Preparation of Ion-adsorption Type REE Monitoring Samples
-
摘要: 离子吸附型稀土矿是中国极其重要、世界罕见的矿床类型,是中国的优势矿产资源。目前现有的稀土标样全部为稀土矿石成分分析标样,稀土元素以氧化物形式稳定存在,无法淋滤浸取,不能对离子吸附型稀土淋滤过程进行监控。为进一步满足离子吸附型稀土资源勘查和评价需要,本文按照导则《标准物质定值的通用原则及统计学原理》(JJF 1343—2012),制备了三种岩性共9个离子吸附型稀土监控样。样品采自南岭地区典型富轻稀土(HREE)离子吸附型稀土风化壳,经干燥、球磨至200目后混合机混匀,以硫酸铵淋滤、电感耦合等离子体质谱法(ICP-MS)测试离子相稀土元素含量,检验样品均匀性,结果表明F值小于临界值F0.05(19,20),样品均匀性良好。在两年内对样品进行4次稳定性检验,在95%置信度时│β1│ <t0.05×s(β1),未发现明显不稳定变化,表明稳定性良好。由8家技术权威的实验室进行协作定值,经过统计计算给出各离子相稀土元素含量的加权平均值和扩展不确定度,定值结果涵盖除Sc以外的15种稀土元素。该系列监控样的研制能够为离子吸附型稀土矿产资源评价和有效利用等工作提供计量支撑。Abstract:
OBJECTIVESIon-adsorption type rare earth ore is extremely important in China and rare in the world. It is China's dominant mineral resource. At present, all the rare earth elements in the existing REE reference materials are oxide minerals, not ion-adsorption type, and cannot be exchanged with strong electrolytes. These reference materials cannot be used to monitor the leaching process of ion-adsorption type REE. METHODSThe samples were collected from the typical ion-adsorption type REE weathering crust in Jiangxi Province. After being dried and ball-milled to 200 mesh, they were mixed for 1.5h. The contents of rare earth elements in the ionic phase were analyzed to test the homogeneity by ammonium sulfate leaching and inductively coupled plasma-mass spectrometry (ICP-MS). RESULTSResults showed that the F values for the variance test were less than the threshold, which indicated a good homogeneity. The stability of monitoring samples was tested 4 times in two years, and no statistically significant changes were observed, indicating good stability of the samples. An accurate and reliable leaching analytical method was used in 8 technologically significant laboratories to finalize the contents of ionic phase rare earth elements. The determined values of nine monitoring samples were given by statistical calculation, including weighted average value and total uncertainty results which were from uncertainties in certified values, between-bottle homogeneity and long-term stability. These nine monitoring samples have certified values of 15 ionic phase rare earth elements except Sc. CONCLUSIONSThe reference materials can be used to monitor the leaching process and provide metrological support for the analysis of rare earth elements in ionic phase during the evaluation and effective utilization of REE mineral resources. -
