-
摘要:
地质数据库是地球信息科学的重要组成部分,可为地球科学研究工作提供可靠的数据基础。Re-Os同位素定年已广泛应用于矿床成因、地幔演化、海洋环境的研究中,建设Re-Os同位素定年数据库可整合相关研究成果,提升该领域成果资料的集成化管理和应用水平。本文采用GIS空间数据库构建的技术路线,从数据库建设思路、数据整合加工方法、数据建库等多个维度系统性地对数据库的建设方法进行了研究。数据库以公开发表的Re-Os同位素定年文献为数据源,汇聚了100多篇近十年来公开发表的Re-Os定年文献数据,涉及的期刊达35种以上,数据来源具有一定的权威性、广泛性和代表性。通过对非结构化碎片化文献数据的结构化转换、空间化处理,使数据库具备了数据来源权威、数据内容结构化、空间位置属性化等特点,可为矿床地质调查研究工作提供数据支持。
-
关键词:
- Re-Os同位素定年 /
- 数据库 /
- GIS /
- 信息化
Abstract:BACKGROUND A geological database is an important part of earth information science, which will provide reliable data support for geological research and application. Re-Os dating technology is widely applied in the study of ore deposit, mantle evolution, and marine environment.
OBJECTIVES To construct a journal publication-based Re-Os dating database to integrate related research achievements, and improve the management and application of the technology.
METHODS The technical route of GIS spatial database construction was adopted, and systematically studied database construction methods from multiple dimensions such as database construction ideas, data integration methods, and data database construction.
RESULTS The database used publicly published Re-Os isotope dating documents as the data source and gathered more than 100 publicly published Re-Os dating documents from the last ten years. More than 35 journals were involved. The data sources were authoritative, extensive and representative. Through the structural transformation and spatial processing of unstructured fragmented document data, the database had the characteristics of authoritative data source, structured data content, and attributed spatial location.
CONCLUSIONS The Re-Os dating database has a reliable data source, which can provide data support for the geological survey and research of mineral deposits.
-
Key words:
- Re-Os isotope dating /
- database /
- GIS /
- informatization
-
-
表 1 数据结构化内容分类信息
Table 1. Classification of information of data structured content
数据分类 数据内容 内容描述 成果发表信息 论文编号 记录论文编号信息 论文题目 记录文献的论文题目 发表时间 记录文献发表的年份。例如:2020 发表期刊 记录期刊的具体名称。例如:地质学报 作者 记录文献所有作者姓名,以“,”作为分隔符 第一作者 记录文献的第一作者姓名 矿产地信息 矿产地编号 记录矿产地编号信息 矿产地名称 记录矿产地全称。例如:查干花钼矿 矿产地简称 记录矿产地简称。例如:查干花 经度 记录矿产地位置的经度信息,保留三位小数。例如:121.883 纬度 记录矿产地位置的纬度信息,保留三位小数。例如:45.568 矿产地背景 记录矿产地背景信息,内容规范化为基本包括矿产地位置信息、矿产规模、构造信息、蚀变信息、矿石矿物、脉石矿物等 主要矿种 记录矿产地的主要矿种。例如:钼矿 Re-Os定年检测信息 样品批号 记录样品批号信息 样品信息 记录测试样品信息,内容规范化为基本包括采集位置、采集数量、样品特征、样品纯度、检测单位、检测方法、检测设备等内容 检测单位 记录Re-Os同位素测试的检测单位名称。例如:国家地质实验测试中心 检测设备 记录Re-Os同位素测试的检测设备型号。例如:TJA X-series ICP-MS 检测对象 记录Re-Os同位素测试的矿物名称。例如:辉钼矿 检测结果 记录Re-Os同位素测试定年结果信息,基本包括等时线年龄、加权平均年龄等内容。例如,等时线年龄:238.6±4.4Ma;加权平均年龄:40.0±1.6Ma -
[1] 奚小环. 大数据科学从信息化、模式化到智能化: 现代地球化学应用研究的新范式[J]. 地学前缘, 2021, 28(1): 308-317.
