Determination of Heavy Elements in Soils by Electrothermal Vaporization-Inductively Coupled Plasma-Mass Spectrometry with Direct Solid Injection
-
摘要: 为解决高基质土壤样品中痕量重金属元素检测前处理操作繁琐、样品易二次污染或损失等问题,本文建立了采用固体直接进样-电热蒸发-车载电感耦合等离子体质谱定量分析环境现场土壤样品中Cr、Cu、Zn、As、Cd、Hg和Pb元素的分析方法。该方法采用高温电热蒸发石墨炉作为原子化器,样品称量后经梯度升温选择性蒸发,再结合双通道伴热传输石英管、两路氩气在线稀释、ICP-MS瞬时扫描、基体匹配外部校正等策略,有效解决了土壤直接进样过程中传输效率低、基体效应大的问题。在优化的仪器条件下,按照实验方法称取20mg土壤标准物质GBW07401、GBW07406、GBW07407、GBW07430和GBW07456建立外部校正曲线,样品中7种元素的标准曲线线性相关系数≥0.999;并按照实验方法测定了杭州市滨江区两处田间土壤样品中Cr、Cu、Zn、As、Cd、Hg和Pb,相对标准偏差(RSD) < 7%,相对误差 < 5%,检出限为1.2~32.0ng/g,回收率为91.0%~113.0%。该方法是一种有实用价值的现场样品分析技术,适合现场中大批量土壤样品的分析监测。Abstract:
BACKGROUNDSolid sampling electrothermal vaporization (ETV)-inductively coupled plasma-mass spectrometry (ICP-MS) allows for a quick analysis of elements at ultra-trace levels and it is possible to minimize the time-consuming sample preparation step which may lead to second contamination or loss of samples. However, the simultaneous introduction of analytical elements, matrix components and solvents into the ICP may cause the spectroscopic and non-spectroscopic interferences. Fortunately, the matrix pyrolysis and analyte vaporization are separated temporally, interferences from the matrix can be reduced from temperature programs. Also, the introduction efficiency of the elements can be enhanced by using bypass gas from the outside of the ETV unit. OBJECTIVESTo establish a rapid, efficient, and green pre-treatment technique and analytical method for accurate determination of heavy metals in large-scale on-site soil samples. METHODSA high temperature electrothermal evaporating graphite furnace was used as the atomizer. After weighing, the sample was selectively evaporated by gradient heating, combined with two-channel heat transfer quartz tube, two-way argon online dilution, ICP-MS transient scanning, and matrix matching external correction, which effectively solved the problems of low transmission efficiency and a large matrix effect during direct soil sampling. RESULTSUnder the optimized conditions, 20mg soil standard materials GBW07401, GBW07406, GBW07407, GBW07430 and GBW07456 were weighed to establish an external calibration curve. The linear correlation coefficient of the calibration curve of 7 elements in the sample was ≥ 0.999. The method was used to determine Cr, Cu, Zn, As, Cd, Hg and Pb in two field soil samples from the Binjiang District of Hangzhou City, which yielded a relative standard deviation of < 7%, relative error of < 2.5%, and a detection limit of 1.2-32.0ng/g, with recoveries of 91.0%-113.0%. CONCLUSIONSThis method is a practical on-site sample analysis technology, suitable for the analysis and monitoring of large-scale soil samples in the field. -
-
表 1 ETV-ICP-MS仪器工作参数
Table 1. Parameters of ETV-ICP-MS
ETV步骤 工作参数 ICP-MS 工作参数 灰化 320℃:2s,保持30s; 功率 1550W 升温步长 320~850℃:15s,保持5s;
850~2000℃:10s,保持5s;
