-
摘要:
多金属结核富含多种关键战略金属,是重要的深海沉积矿产。多金属结核疏松多孔,具有从海水/孔隙水中吸附痕量金属进而富集成矿的关键材料学特性,其比表面积是成矿作用研究的一个关键参数。目前比表面积测试技术方法成熟,但很少应用于多金属结核的比表面积分析,且由于研究目的不同,样品预处理条件也不同。本文探究了多金属结核BET比表面积测试的预处理条件,为多金属结核富集痕量金属研究提供必要参数。对取自西太平洋、印度洋和大西洋的多金属结核样品,基于低温氮吸附法与静态容量法,采用程序升温、累积加热和粒度对比三种实验技术路线,对多金属结核比表面积分析的预处理温度、时间和试样粒度条件进行了研究。结果表明,程序升温测试在加热到210℃时比表面积测试结果进入平台期,一直持续到350℃;在210℃条件下,以1h为梯度累积加热测试比表面积,样品在累计加热3h后测试结果基本稳定。毫米级的块状试样相较微米级的粉末状试样,其比表面积测试值偏高1.027~28.535m2/g。研究认为,选取毫米级精度的块状样品在真空状态下210℃加热3h,比表面积测试所得数据能够代表多金属结核的稳定测试结果。该成果为多金属结核成矿作用研究提供了比表面积分析的预处理条件。
Abstract:BACKGROUND Polymetallic nodules are predominant in deep sea sedimentary mineral resources due to the enrichment of many critical metals. Polymetallic nodules are loose and porous, which is the critical material feature that contributes the adsorption of trace metals from seawater and pore water and then enrichment and mineralization. Therefore, specific surface area (SSA) is one of the key factors for studying the ore-forming process of polymetallic nodules. At present, the methods for SSA determination are well-developed. However, they are less applied in the analysis of the specific surface of polymetallic nodules, and the pretreatment conditions are not constant according to various research targets.
OBJECTIVES In order to explore the pretreatment conditions for the BET SSA analysis of polymetallic nodules, and provide necessary parameters for the study of the enrichment of trace metals in polymetallic nodules.
METHODS Polymetallic nodules from the Atlantic, Indian, and Pacific oceans were collected. The pretreatment conditions including temperature, duration, and particle size for SSA analysis of polymetallic nodules were studies by applying temperature programming, heating accumulation, and particle size comparing methods.
RESULTS The results showed that the analysis values of SSA reached plateau when the heating temperature ranged from 210℃to 350℃. The analysis values of SSA remained constant after heating for 3 hours by a step of 1 hour at 210℃. The SSA values of samples with a size of several millimeters were 1.027-28.535m2/g higher compared with those of the same samples crushed into microns.
CONCLUSIONS Reliable SSA values can be obtained when the polymetallic nodules with sizes of several millimeters are heated in a vacuum system for 3 hours at 210℃, which is the pretreatment condition for analyzing SSA of mineralization-related polymetallic nodules.
-
Key words:
- polymetallic nodules /
- specific surface area /
- pretreatment conditions /
- particle size
-
-
表 1 样品和站位信息
Table 1. Information of samples and stations
站位号 水深
(m)海域 结核类型 样品号 实验条件 实验方法 测试参数比表面积 温度 时间 粒度 DY48-Ⅱ-BC1836 5756 西太平洋 S[P]ss N1836 √ BET √ N1836(1) √ BET √ N1836(2) √ BET √ DY48-Ⅱ-BC1823 5292 西太平洋 M[F]sr N1823 √ BET √ N1823(1) √ BET √ N1823(2) √ BET √ S[S]sr N1823-1 √ BET √ DY48-Ⅱ-BC1829a 5628 西太平洋 M[S]ss N1829a √ BET √ N1829a(1) √ BET √ N1829a(2) √ BET √ M[F]ss N1829a-1 √ BET √ 42Ⅰ-ⅠB-S023BC03 4926 印度洋 S[S] N03 √ BET √ N03-1 √ BET √ N03-2 √ BET √ 46Ⅱ-(SAKB)-S62-BC01 5103 大西洋 S[P] N01 √ BET √ N01-1 √ BET √ N01-2 √ BET √ 注:结核类型描述依据《大洋多金属结核矿产勘查规程》(GB/T 17229—1998)。 表 2 样品特征描述
Table 2. Description of sample characteristics
站位号 结核类型 样品编号 样品主要特征描述 DY48-Ⅱ-BC1836 S[P]ss N1836 小型连生体状,黑色,上下表面光滑,内含碳酸盐物质,类似于珊瑚,无生物遗迹,核心不可见,表示为S[P]ss N1836(1) N1836(2) DY48-Ⅱ-BC1823 M[F]sr N1823 中型碎屑状,上表面光滑,下表面粗糙,质量31g,黑色,无生物遗迹,核心不可见,表示为M[F]sr N1823(1) N1823(2) S[S]sr N1823-1 小型球状,黑色,上表面光滑,下表面粗糙,无生物遗迹,核心不可见,表示为S[S]sr DY48-Ⅱ-BC1829a M[S]ss N1829a 上下表面光滑,黑色,质量74g,破碎严重,无生物遗迹,核心不可见,表示为M[S]ss N1829a(1) N1829a(2) M[F]ss N1829a-1 黑色,破碎而成,形状极其不规则,上表面光滑,下表面粗糙,无生物遗迹,核心不可见,表示为M[F]sr 42Ⅰ-ⅠB-S023BC03 S[S] N03 小型球状,质量2g,表示为S[S]型 N03-1 N03-2 46Ⅱ-(SAKB)-S62-BC01 S[P] N01 小型连生体状,黑色,表示为S[P]型 N01-1 N01-2 表 4 试样粒度对比表面积测试结果的影响