Key words:
- ion-adsorption type rare earth elements /
- leaching /
- monitoring samples /
- certified value /
-
-
-
表 1 监控样均匀性检验结果
Table 1. Analytical results of the homogeneity test for monitoring samples
样品编号 参数 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y HS-1 X(×10-6) 462.2 4.8 97.5 383.1 69.3 6.2 59.5 9.7 45.2 7.5 17.4 2.1 13.2 1.6 275.4 Q1 150.1 0.007 111.5 368 22.8 0.1 17.2 0.3 13.6 0.5 0.6 0.006 0.4 0.003 20.1 Q2 232.5 0.07 46.1 186.5 34.2 0.09 10.1 0.1 5.9 0.4 2 0.03 0.8 0.004 109.6 F 0.51 0.08 1.91 1.56 0.53 0.87 1.35 2.01 1.82 0.93 0.22 0.17 0.37 0.52 0.14 RSD(%) 1.08 0.73 4.42 2.04 2.81 2.11 2.84 2.13 3.33 3.92 1.76 1.44 1.90 1.32 0.66 HS-2 X(×10-6) 851.6 46.6 226.7 849.4 108.4 6.7 54 6.4 24.6 4.2 12.5 1.5 7.5 0.96 94.4 Q1 329.9 26.4 266.7 1697.9 12.7 0.05 31.4 0.03 0.2 0.05 0.3 0.002 0.2 0.0009 38.4 Q2 1523.1 15.9 105.3 1425.2 19.3 0.03 12.9 0.02 0.4 0.02 0.1 0.005 0.3 0.004 19.4 F 0.17 1.31 2.00 0.94 0.52 1.80 1.93 1.06 0.42 1.92 1.70 0.26 0.55 0.16 1.56 RSD(%) 0.87 4.50 2.94 1.98 1.34 2.52 4.24 1.85 0.77 4.43 4.44 4.84 2.44 1.28 3.50 HS-3 X(×10-6) 920.9 28.9 262.2 804.8 112.4 7 41.6 4.6 17.7 2.8 8.8 0.8 5.6 0.7 59.3 Q1 2672.5 3.2 544.5 668.1 4.5 0.09 37.2 0.6 1.6 0.05 0.001 0.001 0.3 0.002 28.5 Q2 1225.1 2.1 485.8 456.4 29.3 0.08 33.5 0.2 4.8 0.02 0.5 0.003 0.2 0.0007 47.8 F 1.72 1.20 0.88 1.16 0.12 0.90 0.88 2.06 0.26 1.96 0.00 0.36 1.33 2.03 0.47 RSD(%) 2.29 2.54 3.63 3.80 0.77 1.79 4.98 4.81 2.90 4.22 0.18 1.69 4.21 2.57 3.68 BZ-1 X(×10-6) 101.9 9.4 16.8 56.6 10.2 2.1 13.3 2.1 11.4 2.1 5.5 0.5 3.3 0.4 64.6 Q1 56.7 0.3 2.76 17.8 0.3 0.02 0.8 0.03 0.09 0.0001 0.07 0.0002 0.1 0.002 15.5 Q2 96.4 0.004 2.16 31.4 2.2 0.03 0.8 0.04 0.06 0.0005 0.1 0.0009 0.1 0.0008 8.5 F 0.46 1.68 1.01 0.45 0.10 0.39 0.80 0.60 1.28 0.21 0.56 0.20 0.75 1.57 1.44 RSD(%) 3.01 4.40 4.04 3.05 2.18 2.57 2.77 3.54 2.52 2.53 1.95 4.40 4.14 4.33 4.19 BZ-2 X(×10-6) 158.4 5.5 29.4 104.2 17, 1 3.2 19.7 2.5 14.4 2.8 7.4 0.9 4.8 0.6 71.8 Q1 81.9 0.4 3.71 24.5 0.7 0.003 3.4 0.01 0.02 0.04 0.04 0.0006 0.01 0.001 1 Q2 33.6 0.2 1.52 9.1 1.92 0.02 1.5 0.005 0.4 0.02 0.06 0.002 0.02 0.0008 5.7 F 1.93 1.57 1.93 2.13 0.29 0.18 1.74 1.80 0.06 1.64 0.57 0.31 0.58 1.32 0.14 RSD(%) 2.99 3.98 2.68 1.94 2.00 0.77 4.97 2.33 0.45 4.87 1.13 4.63 0.90 