Determination of Gallium in Coal Fly Ash by Inductively Coupled Plasma-Optical Emission Spectrometry with Microwave Digestion
-
摘要: 粉煤灰中镓元素含量为12~230μg/g,测定粉煤灰中的镓对实现粉煤灰高附加值利用具有重要的意义。传统敞口酸溶法作为样品的预处理方法存在局限性,如需使用大量氢氟酸,对分析仪器腐蚀大,溶样时间长,在开放容器中易造成元素损失和环境污染。微波消解法具有消解完全、元素损失量少、消解时间短等优点,可以有效解决酸溶法的不足。本文选取内蒙古某电厂采集的粉煤灰,采用硝酸-氢氟酸-盐酸-高氯酸微波消解法对粉煤灰样品进行预处理,电感耦合等离子体发射光谱法(ICP-OES)测定元素含量。结果表明:使用硝酸-氢氟酸-盐酸-高氯酸(5:1:5:1),消解温度190℃,消解时间30min,微波功率1400W时,镓被浸出完全。方法检出限为0.004mg/L,相对标准偏差(RSD)为1.7%,加标回收率为95.1%~100.9%。本方法在体系中引入盐酸,减少了氢氟酸的用量,显著缩短了除氟时间,降低了对分析仪器的损害,且操作方便,可应用于粉煤灰中微量元素镓的测定。
-
关键词:
- 粉煤灰 /
- 镓 /
- 微波消解 /
- 硝酸-氢氟酸-盐酸-高氯酸酸溶 /
- 电感耦合等离子体发射光谱法
Abstract:BACKGROUNDThe content of gallium in coal fly ash is 12-230μg/g. The determination of gallium in coal fly ash is crucial to realize the high-value-added utilization of coal fly ash. As a sample pretreatment method, the conventional open wet digestion method has limitations including a large amount of hydrofluoric acid, corrosion of analytical instruments, long dissolution time, the loss of elements, and environmental pollution. Microwave digestion has the advantages of complete digestion, minimal loss, and short digestion time, which can effectively solve the shortcomings of the open wet digestion method. OBJECTIVESTo develop a good method for the determination of gallium in coal fly ash. METHODSThe coal fly ash was collected from a power plant in Inner Mongolia. The sample was digested with nitric acid (5.0mL), hydrofluoric acid (1.0mL), hydrochloric acid (5.0mL) and perchloric acid (1.0mL) by microwave digestion and then determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). RESULTSThe results showed that gallium could be leached totally using HNO3-HF-HCl-HClO4 (5:1:5:1, V/V) when the temperature was 190℃, the time 30 minutes and the microwave power 1400W. The limit of detection was 0.004mg/L. The relative standard deviation (RSD) was 1.7% with the recoveries ranging from 95.1% to 100.9%. CONCLUSIONSICP-OES with microwave digestion method adds hydrochloric acid and reduces the amount of hydrofluoric acid, thus shortening the time of removing fluoride and reducing the damage to instruments. The method is easy to be used for the determination of trace gallium in coal fly ash. -
-
表 1 微波消解程序
Table 1. Program of microwave digestion
微波消解
步骤控制温度
(℃)升温时间
(min)保温时间
(min)功率
(W)1 120 7 5 1400 2 150 7 5 1400 3 190 7 30 1400 表 2 加标回收率测定结果
Table 2. Spiked recovery test of the method
加标量
(μg/g)回收率
(%)RSD
(%)40 95.1 2.4 80 100.9 0.9 120 99.1 1.4 -
[1] 赵汀, 秦鹏珍, 王安建, 等.镓矿资源需求趋势分析与中国镓产业发展思考[J].地球学报, 2017, 38(1):77-84. http://d.old.wanfangdata.com.cn/Periodical/dqxb201701012
Zhao T, Qin P Z, Wang A J, et al.An analysis of gallium ore resources demand trend and the thinking concerning China's gallium industry development[J].Acta Geoscientica Sinica, 2017, 38(1):77-84. http://d.old.wanfangdata.com.cn/Periodical/dqxb201701012
[2] 冯建广, 高增, 王振江, 等.镓在工业生产中的提取与应用[J].硅酸盐通报, 2018, 37(9):2852-2856. http://d.old.wanfangdata.com.cn/Periodical/gsytb201809029
Feng J G, Gao Z, Wang Z J, et al.Extraction and application of gallium in industrial manufacture[J].Bulletin of the Chinese Ceramic Society, 2018, 37(9):2852-2856. http://d.old.wanfangdata.com.cn/Periodical/gsytb201809029
[3] Yao Z T, Ji X S, Sarker P K, et al.A comprehensive review on the applications of coal fly ash[J].Earth-Science Reviews, 2015, 141:105-121. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5a4f22cef2804dc380bba9e5c77c66db
[4] 刘延红, 郭昭华, 池君洲, 等.镓回收方法与技术的研究与进展[J].稀有金属与硬质合金, 2016, 44(1):1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xyjsyyzhj201601001
