The Content Characteristics and Source Analysis of Polycyclic Aromatic Hydrocarbons in Topsoil of Beijing City
-
摘要:
土壤,作为城市中最重要的环境介质,承担了较高多环芳烃(PAHs)的环境负荷,开展土壤PAHs分布特征及来源分析研究,可以为污染风险防控、环保政策制定提供支撑。为研究北京市不同功能区土壤环境中PAHs的含量、组成及来源,本文在北京市主城区进行了大范围采样,同时针对工业区、农业种植区、水源保护区及居民区等不同功能区进行了分区采样,共采集了表层土壤样品459份,采用气相色谱-质谱法(GC-MS)测定16种PAHs单体含量。结果表明:主城区3个分区(东南-中心-西北)表层土壤中16种PAHs总量的均值分别为153.7μg/kg、333.2μg/kg和142.9μg/kg。工业区3个分区(东南工厂、首钢工业、大台煤矿)表层土壤中16种PAHs总量的均值分别为1006.9μg/kg、1379.4μg/kg及146.8μg/kg。水源保护区2个分区(怀柔、密云)表层土壤中16种PAHs总量的均值分别为86.4μg/kg和154.5μg/kg。农业种植区4个分区(昌平、平谷、房山、通州)表层土壤中16种PAHs总量的均值分别为109.0μg/kg、118.3μg/kg、106.8μg/kg及94.2μg/kg。居民区中16种PAHs总量的均值为131.1μg/kg。与前人关于PAHs含量及分布特征的研究结果对比,北京市表层土壤中PAHs含量呈下降趋势,这与北京市近年来燃煤使用量下降及天然气使用量增加有关。不同功能区PAHs成分组成存在一定的差异,工业区重环和中环PAHs占比高,而水源保护区、农业种植区以及居民区的轻环占比总体上高于工业区,这是由于不同功能区PAHs的来源存在差异。主成分分析-多元线性回归法的分析结果表明:主城区PAHs的主要来源是尾气排放以及石油储存运输过程中泄漏,贡献率分别为81.46%和18.54%;工业区表层土壤中PAHs的主要来源有煤炭燃烧以及尾气排放,贡献率分别为62.65%和37.35%;居民区PAHs的主要来源由尾气排放源和天然气燃烧源组成,贡献率分别为53.30%和46.70%。进一步加强北京市交通管制,继续缩减煤炭在北京地区能源结构中的比重,增加清洁能源比重,是减少PAHs排放和污染的有效途径。
Abstract:BACKGROUND Polycyclic aromatic hydrocarbons (PAHs), as a typical persistent organic pollutant, widely exist in the environment and have high stability. Studying of the content distribution and source analysis of PAHs in soil will provide a technical basis for PAHs pollution prevention and control, ecological environment improvement and environmental protection policy-making.
OBJECTIVES In order to investigate the content, composition and source of PAHs in the soil environment of different functional areas in Beijing City.
METHODS A large-scale sampling was carried out in the core area of Beijing City. At the same time, regional sampling was carried out for different functional areas such as industrial areas, agricultural planting areas, water source protection areas and residential areas. A total of 459 topsoil samples were collected, and the monomer contents of 16 PAHs were analyzed by gas chromatography-mass spectrometry (GC-MS).
RESULTS The average values of the total contents of 16 PAHs (∑16PAHs) in topsoil of the three subregions in the core area (southeast, center and northwest) were 153.7, 333.2 and 142.9μg/kg, respectively. The average values of ∑16PAHs in topsoil of the industrial zone, including Southeast Factory, Shougang Industry and Datai Coal Mine, were 1006.9, 1379.4 and 146.8μg/kg, respectively. The average values of ∑16PAHs in topsoil of the water-conserving areas, Huairou and Miyun, were 86.4μg/kg and 154.5μg/kg, respectively. The average values of ∑16PAHs in topsoil of four agricultural planting regions (Changping, Pinggu, Fangshan and Tongzhou) were 109.0, 118.3, 106.8 and 94.2μg/kg, respectively. The average value of ∑16PAHs in topsoil of residential areas was 131.1μg/kg. Compared with previous research results on the content and distribution characteristics of PAHs, the content of PAHs in the topsoil in Beijing City showed a decreased trend, which was related to the decrease in the use of coal and the increase in the use of natural gas in Beijing City in recent years. The composition of PAHs in different functional areas was different. The proportion of heavy and medium rings PAHs were higher in industrial areas. The proportion of light rings PAHs in water-conserving areas, agricultural planting regions and residential areas was higher than that in industrial areas, which might be due to the different sources of PAHs in different functional areas. The results of principal component analysis-multiple linear regression method showed that the main sources of PAHs in the core area were tail gas emissions and leakage during oil storage and transportation, which contributed 81.46% and 18.54%, respectively. The main sources of PAHs in the topsoil of the industrial area were coal combustion and tail gas emissions, which contributed 62.65% and 37.35%, respectively. The main sources of PAHs in residential areas were tail gas emissions and natural gas combustion sources, with contribution rates of 53.30% and 46.70%, respectively.
