]. Shanghai: East China University of Science and Technology Publishing House, 2006: 60-88.
[18] 徐长伟, 陈勇, 孟琦涵, 等.助熔剂对CaO-MgO-Al2O3-SiO2系微晶玻璃烧结和性能的影响[J].材料导报, 2015, 29(26):443-445. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=cldb2015s2109&dbname=CJFD&dbcode=CJFQ
Xu C W, Chen Y, Meng Q H, et al.Effects of fluxes on sintering and properties of CaO-MgO-Al2O3-SiO2 glass ceramics[J].Materials Review, 2015, 29(26):443-445. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=cldb2015s2109&dbname=CJFD&dbcode=CJFQ
[19] 章少华, 江柳杨, 张璟, 等.NaF助熔剂对Sr2MgSi2O7:Eu2+, Zr4+荧光粉结构及发光性能影响[J].中国稀土学报, 2012, 30(5):574-580. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xtxb201205011&dbname=CJFD&dbcode=CJFQ
Zhang S H, Jiang L Y, Zhang J, et al.Effect of NaF flux on slructure and luminescence of Sr2MgSi2O7:Eu2+, Zr4+ phosphor[J].Journal of the Chinese Society of Rare Earths, 2012, 30(5):574-580. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xtxb201205011&dbname=CJFD&dbcode=CJFQ
[20] 马生明, 朱立新, 苏磊, 等.矿化剂元素硫(S)与成矿[J].地质学报, 2016, 90(9):2427-2436. http://www.cnki.com.cn/Article/CJFDTotal-DZXE201609024.htm
Ma S M, Zhu L X, Su L, et al.Mineralizing agent sulfur and metallogenic process[J].Acta Geologica Sinica, 2016, 90(9):2427-2436. http://www.cnki.com.cn/Article/CJFDTotal-DZXE201609024.htm
[21] 刘淑贤, 张晋霞, 牛福生.助熔剂降低氧化铁矿深度还原温度的机理研究[J].中国矿业, 2014, 23(8):123-126. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgky201408028
Liu S X, Zhang J X, Niu F S.The mechanism research of reducing depth reduction temperature of iron oxide by fluxing agent[J].China Mining Magazine, 2014, 23(8):123-126. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgky201408028
[22] 郑怀礼, 刘君玉, 李林涛, 等.矿化剂对铝酸钙粉结构与光谱性能的影响[J].光谱学与光谱分析, 2009, 29(11):3028-3032. doi: 10.3964/j.issn.1000-0593(2009)11-3028-05
Zheng H L, Liu J Y, Li L T, et al.Study on the influence of mineralizer on the structures and spectral properties of calcium aluminates[J].Spectroscopy and Spectral Analysis, 2009, 29(11):3028-3032. doi: 10.3964/j.issn.1000-0593(2009)11-3028-05
[23] 范伟, 王亮, 郑怀礼, 等.基于红外光谱分析研究矿化剂对铝酸钙制备的影响[J].光谱学与光谱分析, 2015, 35(5):1214-1217. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_gpxygpfx201505015
Fan W, Wang L, Zheng H L, et al.Study on the influence of mineralizer on the preparation of calcium aluminates based on infrared spectroscopy[J].Spectroscopy and Spectral Analysis, 2015, 35(5):1214-1217. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_gpxygpfx201505015
[24] 王唐林, 宋波, 宋明明, 等.新型Al基复合脱氧剂脱氧效果研究[J].工程科学学报, 2015, 37(5):568-572. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjkjdxxb201505005
Wang T L, Song B, Song M M, et al.Deoxidization effect research of a new Al based complex deoxidizer[J].Chinese Journal of Engineering, 2015, 37(5):568-572. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjkjdxxb201505005
[25] 徐沛清.光谱分析中消除组分影响的探讨——缓冲剂中引入Fe2O3作"稳定剂"[J].光谱学与光谱分析, 1988, 8(1):35-37. https://www.wenkuxiazai.com/word/a6054ed9ad51f01dc281f161-1.doc
Xu P Q.The study on elimination of interference with matrix component in spectroscopic analysis-The stable reagent (Fe2O3) has been introduced into buffer[J].Spectroscopy and Spectral Analysis, 1988, 8(1):35-37. https://www.wenkuxiazai.com/word/a6054ed9ad51f01dc281f161-1.doc
[26] 陈金忠, 魏艳红, 郭庆林, 等.难电离元素对交流电弧等离子体中发射强度的增强效应[J].光谱学与光谱分析, 1996, 16(4):51-55. http://www.cqvip.com/qk/90993X/199604
Chen J Z, Wei Y H, Guo Q L, et al.The enhancement effect of non-easily ionized elements on emission intensities in an AC arc plasma[J].Spectroscopy and Spectral Analysis, 1996, 16(4):51-55. http://www.cqvip.com/qk/90993X/199604
-