Xi X H. Big data science from informationization to modelling to intelligentization: New paradigm of applied geochemical research[J]. Earth Science Frontiers, 2021, 28(1): 308-317
[2] 赵鹏大. 地质大数据特点及其合理开发利用[J]. 地学前缘, 2019, 26(4): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201904002.htm
Zhao P D. Characteristics and rational utilization of geological big data[J]. Earth Science Frontiers, 2019, 26(4): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201904002.htm
[3] 罗建民, 张旗. 大数据开创地学研究新途径: 查明相关关系, 增强研究可行性[J]. 地学前缘, 2019, 26(4): 6-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201904003.htm
Luo J M, Zhang Q. Big data pioneers new ways of geoscience research: Identifying relevant relationships to enhance research feasibility[J]. Earth Science Frontiers, 2019, 26(4): 6-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201904003.htm
[4] 周永章, 陈烁, 张旗, 等. 大数据与数学地球科学研究进展[J]. 岩石学报, 2018, 34(2): 255-263. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201802001.htm
Zhou Y Z, Chen S, Zhang Q, et al. Advances and prospects of big data and mathematical geoscience[J]. Acta Petrologica Sinica, 2018, 34(2): 255-263. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201802001.htm
[5] 张旗, 周永章. 大数据正在引发地球科学领域一场深刻的革命[J]. 地质科学, 2017, 52(3): 637-648.
Zhang Q, Zhou Y Z. Big data will lead to a profound revolution in the field of geological science[J]. Chinese Journal of Geology, 2017, 52(3): 637-648.
[6] 李莹莹, 范董伟, 昌仪. 基于GIS的实物地质资料信息化管理平台的设计与实现[J]. 地矿测绘, 2020, 36(2): 16-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DKCH202002006.htm
Li Y Y, Fan D W, Chang Y. Design and implementation of information management platform of physical geological data based on GIS[J]. Surveying and Mapping of Geology and Mineral Resources, 2020, 36(2): 16-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DKCH202002006.htm
[7] 史维鑫, 高鹏鑫, 回广骥, 等. 中国典型矿床实物地质资料波谱数据库及其服务系统建设建议[J]. 中国矿业, 2020, 29(1): 176-181. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA202001039.htm
Shi W X, Gao P X, Hui G J, et al. Suggestions on construction of spectrum database and service system of cores and samples from Chinese typical deposits[J]. China Mining Magazine, 2020, 29(1): 176-181. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA202001039.htm
[8] 田其煌. 福州市工程地质数据库建设相关技术问题研究[J]. 福建建筑, 2019(12): 141-144. https://www.cnki.com.cn/Article/CJFDTOTAL-FJJZ201912035.htm
Tian Q H. Technique research for the engineering geology database in Fuzhou[J]. Fujian Architecture and Construction, 2019(12): 141-144. https://www.cnki.com.cn/Article/CJFDTOTAL-FJJZ201912035.htm
[9] 洪瑾, 甘成势, 刘洁. 基于机器学习的洋岛玄武岩主量元素预测稀土元素[J]. 地学前缘, 2019, 26(4): 45-54. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201904008.htm
Hong J, Gan C S, Liu J. Prediction of REEs in OIB by major elements based on machine learning[J]. Earth Science Frontiers, 2019, 26(4): 45-54. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201904008.htm
[10] 杨宏伟, 赵文津, 吴珍汉. PDS行星数学系统研究及其应用[J]. 地质学报, 2015, 89(12): 2419-2432. doi: 10.3969/j.issn.0001-5717.2015.12.016
Yang H W, Zhao W J, Wu Z H. Research on planetary data system and application[J]. Acta Geological Sinica, 2015, 89(12): 2419-2432. doi: 10.3969/j.issn.0001-5717.2015.12.016
[11] 王巧云. 国际标准物质数据库COMAR及有证标准物质[J]. 岩矿测试, 2014, 33(2): 155-167. http://www.ykcs.ac.cn/article/id/31d06e40-eb5b-44ec-9ea5-c6d78625c17c
