Study on the Method for Quartz Purification and Separation of Cosmogenic 10Be and 26Al in Samples from Fluvial Terraces
-
摘要: 经历反复埋藏暴露演化过程的河流阶地样品,难以用常规方法将原生宇宙核素10Be、26Al有效分离。本文在前人实验方法基础上,使用人工挑选、磁选仪分选及酸洗方法,分离样品中碳酸盐、含铁矿物及大气生成的10Be,进一步优化了石英提纯实验流程。结果表明:长度为9 cm、内径为1 cm的阴离子交换树脂装置匹配4 mol/L氢氟酸淋滤液,可将B、Mg、Ca、Cr、Fe、Mn、Ni、Ti和Be、Al有效分离,Be、Al回收率分别可达95.7%、85.7%。阳离子交换树脂能有效分离Be、Al,两元素回收率均达到85%。获得10Be/9Be和26Al/27Al流程空白分别为2.19×10-15和1.63×10-15。优化后的实验方法显著提高了河流阶地样品中原生宇宙核素10Be、26Al的纯化效率,且10Be/9Be和26Al/27Al流程空白数值与国内外实验室具有可比性。采用本方法获得了成都平原冲积物10Be、26Al暴露年龄分别是76.36±9.51 ka和69.44±14.13 ka,为评价龙门山前缘隐伏断裂构造特征和活动性提供了年代学依据。Abstract: In situ produced 10Be and 26Al in fluvial terrace samples that have been repeatedly buried and exposed to the evolution process are difficult to separate using conventional methods. Based on prior experiments, 10Be in carbonate, iron-bearing mineral and 10Be produced in the atmosphere were separated by manual hand picking, magnetic separator sorting and acid washing methods, improving the procedure of purifying the quartz samples. The results show that anion exchange column, with a length of 9 cm and inner diameter of 1cm, matched 4 mol/L hydrofluoric acid leachate, can effectively separate B, Mg, Ca, Cr, Fe, Mn, Ni, Ti and Mn. The recoveries of Be and Al are 95.7% and 85.7%, resepectively. Be and Al can be separated by ion exchange very well which have recoveries up to 85%. The procedure blanks are 2.19×10-15 and 1.63×10-15 for 10Be/9Be and 26Al/27Al, respectively which are comparable with other labs. The exposure ages of Chengdu Plain alluvial elements are 76.36±9.51 ka for 10Be and 69.44±14.13 ka for 26Al, which provides a chronological basis for evaluating the structural features and activities of buried faults in the front of the Longmenshan.
-
Key words:
- in situ-produced cosmogenic /
- 10Be /
- 26Al /
- recovery rate /
- Accelerator Mass Spectrometry
-
-
表 1 磁选分选实验结果
Table 1. Results of magnetic separation test
实验次数 YNP-6 LJP-2 LJP-5 磁性物质
(g)非磁性物质
(g)磁性物质
(g)非磁性物质
(g)磁性物质
(g)非磁性物质
(g)第一次 26.4333 55.7304 3.7229 63.6846 4.8099 40.1229 第二次 28.2102 54.2930 3.8867 63.5003 4.9068 40.0190 第三次 28.5616 53.8987 3.9366 63.4504 4.9734 39.9179 第四次 28.8586 53.6108 3.9550 63.3902 4.9894 39.8935 第五次 28.9722 53.3898 3.9651 63.3963 4.9991 39.8771 表 2 阴离子交换树脂参数
Table 2. The parameters list of anion exchange resin
方法编号 阴离子交换树脂柱规格 淋滤液 方法1 内径1 cm,长度9 cm 盐酸:20 mL,10.2 mol/L 方法2 内径1 cm,长度9 cm 氢氟酸:36 mL,4 mol/L 方法3 内径1 cm,长度6 cm 氢氟酸:36 mL,4 mol/L 方法4 内径1 cm,长度3 cm 氢氟酸:36 mL,4 mol/L 方法5 内径0.6 cm,长度9 cm 氢氟酸:36 mL,4 mol/L 表 3 本项目与中国科学院地球化学研究所回收率实验结果对比
Table 3. A comparison of recoveries of the elements
实验室 元素回收率(%) Be Al B Mg Ca Cr 本项目组 95.7 85.7 - 39.7 59.0 6.57 中国科学院地球化学研究所[30] 93.2 93.0 62.5 94.2 87.2 86.8 注:“-”表示未检测到元素含量。 表 4 不同实验室的流程空白值比较
Table 4. A comparison of blank values obtained by different laboratories
表 5 加速器质谱仪分析结果
Table 5. Results of samples measured by AMS
