Determination of Major and Minor Elements in Rocks, Soils and Sediments and Complex Samples by Wavelength and Energy Dispersive X-ray Fluorescence Spectrometer with Fusion Sampling
-
摘要: 目前硅酸盐类样品中主量元素一般采用熔融制样X射线荧光光谱法(XRF)测定,不仅单元素测定结果不能超差,而且百分数加和也要满足要求。但对于矿化样品,由于微量元素较高,往往造成不能满足加和质量要求。充分利用波长色散(WD)和能量色散(ED)复合式X射线荧光光谱仪同时波谱、能谱测定的优势,可使分析人员快速掌握样品组成信息,对评估矿化样品数据质量具有重要意义。本文利用波长-能量色散X射线荧光光谱仪,可在测定主量元素的同时加入更多的微量元素进行测定,而分析时间不延长。主量元素采用波长色散定量,次量元素主要采用能量色散测定,在保证主量元素准确度的情况下,合理设置测量条件,延长能谱测量时间,实现在波长色散12min左右测定主量元素的同时,能够提供14个微量元素如Rb、Sr、Y、Zr、Ba、Cu、Zn的测定结果和10个线性范围较窄或含量较低元素如Co、Ge、Pr、Ta的参考结果,24个微量元素最大检出限为16.76μg/g。通过准确度考核,主量元素测定结果与认定值基本一致,高含量微量元素测定结果亦满足定量分析要求。该方法可使分析人员快速掌握样品组成信息,为提供更加准确、可靠的数据奠定基础,有效地解决矿化疑难样品主量元素测定问题。
-
关键词:
- 波长色散-能量色散X射线荧光光谱仪 /
- 熔融制样 /
- 矿化样品 /
- 硅酸盐类矿物 /
- 主次微量元素
Abstract:BACKGROUNDAt present, the major elements in silicate samples are generally determined by X-ray fluorescence spectrometry with fusion sample preparation. Not only can the single element determination results not exceed the limit, but also the percentage sum must meet the requirements of sum quality (99.3%-100.7%). However, for the analysis of mineralized samples, due to the high content of trace elements, it is often not possible to meet the requirements of sum quality. The wavelength and energy dispersive X-ray fluorescence spectrometer are fully utilized. The advantages of the determination can make the analysts to get the information of sample composition as soon as possible, which is of great significance to evaluate the data quality of mineralized samples. OBJECTIVESTo develop a method for determination of major elements in mineralized samples. METHODSThe wavelength-energy dispersive X-ray fluorescence spectrometer was used to determine the major elements while adding more minor elements to the determination without prolonging the analysis time. The main elements were quantified by wavelength dispersion, while the minor elements were mainly determined by energy dispersion. Under the condition of ensuring the accuracy of the major elements, the measurement conditions were reasonably set and the energy spectrum measurement time was extended. RESULTSThe method achieved the measurement of the major elements within 12 minutes using wavelength dispersion, and also provided results of 14 minor elements such as Rb, Sr, Y, Zr, Ba, Cu, Zn and the semi-quantitative results of 10 elements with narrow linear range or low content such as Co, Ge, Pr and Ta. The maximum limit of detection of 24 minor elements