Wang Q Y. The international database for certified reference materials (COMAR)[J]. Rock and Mineral Analysis, 2014, 33(2): 155-167. http://www.ykcs.ac.cn/article/id/31d06e40-eb5b-44ec-9ea5-c6d78625c17c
[12] Peter J K, 王晓红. 地球化学与环境样品分析标准物质和GeoReM数据库[J]. 岩矿测试, 2009, 28(4): 311-315. http://www.ykcs.ac.cn/article/id/ykcs_20090401
Peter J K, Wang X H. Geochemical and environmental reference materials and the GeoReM database[J]. Rock and Mineral Analysis, 2009, 28(4): 311-315. http://www.ykcs.ac.cn/article/id/ykcs_20090401
[13] 王勇毅, 肖克炎, 李小鹏, 等. 全国固体矿床资源区划数据库建设[J]. 矿床地质, 2005, 24(5): 553-560. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200505010.htm
Wang Y Y, Xiao K Y, Li X P, et al. Database construction for national mineral resources assessment of China[J]. Mineral Deposits, 2005, 24(5): 553-560. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200505010.htm
[14] 袁方林, 张旗, 张成立. 全球新生代苦橄岩时空分布特征及意义[J]. 地学前缘, 2019, 26(4): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201904004.htm
Yuan F L, Zhang Q, Zhang C L. Characteristics of the temporal-spatial distribution of global Cenozoic picrite and their significance[J]. Earth Science Frontiers, 2019, 26(4): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201904004.htm
[15] 余星. 海底岩石地球化学研究中的"大数据"——PetDB及其应用[J]. 地球科学进展, 2014, 29(2): 306-314. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201402014.htm
Yu X. The BigData tool for geochemical study of seabed rocks-PetDB and its application in geoscience[J]. Advances in Earth Science, 2014, 29(2): 306-314. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201402014.htm
[16] 王少勇. 国家地质大数据服务平台"地质云2.0"上线[J]. 资源导刊, 2018(11): 40. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDD201811045.htm
Wang S Y. National geological big data platform-GeoCloud 2.0 provide service[J]. The Chinese Newspaper of Land and Resources, 2018(11): 40. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDD201811045.htm
[17] 李超, 王登红, 屈文俊, 等. 关键金属元素分析测试技术方法应用进展[J]. 岩矿测试, 2020, 39(5): 658-669. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907310115
Li C, Wang D H, Qu W J, et al. A review and perspective on analytical methods of critical metal elements[J]. Rock and Mineral Analysis, 2020, 39(5): 658-669. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907310115
[18] 李重阳, 陈雪. 黄铁矿Re-Os同位素定年在金属矿床研究中的应用[J]. 地质找矿论丛, 2020, 35(2): 138-144. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK202002002.htm
Li C Y, Chen X. Applications of age dating of the Re-Os system of pyrite to study on metal deposits[J]. Contributions to Geology and Mineral Resources Research, 2020, 35(2): 138-144. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK202002002.htm
[19] 刘俊, 祝向平, 李文昌, 等. 藏东拉荣斑岩钨钼矿床辉钼矿Re-Os定年及地质意义[J]. 地质学报, 2019, 93(7): 1708-1719. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201907011.htm
Liu J, Zhu X P, Li W C, et al. Molybdenite Re-Os dating of the Larong porphyry W-Mo deposit in eastern Tibet and its geological significance[J]. Acta Geologica Sinica, 2019, 93(7): 1708-1719. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201907011.htm
[20] 覃曼, 周瑶琪, 刘加召, 等. 铼-锇同位素体系定年研究综述[J]. 地质找矿论丛, 2017, 32(3): 421-427. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201703010.htm
Qin M, Zhou Y Q, Liu J Z, et al. Review of Re-Os geochronology[J]. Contributions to Geology and Mineral Resources Research, 2017, 32(3): 421-427. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201703010.htm