2.68 0.57 BZ-3 X(×10-6) 270.8 13.3 57.1 206 29.6 4.3 23.3 2.3 11.1 2.1 5.6 0.6 3.6 0.4 53 Q1 253.5 0.01 91.6 16.7 6.4 0.02 1 0.02 0.2 0.1 0.7 0.003 0.1 0.0006 10.9 Q2 203.2 0.3 54.7 46.7 4.1 0.01 0.4 0.008 0.3 0.007 0.3 0.003 0.1 0.001 5.6 F 0.98 0.03 1.32 0.28 1.25 1.58 2.03 2.15 0.47 1.37 2.04 0.97 0.65 0.44 1.54 RSD(%) 2.40 0.33 4.00 0.81 3.50 1.68 3.35 4.69 1.42 4.12 4.49 4.27 3.89 2.93 3.35 CJ-1 X(×10-6) 44.5 1.4 16.7 90.7 57.2 0.4 60.2 9.9 52.8 9.6 30.1 4.4 27.3 3.9 237.7 Q1 1.8 0.002 0.33 13.5 114.2 0.001 9.6 0.5 27.5 0.1 8.6 0.09 2.3 0.01 230.3 Q2 3.7 0.002 0.54 22.7 78.1 0.0003 26.3 0.2 10.9 0.1 7.3 0.03 1.3 0.04 924.2 F 0.40 0.69 0.49 0.47 1.15 2.12 0.29 1.98 1.99 0.97 0.93 1.98 1.46 0.27 0.20 RSD(%) 1.26 1.28 1.41 1.65 7.63 4.29 2.11 4.58 4.05 2.43 3.99 4.44 2.28 1.22 2.61 CJ-2 X(×10-6) 425.7 15.2 101.8 336.8 71.2 5.6 46.3 6.5 27.3 4.5 9.7 1.1 5.4 0.7 102.3 Q1 400.4 0.2 134.5 1309.4 18.7 0.06 28 0.08 0.2 0.04 0.4 0.002 0.05 0.002 213.6 Q2 1055.3 0.1 122.5 753.8 24.2 0.03 11.4 0.03 3.6 0.02 0.3 0.001 0.02 0.001 170.3 F 0.30 1.88 0.87 1.37 0.61 1.36 1.94 2.12 0.05 1.88 1.13 1.67 1.72 1.19 0.99 RSD(%) 1.92 2.99 4.65 4.38 2.48 3.72 4.86 3.79 0.74 4.46 2.77 4.83 4.04 2.82 4.83 CJ-3 X(×10-6) 342.8 12.4 78.8 249.7 55.8 6.9 56.7 10 64.4 11.7 33.4 3.8 24.4 3.4 315.3 Q1 221.9 0.5 68.9 48.9 14.2 0.07 17.5 0.2 6.8 0.7 1.1 0.1 1.4 0.01 529.5 Q2 118.8 0.2 93.2 87.3 8.7 0.12 7.8 0.1 5.7 0.3 3.2 0.08 1.6 0.04 338.5 F 1.47 1.85 0.58 0.44 1.29 0.48 1.75 1.87 0.95 1.70 0.28 1.07 0.67 0.30 1.23 RSD(%) 1.77 2.45 4.30 1.14 2.76 1.60 4.12 4.12 4.11 2.88 1.29 4.23 1.97 1.44 2.98 注:X为浓度平均值;Q1为组间差方和;Q2为组内差方和;F为统计量;RSD为相对标准偏差。 表 2 监控样稳定性检验结果
Table 2. Analytical results of the long-term stability test for monitoring samples
样品编号 参数 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y HS-1 X(×10-6) 516.5 5.4 99.9 354.8 74.4 6.8 66.6 9.0 49.3 7.9 18.8 2.0 11.2 1.5 222.5 β1 -7.902 -0.063 -1.269 -4.616 -0.738 -0.051 -1.079 -0.074 -0.256 -0.099 -0.197 -0.016 -0.148 -0.006 -3.143 β0 611.273 6.131 115.115 410.186 83.214 7.422 79.546 9.920 52.329 9.076 21.199 2.218 12.965 1.529 260.182 s(β1) 3.450 0.093 0.258 0.878 0.163 0.022 0.113 0.029 0.192 0.011 0.077 0.003 0.021 0.001 1.543 t0.05×s(β1) 43.810 1.181 3.281 11.149 2.070 0.281 1.439 0.369 2.440 0.144 0.975 0.040 0.272 0.016 19.596 HS-2 X(×10-6) 951.5 42.5 230.1 852.4 