CONCLUSIONS Further strengthening traffic control, continuing to reduce the proportion of coal in energy structure, and increasing the proportion of clean energy are effective ways to reduce PAHs emissions and pollution in Beijing City.
-
-
表 1 北京市不同区域内表层土壤中多环芳烃含量统计
Table 1. Statistics of PAHs concentration in topsoil of different regions in Beijing City
北京市区域 样品数(件) 采样深度(cm) 所测PAHs单体数(种) PAHs总量范围(μg/kg) PAHs总量均值(μg/kg) 参考文献 居民区 31 0~5 16 219~27825 3917 Tang等(2005)[21] 四环外 47 5~30 16 14~4238 1056 Ma等(2005)[19] 四环内 30 5~30 16 467~5470 1637 Li等(2006)[18] 全市 138 0~10 15(萘除外) - 262.3 沈亚婷等(2008)[9] 五环内 233 0~10 16 93.3~13141.5 1228.1 Peng等(2011)[17] 六环内公园 122 0-10 16 66-6867 460 Qu等(2020)[20] 主城区 215 0~20 16 ND~2730.1 210.4 本文研究 工业区 57 0~20 16 ND~19466.5 1006.3 本文研究 居民区 44 0~20 16 ND~1407.1 131.1 本文研究 水源保护区 19 0~20 16 ND~399.4 118.6 本文研究 农业种植区 124 0~20 16 ND~456.8 106.9 本文研究 注:“-”代表无相应参考数据。 表 2 北京市表层土壤中PAHs主成分载荷及累积方差
Table 2. Component loading and cumulative variance of principal components for PAHs in topsoil of Beijing City
PAHs物质 主城区 工业区 居民区 PC1 PC2 PC1 PC2 PC1 PC2 萘 0.089 0.788 0.875 0.433 0.845 0.525 苊烯 0.229 0.858 0.265 0.918 0.855 0.517 苊 0.688 0.334 0.793 0.462 0.517 0.855 芴 0.841 0.211 0.294 0.888 0.517 0.855 菲 0.930 0.184 0.859 0.471 0.763 0.643 蒽 0.809 0.481 0.481 0.866 0.855 0.517 荧蒽 0.948 0.251 0.820 0.566 0.657 0.753 芘 0.940 0.258 0.759 0.632 0.625 0.778 苯并[a]蒽 0.973 0.175 0.462 0.885 0.654 0.745 䓛 0.974 0.183 0.931 0.351 0.512 0.847 苯并[b]荧蒽 0.964 0.214 0.944 0.323 0.864 0.474 苯并[k]荧蒽 0.979 0.176 0.318 0.944 0.579 0.808 苯并[a]芘 0.978 0.173 0.363 0.926 0.781 0.606 茚并[1, 2, 3-c, d]芘 0.969 0.189 0.449 0.882 0.824 0.552 二苯并[a, h]蒽 0.941 0.117 0.626 0.373 0.855 0.517 苯并[g, h, i]苝 0.913 0.193 0.383 0.920 0.763 0.621 方差(%) 74.63 13.53 58.17 35.35 59.35 39.56 累积方差(%) 74.63 88.16 58.17 93.52 59.35 98.91 表 3 北京市表层土壤中PAHs多元线性回归分析的结果方程
Table 3. Resulting equations of multiple linear regression for PAHs in topsoil of Beijing City
北京市 Z R2 主城区 0.971PC1+0.221PC2 0.991 工业区 0.871PC1+0.487PC2 0.997 居民区 0.752PC1+0.659PC2 1.000 表 4 北京市不同功能区表层土壤中PAHs多元线性回归方程
Table 4. Multiple linear regression equations for PAHs in topsoil of different functional areas in Beijing City
北京市 PAHs总量(∑16PAHs) 主城区 0.971σPAHPC1+0.221σPAHPC2+mean∑16PAHs 工业区 0.871σPAHPC1+0.487σPAHPC2+mean∑16PAHs 居民区 0.752σPAHPC1+0.659σPAHPC2+mean∑16PAHs 注:PCi代表了北京市不同功能区表层土壤中PAHs的不同来源;σPAH和mean∑16PAHs分别代表不同功能区表层土壤中16种PAHs单体总量的标准偏差和平均值。 -