[21] 李超, 屈文俊, 王登红, 等. Re-Os同位素在沉积地层精确定年及古环境反演中的应用进展[J]. 地球学报, 2014, 35(4): 405-414. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201404003.htm
Li C, Qu W J, Wang D H, et al. The progress of applying Re-Os isotope to dating of organic-rich sedimentary rocks and reconstruction of palaeo environment[J]. Acta Geoscientica Sinica, 2014, 35(4): 405-414. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201404003.htm
[22] 杜安道, 屈文俊, 李超, 等. 铼-锇同位素定年方法及分析测试技术的进展[J]. 岩矿测试, 2009, 28(3): 288-304. http://www.ykcs.ac.cn/article/id/ykcs_20090318
Du A D, Qu W J, Li C, et al. A review on the development of Re-Os isotopic dating methods and techniques[J]. Rock and Mineral Analysis, 2009, 28(3): 288-304. http://www.ykcs.ac.cn/article/id/ykcs_20090318
[23] 钟美华. 基于非结构化数据管理平台研究与建设[J]. 中国新通信, 2020, 22(23): 57-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DATD201910015.htm
Zhong M H. Study and construction of un-structural data management platform[J]. China New Telecommunications, 2020, 22(23): 57-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DATD201910015.htm
[24] 陶玥, 余丽, 张润杰. 科技文献中短语级主题抽取的主动学习方法研究[J]. 数据分析与知识发现, 2020, 4(10): 134-143. https://www.cnki.com.cn/Article/CJFDTOTAL-XDTQ202010017.htm
Tao Y, Yu L, Zhang R J. Active learning strategies for extracting phrase-level topics from scientific literature[J]. Data Analysis and Knowledge Discovery, 2020, 4(10): 134-143. https://www.cnki.com.cn/Article/CJFDTOTAL-XDTQ202010017.htm
[25] 夏天, 吴文嘉, 吴文斌, 等. 地理科学中数据空间重构最新研究进展[J]. 经济地理, 2020, 40(11): 47-55, 94.
Xia T, Wu W J, Wu W B, et al. Research progress of geographic data by space reconstruction[J]. Economic Geography, 2020, 40(11): 47-55, 94.
[26] 邓晓玲, 李金忠. GIS软件在资产清查数据分析中的应用[J]. 电子技术, 2021, 50(1): 100-101.
Deng X L, Li J Z. Application of GIS software in data analysis of asset inventory[J]. Electronic Technology, 2021, 50(1): 100-101.
[27] 喻忠伟, 周高伟, 张栋, 等. 基于ArcGIS的输电线路通道清理数据库建设研究[J]. 电力设备管理, 2021(2): 181-183.
Yu Z W, Zhou G W, Zhang D, et al. Construction of the ArcGIS based database of electric power supply line and path cleaning[J]. Electric Power Equipment Management, 2021(2): 181-183.
[28] 何春秀. 浅谈基于ArcMap的制图符号设计与应用[J]. 测绘与空间地理信息, 2021, 44(1): 207-209. https://cdmd.cnki.com.cn/Article/CDMD-10486-2006035021.htm
He C X. Design and application of cartographic symbols based on ArcMap[J]. Geomatics and Spatial Information Technology, 2021, 44(1): 207-209. https://cdmd.cnki.com.cn/Article/CDMD-10486-2006035021.htm
[29] 赵成福. 基于ArcGIS的矢量数据入库更新技术及其实现[J]. 地理空间信息, 2014, 12(2): 96-97. https://www.cnki.com.cn/Article/CJFDTOTAL-DXKJ201402035.htm
Zhao C F. Research and realization of vector data storage update based on the ArcGIS[J]. Geospatial Information, 2014, 12(2): 96-97. https://www.cnki.com.cn/Article/CJFDTOTAL-DXKJ201402035.htm
[30] 刘刚, 吴冲龙, 何珍文, 等. 面向地质时空大数据表达与存储管理的数据模型研究[J]. 地质科技通报, 2020, 39(1): 164-174. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202001020.htm
Liu G, Wu C L, He Z W, et al. Data model for geological spatiotemporal big data expression and storage management[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 164-174. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202001020.htm
[31] Price M著. 李玉龙, 何学洲, 李娜, 等译. ArcGis地理信息系统教程[M]. 北京: 电子工业出版社, 2017: 304-327.