Liu Y H, Guo Z H, Chi J Z, et al.Research and the latest development of gallium recovery process and technology[J].Rare Metals and Cemented Carbides, 2016, 44(1):1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xyjsyyzhj201601001
[5] 张伦和.铝土矿资源合理开发与利用[J].轻金属, 2012(2):3-11. http://d.old.wanfangdata.com.cn/Periodical/qjs201202001
Zhang L H.Reasonable development and utilization of bauxite resource[J].Light Metals, 2012(2):3-11. http://d.old.wanfangdata.com.cn/Periodical/qjs201202001
[6] Jung C H, Osako M.Leaching characteristics of rare metal elements and chlorine in fly ash from ash melting plants for metal recovery[J].Waste Management, 2009, 29(5):1532-1540. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fa1111c49fd710db7a5532049414d087
[7] Moskalyk R R.Gallium:The backbone of the electronics industry[J].Minerals Engineering, 2003, 16(10):921-929. http://d.old.wanfangdata.com.cn/Periodical/dqxb201701012
[8] 唐碧玉, 施意华, 杨仲平, 等.灰化酸溶-电感耦合等离子体质谱法测定煤炭中的镓锗铟[J].岩矿测试, 2018, 37(4):371-378. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201711250186
Tang B Y, Shi Y H, Yang Z P, et al.Determination of gallium, germanium and indium in coal by inductively coupled plasma-mass spectrometry with ashing acid digestion[J].Rock and Mineral Analysis, 2018, 37(4):371-378. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201711250186
[9] 魏雅娟, 吴雪英, 江荆, 等.微波消解-电感耦合等离子体原子发射光谱法测定银精矿中铅锌铜砷锑铋镉[J].冶金分析, 2018, 38(5):47-53. http://d.old.wanfangdata.com.cn/Periodical/yjfx201805009
Wei Y J, Wu X Y, Jiang J, et al.Determination of lead, zinc, copper, arsenic, antimony, bismuth and cadmium in silver concentrate by inductively coupled plasma atomic emission spectrometry after microwave digestion[J].Metallurgical Analysis, 2018, 38(5):47-53. http://d.old.wanfangdata.com.cn/Periodical/yjfx201805009
[10] 李婷, 辛志峰, 徐梦, 等.复合助剂活化粉煤灰对镓酸浸效果的研究[J].化学工程, 2016, 44(7):55-57. http://d.old.wanfangdata.com.cn/Periodical/hxgc201607012
Li T, Xin Z F, Xu M, et al.Acid leaching of gallium from fly ash activated by compound additive[J]. Chemical Engineering, 2016, 44(7):55-57. http://d.old.wanfangdata.com.cn/Periodical/hxgc201607012
[11] 邓长生, 李盛富, 张建梅, 等.常压酸溶-电感耦合等离子体质谱法测定地球化学勘查样品中的铌钽[J].岩矿测试, 2018, 37(4):364-370. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201802060016
Deng C S, Li S F, Zhang J M, et al.Determination of niobium and tantalum in geochemical exploration samples by ICP-MS with acid solution at normal pressure[J].Rock and Mineral Analysis, 2018, 37(4):364-370. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201802060016
[12] 王勇, 龚厚亮, 但娟, 等.微波消解-电感耦合等离子体原子发射光谱法测定脱硝催化剂中13种元素[J].冶金分析, 2018, 38(10):56-62. http://d.old.wanfangdata.com.cn/Periodical/yjfx201810010
Wang Y, Gong H L, Dan J, et al.Determination of thirteen elements in denitrification catalyst by microwave digestion-inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2018, 38(10):56-62. http://d.old.wanfangdata.com.cn/Periodical/yjfx201810010
[13] Mketo N, Nomngongo P N, Ngila J C.An innovative microwave-assisted digestion method with diluted hydrogen peroxide for rapid extraction of trace elements in coal samples followed by inductively coupled plasma-mass spectrometry[J].Microchemical Journal, 2016, 124:201-208. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4bfacda9fc2b351f25145cb8181730a1
[14] Bressy F C, Brito G B, Barbosa I S, et al.Determination of trace element concentrations in tomato samples at different stages of maturation by ICP-OES and ICP-MS following microwave-assisted digestion[J].Microchemical Journal, 2013, 109:145-149. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6f058a20e46128781e832a48de3bab05