108.0 6.4 49.5 4.9 27.6 4.0 13.1 1.2 7.3 1.0 95.6 β1 -8.136 -0.350 -1.297 -3.568 -0.991 -0.014 -0.641 -0.021 -0.352 -0.002 -0.246 0.000 -0.002 0.001 -0.613 β0 1049.118 46.672 245.682 895.204 119.924 6.618 57.181 5.163 31.821 4.029 16.090 1.187 7.293 0.939 102.917 s(β1) 10.139 0.328 1.344 4.581 0.572 0.044 0.430 0.002 0.212 0.020 0.146 0.004 0.028 0.003 0.422 t0.05×s(β1) 128.763 4.171 17.064 58.184 7.261 0.564 5.461 0.027 2.692 0.260 1.853 0.051 0.351 0.036 5.364 HS-3 X(×10-6) 1003.2 29.5 223.6 807.1 113.1 6.7 42.6 3.5 19.9 2.8 9.7 0.8 5.1 0.7 61.9 β1 -5.585 -0.128 -0.915 -2.283 -0.680 -0.004 -0.314 -0.009 -0.250 0.004 -0.141 0.003 0.017 0.002 -0.287 β0 1070.210 31.039 234.605 834.469 121.292 6.748 46.407 3.629 22.891 2.707 11.371 0.808 4.942 0.635 65.346 s(β1) 10.795 0.212 1.274 4.811 0.564 0.037 0.257 0.017 0.163 0.010 0.184 0.004 0.022 0.001 0.322 t0.05× s(β1) 137.096 2.690 16.183 61.104 7.164 0.467 3.266 0.219 2.070 0.132 2.342 0.054 0.276 0.015 4.084 BZ-1 X(×10-6) 94.6 9.7 16.7 57.1 10.5 2.1 11.8 1.9 11.2 2.1 5.4 0.6 3.0 0.4 70.9 β1 -0.715 -0.019 -0.074 -0.199 -0.042 -0.007 -0.052 -0.002 -0.028 -0.002 -0.009 0.000 -0.002 0.000 -0.323 β0 103.195 9.978 17.554 59.493 11.049 2.228 12.386 1.908 11.508 2.094 5.480 0.582 3.054 0.371 74.769 s(β1) 0.841 0.048 0.133 0.376 0.062 0.010 0.074 0.007 0.063 0.007 0.028 0.002 0.008 0.000 0.467 t0.05× s(β1) 10.675 0.613 1.693 4.770 0.793 0.126 0.936 0.094 0.798 0.091 0.357 0.026 0.106 0.004 5.931 BZ-2 X(×10-6) 174.1 6.3 31.6 99.4 17.3 3.3 16.6 2.3 14.3 2.5 6.9 0.8 4.4 0.5 81.5 β1 -1.698 -0.025 -0.324 -1.030 -0.209 -0.020 -0.188 -0.007 -0.147 -0.005 -0.044 -0.003 -0.010 0.000 -0.565 β0 194.453 6.578 35.461 111.716 19.855 3.508 18.866 2.402 16.046 2.612 7.429 0.838 4.561 0.548 88.259 s(β1) 1.858 0.011 0.408 0.570 0.071 0.019 0.079 0.014 0.056 0.012 0.044 0.003 0.019 0.003 0.577 t0.05×s(β1) 23.594 0.146 5.187 7.235 0.904 0.243 1.001 0.180 0.714 0.147 0.563 0.042 0.236 0.034 7.326 BZ-3 X(×10-6) 278.5 14.7 57.4 195.3 29.4 4.3 18.1 2.0 11.2 2.0 5.7 0.6 3.5 0.4 49.5 β1 -3.127 -0.089 -0.536 -1.787 -0.357 -0.035 -0.248 -0.005 -0.114 -0.009 -0.065 -0.003 -0.017 -0.001 -0.602 β0 316.050 15.804 63.866 216.697 33.727 4.730 21.030 2.015 12.580 2.080 6.513 0.657 3.752 0.439 56.739 s(β1) 2.035 0.154 0.470 1.454 0.205 0.037 0.164 0.025 0.124 0.019 0.086 0.006 0.035 0.003 0.055 