Table 4. Effect of sample particle size on test values of specific surface area
样品编号 比表面积测试值(m2/g) 研磨前,试样粒径约5mm 研磨后,试样粒径 < 1mm N1836(1) 274.349 263.467 N1836(2) 269.148 242.456 N1829a(1) 312.919 311.892 N1829a(2) 364.432 344.915 N1823(1) 351.737 337.432 N1823(2) 402.714 374.179 -
[1] Hein J R, Koschinsky A, Kuhn T. Deep-ocean polymetallic nodules as a resource for critical materials[J]. Nature Reviews Earth & Environment, 2020, 1: 158-169. http://www.nature.com/articles/s43017-020-0027-0
[2] Hein J R, Mizell K, Koschinsky A, et al. Deep-ocean mineral deposits as a source of critical metals for high-and green-technology applications: Comparison with land-based resources[J]. Ore Geology Reviews, 2013, 51: 1-14. doi: 10.1016/j.oregeorev.2012.12.001
[3] Hein J R, Spinardi F, Okamoto N, et al. Critical metals in manganese nodules from the Cook Islands EEZ, abundances and distributions[J]. Ore Geology Reviews, 2015, 68: 97-116. doi: 10.1016/j.oregeorev.2014.12.011
[4] Fu Y Z, Wen H J. Variabilities and enrichment mechanisms of the dispersed elements in marine Fe-Mn deposits from the Pacific Ocean[J]. Ore Geology Reviews, 2020, 121: 103470. http://www.researchgate.net/publication/339936706_Variability_and_enrichment_characteristics_of_the_dispersed_elements_in_marine_Fe-Mn_deposits_from_the_Pacific_Ocean
[5] Morgan C L. Resource estimates of the Clarion-Clipperton manganese nodule deposits[M]//Cronan D S. Handbook of marine mineral deposits. Florida: CRC Press, 2000: 145-170.
[6] 陈其慎, 张艳飞, 贾德龙, 等. 全球矿业发展报告2019[N]. 北京: 中国矿业报社, 2019.
Chen Q S, Zhang Y F, Jia D L, et al. Global mining development report 2019[N]. Beijing: China Mining News Agency, 2019.
[7] 杨卉芃, 王威. 全球钴矿资源现状及开发利用趋势[J]. 矿产保护与利用, 2019(5): 41-49. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201905005.htm
Yang H P, Wang W. Global cobalt resources status and exploitation trends[J]. Conservation and Utilization of Mineral Resources, 2019(5): 41-49. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201905005.htm
[8] 董志国, 王鸣, 李晓欣, 等. 航空发动机涡轮叶片材料的应用与发展[J]. 钢铁研究学报, 2011, 23(Supplement 2): 455-457. https://www.cnki.com.cn/Article/CJFDTOTAL-IRON2011S2119.htm
Dong Z G, Wang M, Li X X, et al. Application and progress of materials for turbine blade of aeroengine[J]. Journal of Iron and Steel Research, 2011, 23(Supplement 2): 455-457. https://www.cnki.com.cn/Article/CJFDTOTAL-IRON2011S2119.htm
[9] Kuhn T, Wegorzewski A, Rühlemann C, et al. Composition, formation, and occurrence of polymetallic nodules[M]//Sharma R. Deep-sea mining. Switzerland: Springer, 2017: 23-63.
[10] Biller D V, Bruland K W. Analysis of Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in seawater using the Nobias-chelate PA1 resin and magnetic sector inductively coupled plasma mass spectrometry (ICP-MS)[J]. Marine Chemistry, 2012, 130-131: 12-20. doi: 10.1016/j.marchem.2011.12.001
[11] Tamura H, Katayama N, Furuichi R. The Co2+ adsorption properties of Al2O3, Fe2O3, Fe3O4, TiO2 and MnO2 evaluated by modeling with the Frumkin isotherm[J]. Journal of Colloid and Interface Science, 1997, 195: 192-202. http://europepmc.org/abstract/MED/9441619
[12] Hein J R, Koschinsky A. Deep-ocean ferromanganese crusts and nodules[M]. Holland H D, Turekian K K. Treatise on geochemistry (The second edition). Oxford: Elsevier, 2014: 273-291.