was 16.76μg/g. CONCLUSIONSThrough the accuracy assessment, the determination results of major elements are consistent with the certified values, and the determination of minor elements with high content also meets the requirements of quantitative analysis. This method makes the analysts to get the information of sample composition quickly, provides a basis for more accurate and reliable data, and effectively solves the determination of major elements in complex mineralized samples. -
-
表 1 波长色散-能量色散X射线荧光光谱仪测量条件
Table 1. Measurement conditions of elements by WD-EDXRF
波长色散测量条件 待测元素 谱线 电压
(kV)电流
(mA)分析晶体 准直器
(μm)探测器 PHD低限 PHD高限 2θ(°) 峰值 背景1 背景2 Na Kα1, 2 30 120 PX1 700 Flow 25 77 27.72 1.69 -1.76 Mg Kα1, 2 30 120 PX1 700 Flow 21 81 22.93 -1.51 1.88 Al Kα1, 2 30 120 PE 300 Flow 21 77 144.86 -1.11 - Si Kα1, 2 30 120 PE 300 Flow 23 78 109.10 2.09 -2.16 P Kα1, 2 30 120 Ge 300 Flow 25 78 140.98 -1.42 - S Kα1, 2 30 120 Ge 300 Flow 30 75 110.70 1.67 -1.76 K Kα1, 2 30 120 LiF200 300 Flow 28 70 136.71 -2.14 2.52 Ca Kα1, 2 30 120 LiF200 300 Flow 29 70 113.12 -2.96 2.37 F Kα1, 2 30 120 PX1 700 Flow 22 78 43.26 2.38 - Cl Kα1, 2 30 120 Ge 300 Flow 34 76 92.74 -1.20 1.34 V Kα1, 2 30 120 LiF200 300 Flow 32 69 77.24 -0.91 - Ti Kα1, 2 55 66 LiF200 300 Flow 30 70 86.17 -0.99 0.94 Mn Kα1, 2 55 66 LiF200 300 Flow 15 68 62.98 0.94 - Fe Kα1, 2 55 66 LiF200 300 Scint 8 80 57.50 -1.65 1.60 Cr Kα1, 2 55 66 LiF200 300 Flow 14 68 69.37 -0.91 0.86 La Lα1, 2 55 66 LiF200 300 Flow 32 70 82.93 -1.47 - Ce Lα1, 2 55 66 LiF200 300 Flow 27 69 79.06 -0.83 1.53 Sr Kα1, 2 55 66 LiF200 300 Scint 22 78 25.11 -0.83 0.88 Ba Kα1, 2 55 66 LiF200 300 Scint 28 73 10.97 -2.47 0.63 Cs Kα1, 2 55 66 LiF200 300 Scint 28 73 11.41 1.10 - Rh Kα1, 2 55 66 LiF200 300 Scint 12 79 18.39 - - Nd Lβ1 55 66 LiF200 300 Flow 15 68 65.15 0.69 - As Kα1, 2 55 66 LiF200 300 Scint 18 78 33.97 0.89 -0.58 Co Kα1, 2 55 66 LiF200 300 Scint 18 78 52.77 1.41 -2.46 Gd Lα1, 2 55 66 LiF200 300 Scint 21 78 61.15 0.90 - Dy Lα1, 2 55 66 LiF200 300 Scint 17 78 56.59 -0.48 - Er Lα1, 2 55 66 LiF200 300 Scint 18 77 52.61 0.68 - 能量色散测量条件 待测元素 谱线 能量 解谱类型 电压
(kV)电流
(mA)滤光片 衰减器 探测器 背景 感兴趣区
低限(keV)感兴趣区