样品编号 石英质量(g) 9Be载体质量(g) 10Be/9Be 绝对误差 26Al/27Al 绝对误差 SV1-300 25.00 305.5 1.29×10-13 1.56×10-14 2.13×10-13 3.95×10-14 SV3-230 25.34 308.8 5.55×10-13 1.42×10-14 1.99×10-12 7.56×10-14 SV4-200 25.03 307.8 2.38×10-13 7.71×10-15 1.32×10-12 5.12×10-14 SV5-155 25.21 307.6 4.10×10-13 1.03×10-14 3.28×10-12 1.31×10-13 SV6-120 25.15 307.6 5.01×10-13 1.73×10-14 2.72×10-12 1.66×10-13 SV7-80 25.19 306.2 9.30×10-13 2.95×10-14 4.78×10-12 1.58×10-13 SV8-40 25.00 307.6 8.94×10-13 2.52×10-14 3.15×10-12 8.36×10-14 -
[1] Molliex S, Siame L S, Bourles D L, et al.Quaternary evolution of a large alluvial fan in a periglacial setting (Crau Plain, SE France) constrained by terrestrial cosmogenic nuclide (10Be)[J].Geomorphology, 2013, 195(1):45-52. http://www.sciencedirect.com/science/article/pii/S0169555X13002328
[2] Maher K, Blanckenburg F.Surface ages and weathering rates from 10Be (meteoric) and 10Be/9Be:Insights from differential mass balance and reactive transport modeling[J].Chemical Geology, 2016, 44(23):70-86. http://www.sciencedirect.com/science/article/pii/S0009254116303473
[3] Dehnert A, Kracht O, Preusser F, et al.Cosmogenic isotope burial dating of fluvial sediments from the Lower Rhine Embayment, Germany[J].Quaternary Geochronology, 2011, 6(3-4):313-325. doi: 10.1016/j.quageo.2011.03.005
[4] 胡凯, 方小敏, 赵志军, 等.宇宙成因核素10Be揭示的北祁连山侵蚀速率特征[J].地球科学进展, 2015, 30(2):268-275. doi: 10.11867/j.issn.1001-8166.2015.02.0268
Hu K, Fang X M, Zhao Z J, et al.Erosion rates of northern Qilian Mountains revealed by cosmogenic 10Be[J].Advances in Earth Science, 2015, 30(2):268-275. doi: 10.11867/j.issn.1001-8166.2015.02.0268
[5] Cui L F, Liu C Q, Xu S, et al.The long-term denudation rate of granitic regolith in Qinhuangdao, North China determined from the in situ depth profile of the cosmogenic nuclides 26Al and 10Be[J].Chinese Science Bulletin, 2014, 59:4823-4828. doi: 10.1007/s11434-014-0601-2
[6] 吕延武, 顾炎武, Aldahan A, 等.内蒙古额济纳盆地戈壁10Be暴露年龄与洪积作用的演化[J].科学通报, 2010, 55(27-28):2719-2727. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kxtb2010z2009&dbname=CJFD&dbcode=CJFQ
Lü Y W, Gu Y W, Aldahan A, et al.10Be in quartz gravel from the Gobi desert and evolutionary history of alluvial sedimentation in the Ejina Basin, Inner Mongolia[J].Chinese Science Bulletin, 2010, 55(27-28):2719-2727. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kxtb2010z2009&dbname=CJFD&dbcode=CJFQ
[7] 张珂, 蔡剑波.黄河黑山峡口最高阶地宇宙核素的初步年龄及所反映的新构造运动[J].第四纪研究, 2006, 26(1):85-91. http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK702.018.htm
Zhang K, Cai J B.Preliminare result of the dating by TCN technique of the highest terrace of the Hei Shan Xia Gorge Mouth, northeast margin of Tibetan Plateau and its expression of neotectionic movement in that area[J].Quaternary Sciences, 2006, 26(1):85-91. http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK702.018.htm
[8] Gribenski N, Jansson K N, Lukas S, et al.Complex patterns of glacier advances during the late glacial in the Chagan Uzun Valley, Russian Altai[J].Quaternary Science Reviews, 2016, 149:288-305. doi: 10.1016/j.quascirev.2016.07.032
[9] Xue B L, Guan J S, Hua T, et al.Initial 26Al/10Be burial dating of the hominin site Bailong Cave in Hubei Province, Central China[J].Quaternary International, 2015, 389:235-240. doi: 10.1016/j.quaint.2014.10.028