2000~2700℃:10s,保持5s冷却气
流量12L/min 石墨管 热解图层石墨管 辅助气
流量1L/min 样品舟 热解图层石墨舟 稀释气b
流量0.2L/min 载气流量 0.6L/min 采样深度 5mm 稀释气a流量
(伴热管路传输)0.2L/min 采集方式 瞬时扫描 表 2 方法重复性、校准方程和检出限(n=6)
Table 2. Method repeatability, correction equation and detection limit (n=6)
元素 峰面积的RSD(%) 线性回归方程 相关系数 检出限
(ng/g)GBW07401 GBW07406 GBW07407 GBW07430 GBW07456 Cr 6.32 5, 49 3.59 6.44 5.44 y=1.21×104x+4.32×102 0.9993 32.0 Cu 5.85 4.55 5.76 5.84 4.33 y=1.32×104x+3.43×102 0.9992 11.7 Zn 5.73 6.32 5.03 3.85 4.21 y=1.67×104x+4.47×101 0.9991 23.0 As 4.52 4.87 6.78 5.65 4.08 y=4.21×103x+6.22×102 0.9990 19.0 Cd 3.43 5.31 6.80 4.74 4.87 y=3.22×103x+4.33×102 0.9998 2.0 Hg 4.19 3.90 3.76 2.55 5.22 y=1.26×103x+3.29×102 0.9996 1.2 Pb 4.83 3.32 6.51 5.69 4.60 y=2.22×104x+2.21×102 0.9993 11.0 表 3 土壤样品中重金属元素两种测试方法结果对比(n=3)
Table 3. Analytical results of elements in soil sample determined by two methods
元素 GBW07456 实际样品1 实际样品2 认定值
(μg/g)本法测量值
(μg/g)相对误差
(%)认定值
(μg/g)本法测量值
(μg/g)相对误差
(%)认定值
(μg/g)本法测量值
(μg/g)相对误差
(%)Cr 92 94.2 2.39 45.3 46.7 3.09 36.7 38.0 3.54 Cu 54 52.8 -2.22 56.7 55.3 -2.47 87 86.3 -0.80 Zn 127 124 -2.36 143 138 -3.50 221 229 3.62 Cd 0.590 0.577 -2.20 0.117 0.120 2.56 0.086 0.090 4.65 Hg 0.116 0.118 1.72 0.032 0.033 3.13 0.051 0.053 3.92 As 13.3 13.6 2.26 17.7 18.2 2.82 33 34.1 3.33 Pb 41 42.1 2.68 54 56.3 4.26 187 195 4.28 -
[1] Legret M, Pagotto C.Heavy metal deposition and soil pollution along two major rural highways[J]. Environmental Technology, 2006, 27(3):247-254. doi: 10.1080/09593332708618641
[2] 蔡美芳, 李开明, 谢丹平, 等.我国耕地土壤重金属污染现状与防治对策研究[J].环境科学与技术, 2014, 37(2):223-230. http://www.cqvip.com/QK/90776X/2014S2/70747583504849528350485254.html
Cai M F, Li K M, Xie D P, et al.The status and protection strategy of farmland soils polluted by heavy metals[J].Environmental Science & Technology, 2014, 37(2):223-230. http://www.cqvip.com/QK/90776X/2014S2/70747583504849528350485254.html
[3] 骆永明.中国土壤环境污染态势及预防、控制和修复策略[J].环境污染与防治, 2009, 31(12):27-31. doi: 10.3969/j.issn.1001-3865.2009.12.021
Luo Y M.Trends in soil environmental pollution and the prevention-controlling-remediation strategies in China[J].Environmental Pollution and Prevention, 2009, 31(12):27-31. doi: 10.3969/j.issn.1001-3865.2009.12.021
[4] 王玉军, 欧名豪.徐州农田土壤养分和重金属含量与分布研究[J].土壤学报, 2017, 54(6):128-140. http://d.old.wanfangdata.com.cn/Periodical/trxb201706013
Wang Y J, Ou M H.Contents and distribution of soil nutrients and heavy metal elements in farmlands of Xuzhou[J].Acta Pedologica Sinica, 2017, 54(6):128-140. http://d.old.wanfangdata.com.cn/Periodical/trxb201706013
[5] Rahman M U, Kazi T G, Shaikh H, et al.Fractionation of manganese in soil samples collected from the Lakhra Coal Field in Pakistan using two modes of atomic absorption spectrometry[J].Atomic Spectroscopy, 2018, 39(6):258-263. https://www.researchgate.net/publication/6945020_Application_of_leaching_tests_for_toxicity_evaluation_of_coal_fly_ash