Price M(Author). Li Y L, He X Z, Li N (Translator). ArcGIS geographic information system[M]. Beijing: Publishing House of Electronics Industry, 2017: 304-327.
[32] 陈旭, 严丽, 马宗民, 等. 基于UML类图的模糊时空数据建模[J]. 计算机应用研究, 2019, 36(2): 481-485. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201902036.htm
Chen X, Yan L, Ma Z M, et al. Fuzzy spatiotemporal data modeling with UML class diagram[J]. Application Research of Computers, 2019, 36(2): 481-485. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201902036.htm
[33] 董晓明, 闵绍荣, 雷静, 等. 基于UML和XML的数据建模方法及应用[J]. 系统仿真学报, 2010, 22(9): 2048-2051, 2055. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201009005.htm
Dong X M, Min S R, Lei J, et al. Method and application of data modeling based on UML and XML[J]. Journal of System Simulation, 2010, 22(9): 2048-2051, 2055. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201009005.htm
[34] Messaoud A, Renaud R, Choukri-Bey B Y, et al. Formal modeling and verification of UML Activity Diagrams (UAD) with FoCaLiZe[J]. Journal of Systems Architecture, 2021, doi:https://doi.org/10.1016/j.sysarc.2020.101911.
[35] 刘博. 标准建模语言UML概述[J]. 信息与电脑, 2009, 21(11): 122. https://www.cnki.com.cn/Article/CJFDTOTAL-XXDL200916085.htm
Liu B. Overview of unified modeling language UML[J]. China Computer & Communication, 2009, 21(11): 122. https://www.cnki.com.cn/Article/CJFDTOTAL-XXDL200916085.htm
[36] 封碧峰. 基于Geodatabase的水文地质环境数据模型的研究[J]. 经纬天地, 2020(5): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-XTSO202005021.htm
Feng B F. Study on the Geodatabase based environment data model of hydrogeology[J]. Survey World, 2020(5): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-XTSO202005021.htm
[37] 曲翠玉. 基于UML的门诊管理系统的分析与设计[J]. 信息与电脑, 2020, 32(22): 102-104. https://cdmd.cnki.com.cn/Article/CDMD-10673-1013308229.htm
Qu C Y. Analysis and design of outpatient management system based on UML[J]. China Computer & Communication, 2020, 32(22): 102-104. https://cdmd.cnki.com.cn/Article/CDMD-10673-1013308229.htm
[38] 马文涛, 陈宜金, 王淼淼, 等. 一种Shapefile文件的剖析及读写方法[J]. 北京测绘, 2018, 32(12): 1517-1521. https://www.cnki.com.cn/Article/CJFDTOTAL-BJCH201812032.htm
Ma W T, Chen Y J, Wang M M, et al. Analysis and reading and writing method of a Shapefile[J]. Beijing Surveying and Mapping, 2018, 32(12): 1517-1521. https://www.cnki.com.cn/Article/CJFDTOTAL-BJCH201812032.htm
[39] 曹昌磊, 赵雪莲, 梅红波. MapGIS向Shapefile数据格式转换插件开发及其应用[J]. 国土资源遥感, 2016, 28(2): 193-197. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201602032.htm
Cao C L, Zhao X L, Mei H B. Research on data conversion from MapGIS to Shapefile[J]. Remote Sensing for Land and Resources, 2016, 28(2): 193-197. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201602032.htm
-