[13] Huk C A, Ku T L. Radiochemical observations on manganese nodules from three sedimentary environments in the North Pacific[J]. Geochemica et Cosmochimica Acta, 1984, 48: 951-963. http://www.sciencedirect.com/science/article/pii/001670378490187X
[14] Li D F, Fu Y, Sun X, et al. Critical metal enrichment mechanism of deep-sea hydrogenetic nodules: Insights from mineralogy and element mobility[J]. Ore Geology Reviews, 2020, 118: 1-13. http://www.sciencedirect.com/science/article/pii/S0169136819309898
[15] 刘珍, 曲希玉, 王伟庆, 等. 比表面积氮气吸附法在蒙脱石碱性溶蚀表征中的应用[J]. 岩矿测试, 2016, 35(6): 603-611. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.06.006
Liu Z, Qu X Y, Wang W Q, et al. Application of specific surface area nitrogen adsorption method to characterize the alkaline dissolution of montmorillonite[J]. Rock and Mineral Analysis, 2016, 35(6): 603-611. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.06.006
[16] 梁建伟, 房营光, 谷任国. 极细粒黏土的比表面积测试与分析[J]. 科学技术与工程, 2009, 9(9): 2371-2377.
Liang J W, Fang Y G, Gu R G. Experiment and analysis of specific area of tiny-particle clay[J]. Science Technology and Engineering, 2009, 9(9): 2371-2377.
[17] 唐洪明, 王俊杰, 张烈辉, 等. 页岩比表面积测试方法与控制因素研究[J]. 天然气地球科学, 2015, 26(11): 2009-2016.
Tang H M, Wang J J, Zhang L H, et al. Testing method and controlling factors of specific surface area of shales[J]. Natural Gas Geoscience, 2015, 26(11): 2009-2016.
[18] 陈生蓉, 帅琴, 高强, 等. 基于扫描电镜-氮气吸脱附和压汞法的页岩孔隙结构研究[J]. 岩矿测试, 2015, 34(6): 36-42. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.06.006
Chen S R, Shuai Q, Gao Q, et al. Analysis of the pore structure of shale in Ordos Basin by SEM with sitrogen gas adsorption-desorption[J]. Rock and Mineral Analysis, 2015, 34(6): 36-42. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.06.006
[19] Mastalerz M, Wei L, Drobniak A, et al. Responses of specific surface area and micro-and mesopore characteristics of shale and coal to heating at elevated hydrostatic and lithostatic pressures[J]. International Journal of Coal Geology, 2018, 197: 20-30. http://www.sciencedirect.com/science/article/pii/S0166516218302003
[20] Xiong F Y, Jiang Z X, Li P, et al. Pore structure of transitional shales in the Ordos Basin, NW China: Effects of composition on gas storage capacity[J]. Fuel, 2017, 206: 504-515. http://www.researchgate.net/publication/321045104_PORE_STRUCTURE_OF_TRANSITIONAL_SHALES_IN_THE_ORDOS_BASIN_NW_CHINA_EFFECTS_OF_COMPOSITION_ON_GAS_STORAGE_MECHANISM
[21] Chen L, Jiang Z X, Liu K Y, et al. A combination of N2 adsorption to characterize nanopore structure of organic-rich Lower Silurian shale in the Upper Yangtze Platform, South China: Implications for shale sorption capacity[J]. Acta Geologica Sinica, 2017, 91(4): 1380-1394. http://d.wanfangdata.com.cn/Periodical/dzxb-e201704017
[22] Bl the M, Wegorzewski A, Müller C, et al. Manganese-cycling microbial communities inside deep-sea manganese nodules[J]. Environmental Science and Technology, 2015, 49(13): 7692-7700.
[23] Stashchuk M F, Chervonetsky D V, Kaplun E V, et al. Adsorption properties of ferromanganese crusts and nodules[M]. Northwest Pacific and Bering Sea sediment geochemistry and paleoceanographic studies, 1994.
[24] Parida K M, Satapathy P K, Das N N, et al. Studies on Indian Ocean manganese nodules Part 2: Physico-chemical characteristics and catalytic activity of heat-treated marine manganese nodules[J]. Journal of Colloid and Interface Science, 1996, 179: 241-248.
[25] 薛婷. 太平洋海山富钴结壳地球化学特征及成矿元素富集机制[D]. 广州: 中山大学, 2007.
Xue T. Geochemical characters and ore-forming elements enrichment mechanism of ferromanganese crusts from Pacific Ocean[D]. Guangzhou: Sun Yat-Sen University, 2007.
[26] Glasby G P. Manganese: Predominantrole of nodules and crusts[M]//Schulz H D, Zabel M. Marine geochemistry (2nd edition). Berlin: Springer, 2006: 371-427.
[27] 钱江初, 初凤友, 冯旭文. 大洋多金属结核中几种常见锰矿相的特征及其相关性[J]. 矿物学报, 2006, 26(2): 152-158. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200602005.htm
Qian J C, Chu F Y, Feng X W. The main manganates in the polymetallic nodules and their correlations[J]. Acta Mineralogica Sinica, 2006, 26(2): 152-158. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200602005.htm
-