[10] Kong P, Zheng Y, Fu B.Cosmogenic nuclide burial ages and provenance of late cenozoic deposits in the Sichuan Basin:Implications for early quaternary glaciations in East Tibet[J].Quaternary Geochronology, 2011, 6(3-4):304-312. doi: 10.1016/j.quageo.2011.03.006
[11] Kong P, Granger D, Wu F Y, et al.Cosmogenic nuclide burial ages and provenance of the Xigeda paleo-lake:Implications for evolution of the Middle Yangtze River[J].Earth and Planetary Science Letters, 2009, 278:131-141. doi: 10.1016/j.epsl.2008.12.003
[12] Wolkowinsky A J, Granger D E.Early pleistocene incision of the San Juan River, Utah, dated with 26Al and 10Be[J].Geology, 2004, 32(9):749-752. doi: 10.1130/G20541.1
[13] Granger D E, Muzikar P F.Dating sediment burial with in situ-produced cosmogenic nuclides:Theory, techniques and limitations[J].Earth and Planet Science Letters, 2001, 188:269-281. doi: 10.1016/S0012-821X(01)00309-0
[14] Stock G M, Anderson R S, Finkel R C.Rates of erosion and topographic evolution of the Sierra Nevada, California, inferred from cosmogenic 26Al and 10Be concentrations[J].Earth Surface Process and Landforms, 2005, 30:985-1006. doi: 10.1002/(ISSN)1096-9837
[15] Balco G, Stone J O, Lifton N A, et al.A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements[J].Quaernary Geochronology, 2008, 3(3):174-195. doi: 10.1016/j.quageo.2007.12.001
[16] Gosse J C, Phillips F M.Terristrial in situ cosmogenic nuclides:Theory and application[J].Quaternary Science Review, 2001, 20:1475-1560. doi: 10.1016/S0277-3791(00)00171-2
[17] Heisinger B, Lal D, Jull A J T, et al.Production of selected cosmogenic radionuclides by muons:2.Capture of negative muons[J].Earth and Planetary Science Letters, 2002, 200(3-4):357-369. doi: 10.1016/S0012-821X(02)00641-6
[18] Lal D.Cosmic ray labeling of erosion surfaces:In situ nuclides production rates and erosion models[J].Earth and Planetary Science Letters, 1991, 104:424-439. doi: 10.1016/0012-821X(91)90220-C
[19] Rodes A, Pallas R, Braucher R, et al.Effect of density uncertainties in cosmogenic 10Be depth-profiles:Dating a cemented Pleistocene alluvial fan (Carboneras Fault, SE Iberia)[J].Quaternary Geochronology, 2011, 6:186-194. doi: 10.1016/j.quageo.2010.10.004
[20] Corbett L B, Bierman P R, Rood D H.An approach for optimizing in situ cosmogenic 10Be sample preparation[J].Quaternary Geochronology, 2016, 33:24-34. doi: 10.1016/j.quageo.2016.02.001
[21] 赵国庆, 张丽, 孔祥辉, 等.黄土中宇宙成因核素10Be提取条件检验[J].地球环境学报, 2017, 8(2):169-175. doi: 10.7515/JEE201702009
Zhao G Q, Zhang L, Kong X H, et al.Optimizing experimental conditions of extraction cosmogenic nuclide 10Be in loess[J].Journal of Earth Environment, 2017, 8(2):169-175. doi: 10.7515/JEE201702009
[22] 李海旭, 沈冠军, 周耀明.宇生核素26Al/10Be埋藏法测年铝化学分析程序的改进[J].岩矿测试, 2013, 32(4):555-560. http://www.ykcs.ac.cn/article/id/4d6f9e92-2eb3-4a00-b023-a19d19ea67df