t0.05× s(β1) 25.847 1.962 5.968 18.461 2.608 0.469 2.083 0.323 1.581 0.240 1.086 0.071 0.450 0.040 0.703 CJ-1 X(×10-6) 49.9 1.8 17.3 80.3 52.7 0.4 63.8 9.0 49.3 9.4 27.1 3.9 24.4 3.6 267.8 β1 -0.572 0.012 -0.101 -0.570 -0.458 -0.002 -0.491 -0.035 -0.224 -0.036 -0.062 -0.010 -0.060 -0.005 -1.816 β0 56.761 1.603 18.555 87.150 58.201 0.413 69.727 9.384 52.005 9.868 27.808 4.047 25.131 3.708 289.626 s(β1) 0.534 0.002 0.127 0.577 0.318 0.002 0.513 0.048 0.320 0.030 0.157 0.018 0.118 0.014 1.871 t0.05×s(β1) 6.787 0.029 1.608 7.324 4.035 0.029 6.516 0.607 4.070 0.383 1.995 0.230 1.497 0.174 23.760 CJ-2 X(×10-6) 472.7 16.9 96.4 336.7 61.9 5.3 49.9 5.8 28.2 4.3 10.0 0.9 5.3 0.7 106.4 β1 -4.891 -0.155 -0.918 -2.824 -0.690 -0.034 -0.537 -0.046 -0.279 -0.034 -0.107 -0.004 -0.025 -0.001 -0.670 β0 531.381 18.774 107.425 370.632 70.190 5.705 56.393 6.394 31.566 4.713 11.255 0.972 5.648 0.722 114.396 s(β1) 5.422 0.174 0.593 2.287 0.276 0.043 0.273 0.018 0.217 0.019 0.113 0.006 0.035 0.005 0.118 t0.05×s(β1) 68.865 2.208 7.529 29.049 3.510 0.545 3.470 0.230 2.760 0.236 1.441 0.081 0.440 0.059 1.501 CJ-3 X(×10-6) 382.8 13.8 75.1 261.7 55.8 7.1 60.4 9.7 57.3 11.0 30.8 4.1 25.0 3.4 356.6 β1 -3.982 -0.069 -0.609 -1.678 -0.588 -0.043 -0.750 -0.085 -0.495 -0.096 -0.282 -0.030 -0.191 -0.006 -3.210 β0 430.630 14.605 82.402 281.826 62.839 7.563 69.410 10.676 63.229 12.143 34.213 4.450 27.321 3.466 395.093 s(β1) 4.486 0.123 0.507 1.730 0.329 0.056 0.421 0.053 0.359 0.037 0.221 0.015 0.140 0.023 2.069 t0.05×s(β1) 56.978 1.568 6.435 21.973 4.172 0.708 5.352 0.675 4.557 0.471 2.803 0.191 1.783 0.288 26.276 注:x为浓度平均值;β1和β0为回归系数;s(β1)为β1的标准偏差;t0.05为自由度0.05下的t因子。 表 3 监控样定值结果和不确定度
Table 3. Certified values and uncertainty for monitoring samples
定值元素 $\overline{\overline X} = \pm {U_{{\rm{CRM}}}} $ (×10-6)HS-1 HS-2 HS-3 BZ-1 BZ-2 BZ-3 CJ-1 CJ-2 CJ-3 La 453.9±33.2 507.3±47.3 542.3±48.3 79.3±8.2 152.8±15.1 242.3±24.5 35.7±5.1 429.5±17.6 341.4±28.7 Ce 4.4±0.5 29.2±3.9 28.0±1.8 9.6±0.3 6.2±0.1 13.9±0.2 1.5±0.1 16.3±0.5 10.7±1.5 Pr 83.0±14.6 260.1±24.8 245.8±12.7 12.8±1.8 27.2±2.9 48.5±8.3 15.8±2.0 65.9±4.2 68.4±11.3 Nd 321.4±51.8 754.2±36 720.0±12 57.6±5.5 93.4±13.0 206.1±3.7 75.2±10.9 308.5±35.2 213.9±32.9 Sm 50.8±9.6 90.8±12.8 114.3±24.5 10.5±1.1 16.5±1.8 23.7±4.1 51.0±4.9 53.6±6.6 45.7±6.9 Eu 6.7±0.8 6.9±0.6 6.7±1.0 1.9±0.1 2.7±0.2 