[6] 李小莉, 张勤.粉末压片-X射线荧光光谱法测定土壤、水系沉积物和岩石样品中15种稀土元素[J].冶金分析, 2013, 33(7):35-40. doi: 10.3969/j.issn.1000-7571.2013.07.007
Li X L, Zhang Q.Determination of fifteen rare earth elements in soil, stream sediment and rock samples by X-ray fluorescence spectrometry with pressed powder pellet[J].Metallurgical Analysis, 2013, 33(7):35-40. doi: 10.3969/j.issn.1000-7571.2013.07.007
[7] 殷惠民, 杜祯宇, 李玉武, 等.能量色散X射线荧光光谱仪和简化的基体效应校正模型测定土壤、沉积物中重金属元素[J].冶金分析, 2018, 38(4):1-10. http://d.old.wanfangdata.com.cn/Periodical/yjfx201804001
Yin H M, Du Z Y, Li Y W, et al.Determination of heavy metal elements in soil and sediment by energy dispersive X-ray fluorescence spectrometer with simplified matrix effect correction model[J].Metallurgical Analysis, 2018, 38(4):1-10. http://d.old.wanfangdata.com.cn/Periodical/yjfx201804001
[8] 凤海元, 时晓露, 黄勤.微波消解-氢化物发生原子荧光光谱法测定茶园土壤中的铅[J].岩矿测试, 2013, 32(1):53-57. doi: 10.3969/j.issn.0254-5357.2013.01.010 http://www.ykcs.ac.cn/article/id/49e94e07-d6fc-4965-b140-1bed682e79dd
Feng H Y, Shi X L, Huang Q.Determination of lead in tea garden soil by hydride generation-atomic fluorescence spectrometry with microwave digestion[J].Rock and Mineral Analysis, 2013, 32(1):53-57. doi: 10.3969/j.issn.0254-5357.2013.01.010 http://www.ykcs.ac.cn/article/id/49e94e07-d6fc-4965-b140-1bed682e79dd
[9] 李晋荣, 党晋华, 宋姗娟, 等.双道原子荧光光谱法测定土壤中汞[J].中国无机分析化学, 2017, 7(3):1-3. doi: 10.3969/j.issn.2095-1035.2017.03.001
Li J R, Dang J H, Song S J, et al.Determination of mercury in soil by double-channel atomic fluorescence spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2017, 7(3):1-3. doi: 10.3969/j.issn.2095-1035.2017.03.001
[10] 何锦强.原子吸收光谱法测定土壤重金属含量实验[J].能源与环境, 2018, 147(2):87-88. doi: 10.3969/j.issn.1672-9064.2018.02.042
He J Q.Determination of heavy metal contents in soil by atomic absorption spectrometry[J].Energy and Environment, 2018, 147(2):87-88. doi: 10.3969/j.issn.1672-9064.2018.02.042
[11] 邓琴, 吴迪, 秦樊鑫, 等.岩溶铅锌矿区土壤重金属污染特征[J].中国岩溶, 2017, 36(2):248-254. http://d.old.wanfangdata.com.cn/Periodical/zgyr201702013
Deng Q, Wu D, Qin F X, et al.Pollution characteristics of heavy metals in soil of lead-zinc mining in karst areas[J].Carsologica Sinica, 2017, 36(2):248-254. http://d.old.wanfangdata.com.cn/Periodical/zgyr201702013
[12] 吴峥, 熊英, 王龙山.自制氢化物发生系统与电感耦合等离子体发射光谱法联用测定土壤和水系沉积物中的砷锑铋[J].岩矿测试, 2015, 34(5):533-538. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.05.006
Wu Z, Xiong Y, Wang L S.Determination of As, Sb and Bi in soil and stream sediment by a self developed hydride generation system coupled with inductively coupled plasma-optical emission spectrometry[J].Rock and Mineral Analysis, 2015, 34(5):533-538. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.05.006
[13] 何恬叶, 张颖红, 胡子文.微波消解ICP-OES法测定土壤样品中22种元素[J].分析试验室, 2018, 37(1):84-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201801018