Li H X, Shen G J, Zhou Y M.Improvements for analytical procedure of Al for cosmogenic 26Al/10 Be burial dating[J].Rock and Mineral Analysis, 2013, 32(4):555-560. http://www.ykcs.ac.cn/article/id/4d6f9e92-2eb3-4a00-b023-a19d19ea67df
[23] 张丽, 周卫健, 常宏, 等.暴露测年样品中26Al和10Be分离及其加速器质谱测定[J].岩矿测试, 2012, 31(1):83-89. http://www.ykcs.ac.cn/article/id/ykcs_20120111
Zhang L, Zhou W J, Chang H, et al.The extraction of in-situ 10Be and 26Al from rock sample and accelerator mass spectrometric measurements[J].Rock and Mineral Analysis, 2012, 31(1):83-89. http://www.ykcs.ac.cn/article/id/ykcs_20120111
[24] Hunt A, Larsen J, Bierman P, et al.Investigation of factors that affect the sensitivity of accelerator mass spectrometry for cosmogenic 10Be and 26Al isotope analysis[J].Analytical Chemistry, 2008, 80:1656-1663. doi: 10.1021/ac701742p
[25] Stone J.A rapid fusion method for separation of beryllium-10 from soils and silicates[J].Geochimica et Cosmochimca, 1998, 62:555-561. doi: 10.1016/S0016-7037(97)00340-2
[26] Tuniz C.Accelerator mass spectrometry:Ultra-sensitive analysis for global science[J].Radiation Physics and Chemistry, 2001, 61:317-322. doi: 10.1016/S0969-806X(01)00255-9
[27] Dunai T J, Stuart F M.Reporting of cosmogenic nuclide data for exposure age and erosion rate determinations[J].Quaternary Geochronology, 2009, 4:437-440. doi: 10.1016/j.quageo.2009.04.003
[28] 易惟熙, 沈承德, 欧阳自远, 等.AMS——BeO制备技术及10Be的测定[J].核物理, 1991, 14(1):33-35. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hjsu199101006&dbname=CJFD&dbcode=CJFQ
Yi W X, Shen C D, Ouyang Z Y, et al.The preparation of AMS-BeO and the measurements of 10Be[J].Nuclear Techniques, 1991, 14(1):33-35. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hjsu199101006&dbname=CJFD&dbcode=CJFQ
[29] 武振坤, 周卫健, 刘敏, 等.黄土样品的BeO制备及AMS测量[J].核技术, 2008, 31(6):427-432. http://www.cnki.com.cn/Journal/C-C3-ZYKB-2007-00.htm
Wu Z K, Zhou W J, Liu M, et al.BeO preparation and AMS measurement result for loess samples[J].Nunlear Techniques, 2008, 31(6):427-432. http://www.cnki.com.cn/Journal/C-C3-ZYKB-2007-00.htm
[30] 卢仁, 林杨挺, 欧阳自远, 等.陨石中宇宙成因核素10Be和26Al的化学分离纯化[J].地球化学, 2008, 37(2):149-156. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqhx200802006&dbname=CJFD&dbcode=CJFQ
Lu R, Lin Y T, Ouyang Z Y, et al.Chemical separation and purification of cosmogenic radionuclides 10Be and 26Al in meteorites[J].Geochimica, 2008, 37(2):149-156. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqhx200802006&dbname=CJFD&dbcode=CJFQ
[31] 钱洪, 唐荣昌.成都平原的形成和演化[J].四川地震, 1997(3):1-7. http://www.cqvip.com/QK/92061X/199703/2696577.html
Qian H, Tang R C.On the formaintion and evolution of the Chengdu plain[J].Sichuan Earthquake, 1997(3):1-7. http://www.cqvip.com/QK/92061X/199703/2696577.html
[32] 刘保金, 张先康, 酆少英, 等.龙门山山前彭州隐伏断裂高分辨率地震反射剖面[J].地球物理学报, 2009, 52(2):538-546. https://www.wenkuxiazai.com/doc/2d7cbbee5ef7ba0d4a733bf5-4.html
Liu B J, Zhang X K, Feng S Y, et al.High-resolution seismic reflection profile across Pengzhou buried fault in frontal areas of Longmen Shan[J].Chinese Journal of Geophysics, 2009, 52(2):538-546. https://www.wenkuxiazai.com/doc/2d7cbbee5ef7ba0d4a733bf5-4.html
-