高限(keV)Rb Kα1, 2 13.37 ED-D 55 66 None D=0.6 SDD No - - Sr Kα1, 2 14.14 ED-D 55 66 None D=0.6 SDD No - - Y Kα1, 2 14.93 ED-D 55 66 None D=0.6 SDD No - - La Kα1, 2 33.30 ED-D 55 66 None D=0.6 SDD No - - Ce Kα1, 2 34.56 ED-D 55 66 None D=0.6 SDD No - - Pr Lα1, 2 5.03 ED-D 55 66 None D=0.6 SDD No - - Nd Lα1, 2 5.23 ED-D 55 66 None D=0.6 SDD No - - Th Lα1, 2 12.95 ED-D 55 66 None D=0.6 SDD No - - U Lα1, 2 13.59 ED-D 55 66 None D=0.6 SDD No - - Pb Lβ1 12.61 ED-D 55 66 None D=0.6 SDD No - - Ni Kα1, 2 7.47 ED-R 55 66 None D=0.6 SDD Yes 7.34 7.77 Cu Kα1, 2 8.04 ED-R 55 66 None D=0.6 SDD Yes 7.93 8.37 Zn Kα1, 2 8.63 ED-R 55 66 None D=0.6 SDD Yes 8.54 8.99 Ga Kα1, 2 9.24 ED-R 55 66 None D=0.6 SDD Yes 9.16 9.64 Ge Kα1, 2 9.87 ED-R 55 66 None D=0.6 SDD Yes 9.82 10.30 As Kα1, 2 10.53 ED-R 55 66 None D=0.6 SDD Yes 10.49 11.00 Se Kα1, 2 11.21 ED-R 55 66 None D=0.6 SDD Yes 11.19 18.94 Br Kα1, 2 11.91 ED-R 55 66 None D=0.6 SDD Yes 11.92 12.44 Rb Kα1, 2 13.37 ED-R 55 66 None D=0.6 SDD Yes 13.43 13.98 Y Kα1, 2 14.93 ED-R 55 66 None D=0.6 SDD Yes 15.04 15.62 Zr Kα1, 2 15.75 ED-R 55 66 None D=0.6 SDD Yes 15.88 16.48 Nb Kα1, 2 16.58 ED-R 55 66 None D=0.6 SDD Yes 16.75 17.36 Mo Kα1, 2 17.44 ED-R 55 66 None D=0.6 SDD Yes 17.64 18.27 Ag Kα1, 2 22.11 ED-R 55 66 None D=0.6 SDD Yes 21.53 23.20 Cd Kα1, 2 23.11 ED-R 55 66 None D=0.6 SDD Yes 23.21 24.21 Sn Kα1, 2 25.19 ED-R 55 66 None D=0.6 SDD Yes 25.66 26.40 Sb Kα1, 2 26.27 ED-R 55 66 None D=0.6 SDD Yes 26.78 27.53 Ta Lα1, 2 8.14 ED-R 55 66 None D=0.6 SDD Yes 8.03 8.47 W Lα1, 2 8.39 ED-R 55 66 None D=0.6 SDD Yes 8.29 8.95 Pb Lα1, 2 10.54 ED-R 55 66 None D=0.6 SDD Yes 10.50 11.01 Bi Lα1, 2 10.83 ED-R 55 66 None D=0.6 SDD Yes 10.80 11.30 La Kα1, 2 33.3 ED-R 55 66 None D=0.6 SDD Yes 33.86 35.06 Ce Kα1, 2 34.56 ED-R 55 66 None D=0.6 SDD Yes 35.18 36.23 Pr Kα1, 2 35.86 ED-R 55 66 None D=0.6 SDD Yes 36.71 37.59 Nd Kα1, 2 37.17 ED-R 55 66 None D=0.6 SDD Yes 37.94 38.96 Pm Kα1, 2 38.48 ED-R 55 66 None D=0.6 SDD Yes 38.94 40.20 Sm Kα1, 2 39.92 ED-R 55 66 None D=0.6 SDD Yes 40.32 41.70 Eu Lα1, 2 5.84 ED-R 55 66 None D=0.6 SDD Yes 5.69 6.05 Gd Lα1, 2 6.05 ED-R 55 66 None D=0.6 SDD Yes 5.90 6.28 Tb Lα1, 2 6.27 ED-R 55 66 None D=0.6 SDD Yes 6.12 10.58 Dy Lα1, 2 6.49 ED-R 55 66 None D=0.6 SDD Yes 6.35 6.73 Ho Lα1, 2 6.72 ED-R 55 66 None D=0.6 SDD Yes 6.58 6.97 Er Lα1, 2 6.94 ED-R 55 66 None D=0.6 SDD Yes 6.81 7.21 Yb Lα1, 2 7.41 ED-R 55 66 None D=0.6 SDD Yes 7.29 7.70 Th Lα1, 2 12.95 ED-R 55 66 None D=0.6 SDD Yes 12.75 13.52 U Lα1, 2 13.59 ED-R 55 66 None D=0.6 SDD Yes 13.64 14.19 La Lα1, 2 4.65 ED-R 55 66 None D=0.6 SDD Yes 4.43 4.79 Ce Lα1, 2 4.84 ED-R 55 66 None D=0.6 SDD Yes 4.63 4.99 Pr Lα1, 2 5.03 ED-R 55 66 None D=0.6 SDD Yes 4.83 5.19 Nd Lα1, 2 5.23 ED-R 55 66 None D=0.6 SDD Yes 5.03 5.40 Pm Lα1, 2 5.43 ED-R 55 66 None D=0.6 SDD Yes 5.24 5.62 Sm Lα1, 2 5.63 ED-R 55 66 None D=0.6 SDD Yes 5.45 5.83 Ba Lα1, 2 4.46 ED-R 55 66 None D=0.6 SDD Yes 4.25 4.59 注:背景中“-”为单背景,Rh作为基体校正使用,无需背景选择。 表 2 标准曲线浓度范围