He T Y, Zhang Y H, Hu Z W.Determination of 22 elements in soil by ICP-OES with microwave digestion[J].Chinese Journal of Analysis Laboratory, 2018, 37(1):84-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201801018
[14] 乐淑葵, 段永梅.电感耦合等离子体质谱法(ICP-MS)测定土壤中的重金属元素[J].中国无机分析化学, 2015, 5(3):16-19. doi: 10.3969/j.issn.2095-1035.2015.03.005
Le S K, Duan Y M.Determination of heavy metal elements in soil by ICP-MS[J].Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(3):16-19. doi: 10.3969/j.issn.2095-1035.2015.03.005
[15] Ohno T, Muramatsu Y, Shikamori Y, et al.Determination of ultratrace 129I in soil samples by triple quadrupole ICP-MS and its application to Fukushima soil samples[J].Journal of Analytical Atomic Spectrometry, 2018, 28(8):1283-1287. https://pubs.rsc.org/en/content/articlelanding/2013/ja/c3ja50121c/unauth#!
[16] 吴永盛, 徐金龙, 庄姜云, 等.微波消解-电感耦合等离子体质谱(ICP-MS)法同时测定土壤中8种重金属元素[J].中国无机分析化学, 2017, 7(4):16-20. doi: 10.3969/j.issn.2095-1035.2017.04.004
Wu Y S, Xu J L, Zhuang J Y, et al.Simultaneous determination of eight heavy metals in soil by microwave digestion-ICP-MS[J].Chinese Journal of Inorganic Analytical Chemistry, 2017, 7(4):16-20. doi: 10.3969/j.issn.2095-1035.2017.04.004
[17] Wu C H, Jiang S J, Sahayam A C.Using electrothermal vaporization inductively coupled plasma mass spectrometry to determine S, As, Cd, Hg, and Pb in fuels[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2018, 147(10):115-120. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2495c841d7a515e105937f4a3a474822
[18] Scheffler G L, Makonnen Y, Pozebon D, et al.Solid sampling analysis of Mg alloy using electrothermal vaporization inductively coupled plasma optical emission spectrometry[J].Journal of Analytical Atomic Spectrometry, 2017, 32(10):2041-2045. doi: 10.1039/C7JA00203C
[19] Borno F, Richter S, Deiting D, et al.Direct multi-element analysis of plastic materials via solid sampling electrothermal vaporization inductively coupled plasma optical emission spectroscopy[J].Journal of Analytical Atomic Spectrometry, 2015, 30(5):1064-1071. doi: 10.1039/C4JA00442F
[20] Albena D, Peter B, Juergen H.Calibration possibilities and modifier use in ETV-ICP-OES determination of trace and minor elements in plant materials[J].Analytical & Bioanalytical Chemistry, 2009, 394(5):1485-1495. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a28a2d7275af4abc57942295174950d1
[21] Yilmaz H C, Hattendorf B.A comparison of signal sup-pression and particle size distributions for ns- and fs-LA for metallic samples by LA-ETV-ICPMS[J].Journal of Analytical Atomic Spectrometry, 2017, 32(10):1980-1987. doi: 10.1039/C7JA00176B
[22] 毛雪飞.固体进样电热蒸发原子阱捕获光谱技术快速测定农产品中镉和汞的研究[D].北京: 中国农业科学院, 2015.
http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2787807 Mao X F.Study on Determination of Cadmium and Mercury in Agri-foods by Solid Sampling Electrothermal Vaporization Spectrometry Using Atomic Traps[D].Beijing: Chinese Academy of Agricultural Sciences, 2015.