4.1±0.4 0.4±0.02 5.4±0.2 6.6±0.7 Gd 64.1±16.6 48.7±7.3 76.1±9.1 9.8±1.1 15.2±1.9 20.3±2.7 57.7±7.0 45.6±6.4 59.1±10.1 Tb 6.8±1.6 6.1±0.4 4.7±1.1 1.9±0.1 2.2±0.3 2.3±0.1 8.7±1.0 5.1±0.8 7.8±1.3 Dy 41.2±8.0 22.6±3.7 19.4±2.9 9.3±1.5 14.1±0.4 11.1±0.2 53.5±5.4 28.4±3.0 57.8±7.4 Ho 5.1±0.9 4.2±0.3 3.1±0.3 2.0±0.1 2.3±0.3 1.9±0.1 7.5±1.2 4.3±0.4 11.3±1.4 Er 12.6±1.9 9.7±1.4 8.7±1.7 5.1±0.3 7.2±0.4 5.1±0.6 21.8±4.0 9.3±0.7 29.4±4.3 Tm 1.9±0.4 1.3±0.1 0.7±0.1 0.7±0.01 0.8±0.1 0.4±0.1 3.3±0.6 1.1±0.1 3.8±0.7 Yb 7.3±1.5 6.5±1.4 5.1±1.1 2.9±0.3 4.6±0.4 3.2±0.3 21.7±4.5 5.5±0.7 22.4±4.7 Lu 1.6±0.1 1.3±0.1 0.5±0.1 0.5±0.03 0.5±0.07 0.3±0.06 3.9±0.5 0.7±0.1 3.5±0.4 Y 187.1±35.4 94.3±15.4 52.8±8.0 62.1±4.2 70.9±8.6 43.9±7.5 182.4±34.7 96.6±11.1 316.7±49.6 -
[1] Xiao Y F, Feng Z Y, Hu G H, et al.Reduction leaching of rare earth from ion-adsorption type rare earths ore with ferrous sulfate[J].Journal of Rare Earths, 2016, 34(9):917-923.
[2] Georgiana A M, Vladimiros G P.Leaching of lanthanides from various weathered elution deposited ores[J].Canadian Metallurgical Quarterly, 2013, 52(3):257-264. http://www.tandfonline.com/doi/full/10.1179/1879139513Y.0000000060
[3] 赵芝, 王登红, 王成辉, 等.离子吸附型稀土找矿及研究新进展[J].地质学报, 2019, 93(6):1454-1465.
Zhao Z, Wang D H, Wang C H, et al.Progress in prospecting and research of ion-adsorption type REE deposits[J].Acta Geologica Sinica, 2019, 93(6):1454-1465.
[4] 程丽娅.离子型稀土矿中离子稀土的ICP-AES测定方法研究[J].安徽地质, 2017, 27(2):147-149, 160. http://www.cnki.com.cn/Article/CJFDTOTAL-AHDZ201702017.htm
Cheng L Y.Study on determination of rare earth ions in ion-adsorbed rare earth mineral using ICP-MS[J].Geology of Anhui, 2017, 27(2):147-149, 160. http://www.cnki.com.cn/Article/CJFDTOTAL-AHDZ201702017.htm
[5] 肖燕飞, 黄莉, 李明来, 等.ICP-AES法测定离子吸附型稀土矿镁盐体系稀土浸出液中稀土与非稀土杂质[J].稀有金属, 2017, 41(4):390-397. http://d.wanfangdata.com.cn/Periodical/xyjs201704009
Xiao Y F, Huang L, Li M L, et al.Determination of rare earth elements and non-rare earth elements in leaching solution with magnesium salt system of ion-adsorption type rare earth ore by ICP-AES[J].Chinese Journal of Rare Metals, 2017, 41(4):390-397. http://d.wanfangdata.com.cn/Periodical/xyjs201704009
[6] Yang X J, Lin A J, Li X L, et al.China's ion-adsorption rare earth resources, mining consequences and preservation[J].Environmental Development, 2013, 8:131-136.