Table 2. Concentration range of standard curve
待测元素 浓度范围 Na2O* 0.10~7.16 MgO* 0.08~41.03 Al2O3* 0.20~29.26 SiO2* 0.62~90.36 P2O5* 0.01~0.946 SO3* 0.02~2.92 K2O* 0.05~7.48 CaO* 0.10~53.83 TiO2* 0.025~7.69 MnO 0.01~0.322 Fe2O3* 0.155~24.75 V2O5 50~1371 Cr2O3 50~15600 NiO 72~3200 ZnO 40~1090 CuO 61~1540 Rb2O 41~514 SrO 62~21663 Y2O3 28~85 ZrO2 130~3800 BaO 240~14872 Co 4.4~102 W 15.5~126 La 15~164 Ce 6.3~402 Pr 0.13~57 Cl 590~5700 Ga 10.8~39 Ge 0.63~3.2 Se 0.40~1.6 Nb 12.3~95 Cd 1.12~4.8 Sb 6.3~150 Ta 1.0~15.3 Bi 5.0~58 As 12.7~412 Mo 2.40~92 Sn 4.6~310 Cs 9.1~38 Pb 98~636 Th 1.3~79.3 U 0.086~18.80 注:标柱“*”的元素含量单位为%,其他元素含量单位为μg/g。 表 3 有证标准物质分析结果比较
Table 3. Comparison of analytical results of CRMs by using WD-EDXRF
待测元素 GBW07103 GBW07104 GBW07401 GBW07402 GBW07403 GBW07302 测定值
(%)认定值
(%)测定值
(%)认定值
(%)测定值
(%)认定值
(%)测定值
(%)认定值
(%)测定值
(%)认定值
(%)测定值
(%)认定值
(%)Na2O 3.10 3.13 3.89 3.86 1.65 1.66 1.60 1.62 2.70 2.71 3.01 3.03 MgO 0.41 0.42 1.65 1.72 1.77 1.81 1.03 1.04 0.58 0.58 0.20 0.21 Al2O3 13.49 13.40 16.20 16.17 14.22 14.18 10.23 10.31 12.23 12.24 15.71 15.72 SiO2 72.87 72.83 60.86 60.62 62.90 62.60 73.23 73.35 74.70 74.72 69.89 69.91 P2O5 0.10 0.09 0.24 0.24 0.17 0.17 0.10 0.10 0.07 0.07 0.04 0.05 K2O 5.01 5.01 1.84 1.89 2.61 2.59 2.53 2.54 3.04 3.04 5.14 5.20 CaO 1.54 1.55 5.09 5.20 1.72 1.72 2.32 2.36 1.25 1.27 0.26 0.25 TiO2 0.30 0.29 0.50 0.52 0.79 0.81 0.45 0.45 0.36 0.37 0.25 0.23 MnO 0.06 0.06 0.08 0.08 0.23 0.23 0.07 0.07 0.04 0.04 0.03 0.03 Fe2O3 2.18 2.14 4.87 4.90 5.22 5.19 3.51 3.52 2.01 2.00 1.91 1.90 加和 99.05 98.92 95.22 95.19 91.28 90.95 95.05 95.36 96.98 97.05 96.44 96.53 待测元素 GBW07103 GBW07104 GBW07401 GBW07402 GBW07403 GBW07302 测定值
(μg/g)认定值
(μg/g)测定值
(μg/g)认定值
(μg/g)测定值
(μg/g)认定值
(μg/g)测定值
(μg/g)认定值
(μg/g)测定值
(μg/g)认定值
(μg/g)测定值
(μg/g)认定值
(μg/g)As 4.46 2.10 3.26 2.10 34.28 34.00 13.75 13.70 4.21 4.40 9.97 6.20 Ba 306.0 343.0 910.1 1020.0 688.5 590.0 926.3 930.0 1265.1 1210.0 395.9 185.0 Ce 105.1 108.0 42.8 40.0 65.8 70.0 404.3 402.0 59.4 39.0 183.4 192.0 Rb 482.0 466.0 40.4 38.0 128.0 140.0 85.1 88.0 82.0 85.0 473.3 470.0 Sr 88.9 106.0 844.5 790.0 152.0 155.0 179.6 187.0 391.2 380.0 0.5 28.0 Y 54.1 62.0 13.5 9.3 27.3 25.0 19.8 22.0 18.7 15.0 61.0 67.0 Zn 25.5 28.0 64.4 71.0 690.8 680.0 39.4 42.0 30.2 31.0 52.3 44.0 Zr 155.0 167.0 97.4 99.0 259.2 245.0 214.5 219.0 259.7 246.0 464.0 460.0 Cr -1.7 3.6 28.4 32.0 61.9 62.0 36.0 47.0 31.6 