[23] Silva J S, Henn A S, Dressler V L, et al.Feasibility of rare earth element determination in low concentration in crude oil:Direct sampling electrothermal vaporization-inductively coupled plasma mass spectrometry[J].Analytical Chemistry, 2018, 90(11):7064-7071. doi: 10.1021/acs.analchem.8b01460
[24] Hsu W H, Jiang S J, Sahayam A C.Determination of Pd, Rh, Pt, Au in road dust by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling[J].Analytical Chimica Acta, 2013, 794(17):15-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=91f691bba096a858f3f9cf75b3f3373a
[25] Sadiq N, Huang L, Kaveh F, et al.Solid sampling ETV-ICPOES coupled to a nebulization/pre-evaporation system for direct elemental analysis of glutinous rice by external calibration with standard solutions[J].Food Chemestry, 2017, 237(15):1-6. http://cn.bing.com/academic/profile?id=3c90fc772af83dc6149b04631a8c2073&encoded=0&v=paper_preview&mkt=zh-cn
[26] de Gois J S D, Pereira É R, Welz B, et al.Simultaneous deter-mination of bromine and chlorine in coal using electrothermal vaporization inductively coupled plasma mass spectrometry and direct solid sample analysis[J].Analytical Chimica Acta, 2014, 852(10):82-87. http://www.sciencedirect.com/science/article/pii/S000326701401109X
[27] 王樊, 何蔓, 陈贝贝, 等.二氧化钛涂覆中空纤维膜微萃取-电热蒸发-电感耦合等离子体质谱分析环境样品中痕量重金属[J].分析化学, 2015, 43(9):1313-1321. http://d.old.wanfangdata.com.cn/Periodical/fxhx201509011
Wang F, He M, Chen B B, et al.TiO2-coated hollow fiber micro-extraction combined with electrothermal vaporization-inductively coupled plasma mass spectrometry for trace elements analysis in environmental water samples[J].Chinese Journal of Analytical Chemistry, 2015, 43(9):1313-1321. http://d.old.wanfangdata.com.cn/Periodical/fxhx201509011
[28] Henn A S, Flores E M M, Dressler V L, et al.Feasibility of As, Sb, Se and Te determination in coal by solid sampling electrothermal vaporization inductively coupled plasma mass spectrometry[J].Journal of Analytical Atomic Spectrometry, 2018, 33(8):1384-1393. doi: 10.1039/C8JA00129D
[29] 陈江, 姚玉鑫, 费勇, 等.微波消解等离子体发射光谱和石墨炉原子吸收光谱法联合测定土壤中多元素[J].岩矿测试, 2009, 28(1):25-28. doi: 10.3969/j.issn.0254-5357.2009.01.006 http://www.ykcs.ac.cn/article/id/ykcs_20090106
Chen J, Yao Y X, Fei Y, et al.Determination of multi-elements in soil samples by inductively coupled plasma-optical emission spectrometry and graphite furnace atomic absorption spectrometry with microwave digestion[J].Rock and Mineral Analysis, 2009, 28(1):25-28. doi: 10.3969/j.issn.0254-5357.2009.01.006 http://www.ykcs.ac.cn/article/id/ykcs_20090106
[30] Lum T S, Leung K.Strategies to overcome spectral interference in ICP-MS detection[J].Journal of Analytical Atomic Spectrometry, 2016, 31(5):1078-1088. doi: 10.1039/C5JA00497G
[31] Frank V, Martín R, Luc M.Electrothermal vaporisation ICP-mass spectrometry (ETV-ICP-MS) for the determination and speciation of trace elements in solid samples-A review of real-life applications from the author's lab[J].Analytical & Bioanalytical Chemistry, 2002, 374(2):188-195. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=186d70bea7f982136547212a2edff48b