[15] Yin X, Wang X, Chen S, et al.Trace element determination in sulfur samples using a novel digestion bomb prior to ICP-MS analysis[J].Atomic Spectroscopy, 2018, 39(4):137-141. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fc0b26c03318c4a8d7120f80ec5663cc
[16] Bakircioglu D, Topraksever N, Yurtsever S, et al.ICP-OES determination of some trace elements in herbal oils using a three-phase emulsion method and comparison with conventional methods[J].Atomic Spectroscopy, 2018, 39(1):38-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6d9c92c8a25914f839e5780af942a2a7
[17] 赵慧玲, 刘建.泡塑吸附分离萃取光度法测定粉煤灰中的镓[J].岩矿测试, 2010, 29(4):465-468. http://www.ykcs.ac.cn/article/id/ykcs_20100429
Zhao H L, Liu J.Determination of gallium in coal fly ash samples by photometry after separation and pre-concentration with polyurethane foam absorption solvent extraction[J].Rock and Mineral Analysis, 2010, 29(4):465-468. http://www.ykcs.ac.cn/article/id/ykcs_20100429
[18] 刘环, 康佳红, 王玉学.碱熔-电感耦合等离子体质谱法测定地质样品中铍铯镓铊铌钽锆铪铀钍[J].冶金分析, 2019, 39(3):26-32. http://d.old.wanfangdata.com.cn/Periodical/yjfx201903005
Liu H, Kang J H, Wang Y X.Determination of beryllium, cesium, gallium, thallium, niobium, tantalum, zirconium, hafnium, uranium and thorium in geological sample by inductively coupled plasma mass spectrometry with alkali fusion[J].Metallurgical Analysis, 2019, 39(3):26-32. http://d.old.wanfangdata.com.cn/Periodical/yjfx201903005
[19] 刘冰冰, 王英滨.电感耦合等离子体原子发射光谱法测定粉煤灰中的镓[J].光谱实验室, 2012, 29(6):3840-3844. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpsys201206127
Liu B B, Wang Y B.Determination of gallium in fly ash by ICP-AES[J].Chinese Journal of Spectroscopy Laboratory, 2012, 29(6):3840-3844. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpsys201206127
[20] Arantes de Carvalho G G, Kondaveeti S, Petri D F S, et al.Evaluation of calcium alginate beads for Ce, La and Nd preconcentration from groundwater prior to ICP-OES analysis[J].Talanta, 2016, 161:707-712. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=630fd96f378cd10d2387647490318062
[21] 张小东, 赵飞燕.粉煤灰中镓提取与净化技术的研究[J].煤炭技术, 2018, 37(11):336-339. http://d.old.wanfangdata.com.cn/Periodical/mtjs201811126
Zhang X D, Zhao F Y.Study on extraction and purification technology of gallium in fly ash[J].Coal Technology, 2018, 37(11):336-339. http://d.old.wanfangdata.com.cn/Periodical/mtjs201811126
[22] 侯新凯, 梁爽, 刘柱燊, 等.粉煤灰中玻璃体含量的化学物相分析[J].硅酸盐通报, 2017, 36(11):3587-3594. http://d.old.wanfangdata.com.cn/Periodical/gsytb201711003
Hou X K, Liang S, Liu Z S, et al.Chemical phase analysis of glass content in fly ash[J].Bulletin of the Chinese Ceramic Society, 2017, 36(11):3587-3594. http://d.old.wanfangdata.com.cn/Periodical/gsytb201711003
[23] 李婷, 辛志峰, 徐梦, 等.煅烧活化粉煤灰对镓酸浸效果的实验研究[J].无机盐工业, 2016, 48(5):40-43. http://d.old.wanfangdata.com.cn/Periodical/wjygy201605011
Li T, Xin Z F, Xu M, et al.Study on acid leaching of gallium from fly ash activated by calcination[J].Inorganic Chemicals Industry, 2016, 48(5):40-43. http://d.old.wanfangdata.com.cn/Periodical/wjygy201605011
[24] Shao P, Wang W F, Chen L, et al.Distribution, occu-rrence, and enrichment of gallium in the Middle Jurassic coals of the Muli Coalfield, Qinghai, China[J].Journal of Geochemical Exploration, 2018, 185:116-129. https://www.sciencedirect.com/science/article/pii/S0166516219311322