32.0 1.7 12.0 Cu 3.9 3.0 49.6 55.0 4.7 21.0 17.2 16.0 11.1 11.0 8.1 5.0 Ga 15.3 19.0 17.6 18.1 18.9 19.3 16.1 12.0 15.0 13.7 20.1 27.4 La 56.9 54.0 24.1 22.0 35.6 34.0 166.0 164.0 22.0 21.0 92.4 90.0 Nb 41.9 40.0 4.6 6.8 16.4 16.6 23.8 27.0 8.7 9.3 104.9 95.0 Pb 50.4 31.0 14.1 11.3 96.4 98.0 28.6 20.0 45.0 26.0 52.0 32.0 Ge* 1.3 2.0 1.2 0.9 1.4 1.3 1.2 1.2 1.2 1.2 1.8 1.7 Nd* 45.9 47.0 17.7 19.0 27.1 28.0 205.9 210.0 17.3 18.4 67.2 62.0 Ni* 12.8 2.0 9.6 17.0 -2.6 20.0 21.9 19.0 27.9 12.0 21.2 6.0 Co* 4.1 3.4 12.5 13.2 15.7 14.2 8.2 8.7 6.5 5.5 1.5 2.6 Pr* 12.5 12.7 5.0 4.9 7.6 7.5 57.0 57.0 4.8 4.8 18.0 18.6 S* 317.1 380.0 149.1 192.0 295.6 310.0 202.5 210.0 90.9 123.0 74.4 89.0 Ta* 8.0 7.2 2.6 0.4 1.8 1.4 -2.1 0.8 1.4 0.8 14.8 15.3 Th* 50.6 54.0 12.1 2.6 15.4 11.6 9.5 16.6 11.8 6.0 50.2 70.0 U* 14.1 18.8 1.5 0.9 3.9 3.3 2.5 1.4 2.5 1.3 14.0 17.0 V* 80.0 24.0 94.2 94.0 104.8 86.0 60.1 62.0 83.1 36.0 69.0 17.0 注:标注“*”的元素为可提供参考数据。 表 4 方法检出限
Table 4. Detection limit of the method
待测元素 方法检出限
(μg/g)Na2O 45.12 MgO 22.27 Al2O3 43.38 SiO2 48.14 P2O5 8.18 K2O 6.41 CaO 8.53 TiO2 6.11 MnO 3.14 Fe2O3 3.01 As 0.88 Ba 13.69 Ce 4.21 Co 1.17 Cr 2.82 Cu 3.84 Ga 2.33 Ge 0.22 La 2.26 Mn 2.35 Nb 16.76 Ni 6.6 Pb 6.54 Rb 4.77 Sm 1.2 Sr 0.94 Y 3.39 Yb 0.29 Zn 13.88 Zr 7.01 Gd 0.13 Tb 0.01 Ho 0.02 Pr 0.74 Dy 0.01 Er 0.01 Ag 0.03 Bi 0.47 Cd 0.02 Cl 28.69 S 6.75 Sb 10.98 Sn 2.72 Ta 0.2 Th 1.12 U 0.21 V 0.45 Nd 1.85 W 0.78 Se 0.01 Cs 0.33 F 297.8 Mo 0.03 Eu 0.04 表 5 疑难样品分析结果
Table 5. Analytical results of elements in difficult samples
待测元素 GBW07131(岩石) GBW07347(沉积物) 测定值
(%)认定值
(%)测定值
(%)认定值
(%)Na2O 0.048 0.040 2.504 2.460 MgO 19.947 20.140 1.586 1.600 Al2O3 0.321 0.290 15.953 15.950 SiO2 1.135 1.150 51.258 51.240 P2O5 0.035 0.035 0.169 0.175 K2O 0.160 0.160 2.683 2.600 CaO 31.182 30.930 3.069 3.000 TiO2 0.0125 0.013 0.746 0.749 MnO 0.017 0.012 0.090 0.094 TFe2O3 0.212 0.190 13.197 13.150 烧失量(LOI) 45.73 45.73 7.550 7.550 加和 98.80 98.69 98.81 98.57 待测元素 GBW07131(岩石) GBW07347(沉积物) 测定值
(%)认定值
(%)测定值
(%)认定值
(%)Ba 0.515 0.522 0.057 0.058 Cd < 0.001 0.000 < 0.001 0.000 Ce < 0.001 0.000 0.003 0.003 Cl 0.040 0.034 0.005 0.006 Co 0.002 0.000 0.012 0.015 Cr 0.001 0.000 0.008 0.008 Cu 0.001 0.000 0.440 0.500 Ga < 0.001 0.000 0.003 0.002 Gd < 0.001 0.000 < 0.001 0.000 La < 0.001 0.000 0.001 0.002 Mo < 0.001 0.000 < 0.001 0.000 Nb < 0.001 0.000 0.001 0.001 Ni < 0.001 0.000 0.242 0.239 Pb < 0.001 0.000 0.001 0.004 Pr < 0.001 0.000 < 0.001 0.000 Rb < 0.001 0.000 0.002 0.005 SO3 0.274 0.330 0.481 