[7] Georgiana A M, Vladimiros G P.Recovery of rare earth elements adsorbed on clay minerals:Ⅱ.Leaching with ammonium sulfate[J].Hydrometallurgy, 2013, 131:158-166. http://www.sciencedirect.com/science/article/pii/S0304386X1200240X
[8] Xiao Y F, Gao G H, Huang L, et al.A discussion on the leaching process of the ion-adsorption type rare earth ore with the electrical double layer model[J].Minerals Engineering, 2018, 120:35-43. http://www.sciencedirect.com/science/article/pii/S0892687518300876
[9] Sanjukta A K, Shailaja P P, Sangita D K.Determination of rare earth elements in Indian kimberlite using inductively coupled plasma mass spectrometer (ICP-MS)[J].Journal of Radioanalytical and Nuclear Chemistry, 2012, 294:419-424. http://link.springer.com/article/10.1007/s10967-012-1704-3
[10] 代小吕, 赵金宝, 贺颖婷, 等.电感耦合等离子体质谱(ICP-MS)法测定离子吸附型稀土矿中的浸出稀土元素[J].中国无机分析化学, 2015, 5(4):35-40. http://www.cqvip.com/QK/60072X/201504/666946629.html
Dai X L, Zhao J B, He Y T, et al.Determination of leaching rare earth elements in ion adsorption type rare earth ore by ICP-MS[J].Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(4):35-40. http://www.cqvip.com/QK/60072X/201504/666946629.html
[11] Raunt N M, Huang L S, Lin K C, et al.Uncertainty propagation through correction methodology for the determination of rare earth elements by quadrupole based inductively coupled plasma mass spectrometry[J].Analytica Chimica Acta, 2005, 530(1):91-103.
[12] 刘贵磊, 许俊玉, 温宏利, 等.动态反应池-电感耦合等离子体质谱法精确测定配分差异显著的重稀土元素[J].桂林理工大学学报, 2016, 36(1):176-183.
Liu G L, Xu J Y, Wen H L, et al.Determination of heavy rare earth elements of special rare earth ores by inductively coupled plasma mass spectrometry with a dynamic reaction cell[J].Journal of Guilin University of Technology, 2016, 36(1):176-183.
[13] Botha A, Ellison S, Linsinger T, et al.Outline for the revision of ISO Guide 35[J].Accreditation and Quality Assurance, 2013, 18:115-118. http://link.springer.com/article/10.1007/s00769-012-0940-0
[14] Linsinger J T P, Pauwels J, van der Veen A M H, et al.Homogeneity and stability of reference materials[J].Accreditation and Quality Assurance, 2001, 6(1):20-25. http://link.springer.com/article/10.1007/s007690000261
[15] 王晓红, 王毅民, 高玉淑, 等.地质标准物质均匀性检验方法评价与探讨[J].岩矿测试, 2010, 29(6):735-741. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907310115
Wang X H, Wang Y M, Gao Y S, et al.A view on homogeneity testing techniques for geochemical reference material in China[J].Rock and Mineral Analysis, 2010, 29(6):735-741. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907310115
[16] van der Veen A M H, Linsinger P T, Pauwels J.Uncer-tainty calculation in the certification of reference materials.2.Homogeneity study[J].Accreditation and Quality Assurance, 2001, 6(1):26-30. http://dx.doi.org/10.1007/s007690000292
[17] 杜烨, 王春龙, 刘俊保, 等.GBW(E)130573a标准物质复制均匀性与稳定性评价[J].合成材料老化与应用, 2020, 49(2):44-46, 127.
Du Y, Wang C L, Liu J B, et al.Evaluation of uniformity and stability of reference material of GBW(E)130573a[J].Synthetic Materials Aging and Application, 2020, 49(2):44-46, 127.
[18] 白玉洁, 李红亮, 李微微, 等.总有机碳分析仪校准用标准物质的研制[J].工业计量, 2020, 30(2):80-82.
Bai Y J, Li H L, Li W W, et al.Development of certified reference material for calibration of total organic carbon analyser[J].Industrial Measurement, 2020, 30(2):80-82.