[25] 王珲, 宋蔷, 姚强, 等.ICP-OES/ICP-MS测定煤中多种元素的微波消解方法研究[J].光谱学与光谱分析, 2012, 32(6):1662-1665. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201206047
Wang H, Song Q, Yao Q, et al.Study on microwave digestion of coal for the determination of multi- element by ICP-OES and ICP-MS[J].Spectroscopy and Spectral Analysis, 2012, 32(6):1662-1665. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201206047
[26] 李晓敬, 边朋沙, 金倩, 等.高压微波消解-电感耦合等离子体质谱法测定地质样品中分散元素镓铟铊锗碲镉[J].冶金分析, 2019, 39(4):38-44. http://d.old.wanfangdata.com.cn/Periodical/yjfx201904007
Li X J, Bian P S, Jin Q, et al.Determination of disperse elements of gallium, indium, thallium, germanium, tellurium and cadmium in geological samples by inductively coupled plasma mass spectrometry with high-pressure microwave digestion[J].Metallurgical Analysis, 2019, 39(4):38-44. http://d.old.wanfangdata.com.cn/Periodical/yjfx201904007
[27] 霍红英.微波消解-电感耦合等离子体原子发射光谱法测定钒铁中7种杂质元素[J].冶金分析, 2018, 38(2):65-70. http://d.old.wanfangdata.com.cn/Periodical/yjfx201802011
Huo H Y.Determination of 7 impurity elements in ferrovanadium alloy by inductively coupled plasma atomic emission spectrometry with microwave digestion[J].Metallurgical Analysis, 2018, 38(2):65-70. http://d.old.wanfangdata.com.cn/Periodical/yjfx201802011
[28] 徐玉宏, 张静, 王静媛, 等.微波消解-分光光度法测定农用粉煤灰中的硼[J].土壤, 2009, 41(5):833-835. http://d.old.wanfangdata.com.cn/Periodical/tr200905025
Xu Y H, Zhang J, Wang J Y.et al.Determination of boron in fly ash for agricultural use by microwave digestion-spectrophotometry[J].Soils, 2009, 41(5):833-835. http://d.old.wanfangdata.com.cn/Periodical/tr200905025
[29] 赵学沛.微波消解-石墨炉原子吸收光谱法测定痕量银的研究[J].岩石矿物学杂志, 2019, 38(2):254-258. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx201503011
Zhao X P.Determination of trace amounts of silver by microwave digestion graphite furnace atomic absorption spectrometry[J].Acta Petrologica et Mineralogica, 2019, 38(2):254-258. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx201503011
[30] 朱霞萍, 尹继先, 陈卫东, 等.微波消解ICP-OES快速测定难溶钒钛磁铁矿中铁、钛、钒[J].光谱学与光谱分析, 2010, 30(8):2277-2280. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201008060
Zhu X P, Yin J X, Chen W D, et al.Determination of Fe, Ti and V in vanadium and titanium magnetite by ICP-OES and microwave-assisted digestion[J].Spectroscopy and Spectral Analysis, 2010, 30(8):2277-2280. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201008060
[31] 冯永明, 邢应香, 刘洪青, 等.微波消解-电感耦合等离子体质谱法测定生物样品中微量硒的方法研究[J].岩矿测试, 2014, 33(1):34-39. http://www.ykcs.ac.cn/article/id/00a7dfe7-2a17-45e5-ada2-503f476cc501
Feng Y M, Xing Y X, Liu H Q, et al.Determination of trace selenium in biological samples by inductively coupled plasma-mass spectrometry with microwave digestion[J].Rock and Mineral Analysis, 2014, 33(1):34-39. http://www.ykcs.ac.cn/article/id/00a7dfe7-2a17-45e5-ada2-503f476cc501
[32] 申明乐, 黄雪征.煤中镓的火焰原子吸收光谱法测定[J].分析测试学报, 2008, 27(6):657-659. http://d.old.wanfangdata.com.cn/Periodical/fxcsxb200806024
Shen M L, Huang X Z.Flame atomic absorption spectrometric determination of gallium in coal[J]. Journal of Instrumental Analysis, 2008, 27(6):657-659. http://d.old.wanfangdata.com.cn/Periodical/fxcsxb200806024
[33] 张杰芳, 闫玉乐, 夏承莉, 等.微波碱消解-电感耦合等离子体发射光谱法测定煤灰中的六价铬[J].岩矿测试, 2017, 36(1):46-51. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201905190065
Zhang J F, Yan Y L, Xia C L, et al.Determination of Cr(Ⅵ) in coal ash by microwave alkaline digestion and inductively coupled plasma-optical emission spectrometry[J].Rock and Mineral Analysis, 2017, 36(1):46-51. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201905190065
-