0.568 Sb < 0.001 0.000 < 0.001 0.000 Se < 0.001 0.000 < 0.001 0.000 Sn < 0.001 0.000 < 0.001 0.000 Sr 0.020 0.016 0.040 0.040 Ta < 0.001 0.000 < 0.001 0.000 Th 0.000 0.000 0.001 0.000 U < 0.001 0.000 < 0.001 0.001 V < 0.001 0.001 0.013 0.013 W < 0.001 0.000 < 0.001 0.000 Y < 0.001 0.000 0.001 0.002 Zn 0.003 0.000 0.023 0.010 Zr 0.006 0.000 0.019 0.013 加和 99.66 99.60 100.16 100.06 -
[1] 刘菊琴, 李小莉.波长与能量色散复合型X射线荧光光谱仪测定海洋沉积物, 水系沉积物, 岩石和土壤样品中15种稀土元素[J].冶金分析, 2018, 38(5):7-12.
Liu J Q, Li X L.Determination of fifteen rare earth elements in ocean sediment, stream sediment, rock and soil samples by wavelength dispersion energy dispersion combined type X-ray fluorescence spectrometer[J].Metallurgical Analysis, 2018, 38(5):7-12.
[2] 张颖, 朱爱美, 张迎秋, 等.波长与能量色散复合式X射线荧光光谱技术测定海洋沉积物元素[J].分析化学, 2019, 47(7):1090-1106.
Zhang Y, Zhu A M, Zhang Y Q, et al.Fast analysis of major and minor elements in marine sediments by wavelength and energy dispersive X-ray fluorescence spectrometer[J].Chinese Journal of Analytical Chemistry, 2019, 47(7):1090-1097.
[3] 沈亚婷, 李迎春, 孙梦荷, 等.波长与能量色散复合式X射线荧光光谱仪特性研究及矿区土壤分析[J].光谱学与光谱分析, 2017, 37(7):2216-2224.
Shen Y T, Li Y C, Sun M H, et al.Studies on characteristics on a combined wavelength and energy dispersion X-ray fluorescence spectrometer and determinations of major, minor and trace elements in soils around a mining area[J].Spectroscopy and Spectral Analysis, 2017, 37(7):2216-2224.
[4] Tugulan L C, Gradinaru J, Duliu O.An EDXRF and WDXRF inter comparison case study:Major elements content of Dobrogea loess[J].Romanian Journal of Physics, 2016, 61:1626-1634.
[5] 吉昂.X射线荧光光谱三十年[J].岩矿测试, 2012, 31(3):383-398.
Ji A.Development of X-ray fluorescence spectrometry in the 30 years[J].Rock and Mineral Analysis, 2012, 31(3):383-398.
[6] 章连香, 符斌.X射线荧光光谱分析技术的发展[J].中国无机分析化学, 2013, 3(3):1-7.
Zhang L X, Fu B.Advances in X-ray fluorescence spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2013, 3(3):1-7.
[7] 苏晓鸣, 詹秀春, 李思源.偏振激发能量色散X荧光法在地球化学分析中应用及其与波长色散X荧光法的比较[J].上海地质, 2004(3):31-37.
Su X M, Zhan X C, Li S Y.Application of polarized EDXRF in geochemical sample analysis and comparison with WDXRF[J].Shanghai Geology, 2004(3):31-37.
[8] 宋春苗, 周超, 胡学强.用于波长色散X射线荧光光谱仪的闪烁计数器及信号处理系统的研制[J].冶金分析, 2020, 40(5):68-73.
Song C M, Zhou C, Hu X Q.Development of a scintillator counter and signal processing system for wavelength dispersive X-ray fluorescence spectrometer[J].Metallurgical Analysis, 2020, 40(5):68-73.
[9] 刘建坤, 郑荣华, 骆宏玉, 等.波长色散X射线荧光光谱仪的内部校准[J].光谱实验室, 2013, 30(6):3142-3144.