[19] 曾美云, 刘金, 邵鑫, 等.磷矿石化学成分分析标准物质研制[J].岩矿测试, 2017, 36(6):633-640. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907310115
Zeng M Y, Liu J, Shao X, et al.Preparation of phosphate ore reference materials for chemical composition analysis[J].Rock and Mineral Analysis, 2017, 36(6):633-640. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907310115
[20] 杨理勤, 陈占生, 谢璐, 等.卡林型金矿砷成分分析标准物质研制[J].岩矿测试, 2018, 37(2):209-216. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907310115
Yang L Q, Chen Z S, Xie L, et al.Preparation of gold and arsenic certified reference materials for chemical composition analysis in Carlin-type gold deposits[J].Rock and Mineral Analysis, 2018, 37(2):209-216. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907310115
[21] 金浩, 韩永志.标准物质及其应用技术[M].北京:中国标准出版社, 2003:34-35.
Jin H, Han Y Z.Standard reference material and its application technology[M].Beijing:China Standards Press, 2003:34-35.
[22] 宋丽华, 郝原方, 杨柳, 等.地质标准物质的研制方法[J].地质与资源, 2013(5):419-421.
Song L H, Hao Y F, Yang L, et al.Preparation method of geochemical reference materials[J].Geology and Resources, 2013(5):419-421.
[23] 辛文彩, 夏宁, 徐磊, 等.长江三角洲沉积物标准物质研制[J].岩矿测试, 2017, 36(4):388-395. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907310115
Xin W C, Xia N, Xu L, et al.Preparation of Yangtze River Delta sediment reference materials[J].Rock and Mineral Analysis, 2017, 36(4):388-395. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907310115
[24] 田衎, 杨珺, 孙自杰, 等.矿区污染场地土壤重金属元素分析标准样品的研制[J].岩矿测试, 2017, 36(1):82-88. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907310115
Tian K, Yang J, Sun Z J, et al.Preparation of soil certified reference materials for heavy metals in contaminated sites[J].Rock and Mineral Analysis, 2017, 36(1):82-88. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907310115
[25] 高捷, 盛成, 卓尚军.X射线荧光光谱分析用的含铁尘泥标准样品的研制[J].冶金分析, 2015, 35(2):74-78.
Gao J, Sheng C, Zhuo S J.Development of ferric-containing dust and sludge standard samples used for X-ray fluorescence spectrometric analysis[J].Metallurgical Analysis, 2015, 35(2):74-78.
[26] 汪斌, 卢晓华, 王茜.质量控制图在标准物质稳定性评估中的应用[J].化学试剂, 2019, 41(5):475-477.
Wang B, Lu X H, Wang Q.Application of control chart for assessment of stability of reference materials[J].Huaxue Shiji, 2019, 41(5):475-477.
[27] 李津, 马健雄, 闫斌, 等.黑色页岩铁同位素标准物质的研制[J].地球学报, 2020, 41(5):623-629. http://www.cqvip.com/QK/98325A/202005/7102942635.html
Li J, Ma J X, Yan B, et al.The preparation of reference material for Fe isotope measurement of black shale samples[J].Acta Geoscientica Sinica, 2020, 41(5):623-629. http://www.cqvip.com/QK/98325A/202005/7102942635.html
[28] 胡德龙, 张雯, 陈家颖.二氧化碳中一氧化氮气体标准物质研制[J].化学分析计量, 2020, 29(2):8-11.
Hu D L, Zhang W, Chen J Y. Preparation for gas reference material of nitric oxide in carbon dioxide[J].Chemical Analysis and Meterage, 2020, 29(2):8-11.
[29] 刘妹, 顾铁新, 潘含江, 等.泛滥平原沉积物标准物质研制[J].岩矿测试, 2018, 37(5):558-571. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907310115
Liu M, Gu T X, Pan H J, et al.Preparation of seven certified reference materials for floodplain sediments[J].Rock and Mineral Analysis, 2018, 37(5):558-571. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907310115
[30] 张磊, 周伟, 朱云, 等.硫酸铵溶液淋滤-电感耦合等离子体质谱测定离子相稀土分量的方法优化[J].岩矿测试, 2018, 37(5):518-525. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907310115
Zhang L, Zhou W, Zhu Y, et al.An optimized method for determination of ionic-phase rare earth elements by ICP-MS using ammonium sulfate leaching[J].Rock and Mineral Analysis, 2018, 37(5):518-525. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907310115
-