[32] Hanć A, Piechalak A, Tomaszewska B, et al.Laser ablation inductively coupled plasma mass spectrometry in quantitative analysis and imaging of plant's thin sections[J].International Journal of Mass Spectrometry, 2014, 363(1):16-22. http://cn.bing.com/academic/profile?id=3bc071c29d302c2ec83d56a6143f5a78&encoded=0&v=paper_preview&mkt=zh-cn
[33] Kaveh F, Beauchemin D.Improvement of the capabilities of solid sampling ETV-ICP-OES by coupling ETV to a nebulisation/pre-evaporation system[J].Journal of Analytical Atomic Spectrometry, 2014, 29(8):1371-1377. doi: 10.1039/C4JA00041B
[34] Zhang Y F, Hu B.Determination of some refractory elements and Pb by fluorination assisted electrothermal vaporization inductively coupled plasma mass spectrometry with platform and wall vaporization[J].Journal of Analytical Atomic Spectrometry, 2011, 1(6):163-169. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e35f8903054bebdf982462d6353f3317
[35] Zhang S, He M, Yin Z, et al.Elemental fractionation and matrix effect in laser sampling based spectrometry[J].Journal of Analytical Atomic Spectrometry, 2016, 31(2):358-382. doi: 10.1039/C5JA00273G
[36] 李世珍, 朱祥坤, 吴龙华, 等.干法灰化和湿法消解植物样品的铜锌铁同位素测定对比研究[J].地球学报, 2011, 32(6):754-760. doi: 10.3975/cagsb.2011.06.14
Li S Z, Zhu X K, Wu L H, et al.A comparative study of plant sample preparation by dry ashing and wet digestion for isotopic determination of Cu, Zn and Fe[J].Acta Geoscientica Sinica, 2011, 32(6):754-760. doi: 10.3975/cagsb.2011.06.14
[37] 刘珂珂, 霍现宽, 褚艳红, 等.超声辅助-王水提取法在测定土壤中重金属元素的应用[J].冶金分析, 2019, 39(1):48-53. http://d.old.wanfangdata.com.cn/Periodical/yjfx201901008
Liu K K, Huo X K, Chu Y H, et al.Application of ultrasonic-assisted aqua regia extraction in the determination of heavy metal elements in soil[J].Metallurgical Analysis, 2019, 39(1):48-53. http://d.old.wanfangdata.com.cn/Periodical/yjfx201901008
[38] 黄楚楚, 李青, 张国霞, 等.上海市区大气颗粒物(PM2.5)中铅、镉的分析测定和污染特征研究[J].分析化学, 2016, 44(7):1047-1052. http://d.old.wanfangdata.com.cn/Periodical/fxhx201607008
Huang C C, Li Q, Zhang G X, et al.Analysis of pollution characteristics of cadmium and lead in atmospheric particulates(PM2.5) of Shanghai downtown[J].Analytical Chemistry, 2016, 44(7):1047-1052. http://d.old.wanfangdata.com.cn/Periodical/fxhx201607008
[39] Diegor W, Longerich H, Abrajano T, et al.Applicability of a high pressure digestion technique to the analysis of sediment and soil samples by inductively coupled plasma-mass spectrometry[J].Analytical Chimica Acta, 2001, 431(2):195-207. doi: 10.1016/S0003-2670(00)01339-8
[40] 周雪明, 郑乃嘉, 李英红, 等.2011~2012北京大气PM2.5中重金属的污染特征与来源分析[J].环境科学, 2017, 38(10):4054-4060. http://d.old.wanfangdata.com.cn/Periodical/hjkx201710008
Zhou X M, Zheng N J, Li Y H, et al.Chemical characteristics and sources of heavy metals in fine particles in Beijing in 2011-2012[J].Environmental Science, 2017, 38(10):4054-4060. http://d.old.wanfangdata.com.cn/Periodical/hjkx201710008
-