Liu J K, Zheng R H, Luo H Y, et al.In-house calibration of wavelength dispersive X-ray fluorescence spectrometer[J].Spectroscopy Laboratory, 2013, 30(6):3142-3144.
[10] 周超, 宋春苗, 胡学强.一种用于波长色散X射线荧光光谱仪的流气式正比计数器的研制[J].冶金分析, 2019, 30(10):14-17.
Zhou C, Song C M, Hu X Q.Development of a flow-gas proportional counter for wavelength dispersive X-ray fluorescence spectrometer[J].Metallurgical Analysis, 2019, 39(10):14-17.
[11] 林庆文, 杨俊, 刘玉纯.波长色散X射线荧光光谱仪的检定[J].化学分析计量, 2018, 27(4):118-121.
Lin Q W, Yang J, Liu Y C.Verification of wavelength dispersive X-ray fluorescence spectrometer[J].Chemical Analysis and Meterage, 2018, 27(4):118-121.
[12] 程锋, 张庆贤, 葛良全, 等.能量色散X射线荧光分析中改进型基本参数法研究[J].光谱学与光谱分析, 2015, 35(7):2034-2037.
Cheng F, Zhang Q X, Ge L Q, et al.The study of advanced fundamental parameter method in EDXRFA[J].Spectroscopy and Spectral Analysis, 2015, 35(7):2034-2037.
[13] 詹秀春, 樊兴涛, 李迎春, 等.直接粉末制样-小型偏振激发能量色散X射线荧光光谱法分析地质样品中多元素[J].岩矿测试, 2009, 28(6):501-506.
Zhan X C, Fan X T, Li Y C, et al.Multi-element determination in geological materials by bench-top polarized energy dispersive X-ray fluorescence spectrometry coupled with directly pressed powder sample preparation technique[J].Rock and Mineral Analysis, 2009, 28(6):501-506.
[14] 王川.熔融制样-X射线荧光光谱法测定深海沉积物中20种主次组分[J].冶金分析, 2020, 40(6):49-55.
Wang C.Determination of twenty major and minor components in abyssal sediments by X-ray fluorescence spectrometry with fusion sample preparation[J].Metallurgical Analysis, 2020, 40(6):49-55.
[15] 牟英华, 胡维铸, 张鲁宁, 等.熔融制样-X射线荧光光谱法测定渣铁中主次成分[J].冶金分析, 2020, 40(5):15-19.
Mou Y H, Hu W Z, Zhang L N, et al.Determination of major and minor components in slab iron by X-ray fluorescence spectrometry with fusion sample preparation[J].Metallurgical Analysis, 2020, 40(5):15-19.
[16] 夏传波, 成学海, 张会堂, 等.熔融制样-X射线荧光光谱法测定电气石中12种主次量元素[J].岩矿测试, 2018, 37(1):36-42.
Xia C B, Cheng X H, Zhang H T, et al.Determination of twelve major and minor elements in tourmaline by X-ray fluorescence spectrometry with fusion sample preparation[J].Rock and Mineral Analysis, 2018, 37(1):36-42.
[17] 马景治.熔融制样-X射线荧光测定锰矿中10种主次成分的条件优化[J].分析测试技术与仪器, 2017, 23(4):261-266.
Ma J Z.Condition optimization of X-ray fluorescence spectrometry with fusion sample preparation for determination of ten major and minor components in manganese ores[J].Analysis and Testing Technology and Instruments, 2017, 23(4):261-266.
[18] 黄康, 李仲夏, 朱文静, 等.熔融制样-X射线荧光光谱法测定金红石中主次组分[J].冶金分析, 2020, 40(3):68-72.
Huang K, Li Z X, Zhu W J, et al.Determination of major and minor components in ruble by X-ray fluorescence spectrometry with fusion sample preparation[J].Metallurgical Analysis, 2020, 40(3):68-72.
[19] 刘恒杰, 贾海峰, 谭清月.熔融制样-X射线荧光光谱法测定钨相锡矿中的主次成分[J].中国无机分析化学, 2020, 10(1):70-75.
Liu H J, Jia H F, Tan Q Y.Determination of primary and secondary components in tunggium-molybdenum tin mine by X-ray fluorescence with melt sample[J].Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(1):70-75.
[20] 周伟, 曾梦, 王健, 等.熔融制样-X射线荧光光谱法测定稀土矿石中的主量元素和稀土元素[J].岩矿测试, 2018, 37(3):298-305.
Zhou W, Zeng M, Wang J, et al.Determination of major and rare earth elements in rare earth ores by X-ray fluorescence spectrometry with fusion sample preparation[J].Rock and Mineral Analysis, 2018, 37(3):298-305.
[21] 陈慧娟, 李曼, 韩蔚, 等.XRF检测镁质耐火材料的方法与应用[J].中国建材科技, 2019(2):1-5.
Chen H J, Li M, Han W, et al.Method and application of XRF detection of magnesium refractories[J].China Building Materials Science & Technology, 2019(2):1-5.
[22] 陈美瑜, 兰琳.熔融制样X射线荧光光谱法测定陶瓷中的硅含量[J].功能材料, 2018, 49(12):12217-12220.
Chen M Y, Lan L.Determination of silicon in ceramic by X-ray fluorescence spectrometry with fusion sample preparation[J].Journal of Functional Materials, 2018, 49(12):12217-12220.
[23] 姚强, 朱宇宏, 王琼, 等.X射线荧光光谱法测定钒铁合金中钒铝硅锰[J].冶金分析, 2016, 36(9):62-65.
Yao Q, Zhu Y H, Wang Q, et al.Determination of vanadium, aluminum, silicon and manganese in ferrovanadium alloy by X-ray fluorescence spectrometry[J].Metallurgical Analysis, 2016, 36(9):62-65.
[24] 赵海峰.熔融制样-X射线荧光光谱法测定连铸保护渣中7种组分[J].冶金分析, 2017, 37(4):62-66.
Zhao H F.Determination of seven components in conti-nuous casting mold powder by X-ray fluorescence spectrometry with fusion sample preparation[J].Metallurgical Analysis, 2017, 37(4):62-66.
[25] 周雯闻.X射线荧光光谱法测定炼钢辅料化学成分研究[J].现代盐化工, 2017, 44(1):20-21.
Zhou W W.Study on the determination of chemical components in steel accessories by X-ray fluorescence spectrometry[J].Modern Salt and Chemical Industry, 2017, 44(1):20-21.
[26] 杨洪春.X射线荧光光谱法测定高铬型钒渣中主次组分[J].理化检验(化学分册), 2018, 54(6):640-643.
Yang H C.Determination of major and minor components in high chromium type vanadium slag by X-ray fluorescence spectrometry[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2018, 54(6):640-643.
[27] 刘艳辉, 常利民, 祁巍熔, 等.熔融制样X射线荧光光谱法测定硅铁合金主次元素含量[J].冶金设备, 2019(1):132-134.
Liu Y H, Chang L M, Qi W R, et al.Determination of primary and secondary elements in ferrosilicon by X-ray fluorescence by fusion method[J].Metallurgical Equipment, 2019(1):132-134.
[28] 贺忠翔.能量色散X射线荧光光谱法测定污染企业周边土壤重金属[J].环境与发展, 2019(2):163-164.
He Z X.Determination of heavy metal elements in soil peripheral of contaminated enterprises by energy dispersion X-ray fluorescence spectrometry[J].Environment and Development, 2019(2):163-164.
[29] 汪虹敏, 张颖, 徐磊, 等.能量色散X射线荧光光谱法测定海洋碎屑沉积物中28种元素[J].海洋科学进展, 2020, 38(1):71-80.
Wang H M, Zhang Y, Xu L, et al.Determination of twenty-eight elements in marine clastic sediment samples by energy dispersive X-ray fluorescence spectrometry[J].Advances in Marine Science, 2020, 38(1):71-80.
[30] 霍红英, 邹敏, 张天益, 等.粉末压片能量色散X射线荧光光谱法测定钛精矿中6种组分[J].冶金分析, 2019, 39(9):26-31.
Huo H Y, Zou M, Zhang T Y, et al.Determination of six components in titanium concentrate by energy dispersive X-ray fluorescence spectrometry with pressed powder pellet[J]. Metallurgical Analysis, 2019, 39(9):26-31.
[31] 李迎春, 周伟, 王健, 等.X射线荧光光谱法测定高锶高钡的硅酸盐样品中主量元素[J].岩矿测试, 2013, 32(2):249-253.
Li Y C, Zhou W, Wang J, et al.Determination of major elements in silicate samples with high content strontium and barium by X-ray fluorescence spectrometry[J].Rock and Mineral Analysis, 2013, 32(2):249-253.
-