[1] Yuan G L, Wu L J, Sun Y, et al. Polycyclic aromatic hydrocarbons in soils of the central Tibetan Plateau, China: Distribution, sources, transport and contribution in global cycling[J]. Environmental Pollution, 2015, 203: 137-144. doi: 10.1016/j.envpol.2015.04.002
[2] Scheibye K, Weisser J, Borggaard O K, et al. Sediment baseline study of levels and sources of polycyclic aromatic hydrocarbons and heavy metals in Lake Nicaragua[J]. Chemosphere, 2014, 95: 556-565. doi: 10.1016/j.chemosphere.2013.09.115
[3] Fakhradini S S, Moore F, Keshavarzi B, et al. Polycyclic aromatic hydrocarbons (PAHs) in water and sediment of Hoor Al-Azim wetland, Iran: A focus on source apportionment, environmental risk assessment, and sediment-water partitioning[J]. Environmental Monitoring and Assessment, 2019, 191: 233. doi: 10.1007/s10661-019-7360-0
[4] Aydin Y M, Kara M, Dumanoglu Y, et al. Source apportionment of polycyclic aromatic hydrocarbons(PAHs)and polychlorinated biphenyls(PCBs)in ambient air of an industrial region in Turkey[J]. Atmospheric Environment, 2014, 97: 271-285. doi: 10.1016/j.atmosenv.2014.08.032
[5] Wang X T, Miao Y, Zhang Y, et al. Polycyclic aromatic hydrocarbons(PAHs)in urban soils of the megacity Shanghai: Occurrence, source apportionment and potential human health risk[J]. Science of the Total Environment, 2013, 447: 80-89. doi: 10.1016/j.scitotenv.2012.12.086
[6] Mielke H W, Wang G D, Gonzales C R, et al. PAHs and metals in the soils of inner-city and suburban New Orleans, Louisiana, USA[J]. Environmental Toxicology and Pharmacology, 2004, 18: 243-247. doi: 10.1016/j.etap.2003.11.011
[7] 章迪, 曹善平, 孙建林, 等. 深圳市表层土壤多环芳烃污染及空间分异研究[J]. 环境科学, 2014, 35(2): 711-718. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201402047.htm
Zhang D, Cao S P, Sun J L, et al. Occurrence and spatial differentiation of polycyclic aromatic hydrocarbons in surface soils from Shenzhen, China[J]. Environmental Science, 2014, 35(2): 711-718. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201402047.htm
[8] Jiang Y F, Yves U J, Sun H, et al. Distribution, compositional pattern and sources of polycyclic aromatic hydrocarbons in urban soils of an industrial city, Lanzhou, China[J]. Ecotoxicology and Environmental Safety, 2016, 126: 154-162. doi: 10.1016/j.ecoenv.2015.12.037
[9] 沈亚婷, 王开颜, 张树才, 等. 北京地区表土中多环芳烃的源解析[J]. 农业环境科学学报, 2008, 27(2): 549-554. doi: 10.3321/j.issn:1672-2043.2008.02.027
Shen Y T, Wang K Y, Zhang S C, et al. Source apportionment of polycyclic aromatic hydrocarbons in surface soil of Beijing, China[J]. Journal of Agro-Environment Science, 2008, 27(2): 549-554. doi: 10.3321/j.issn:1672-2043.2008.02.027
[10] 姚成, 倪进治, 刘瑞, 等. 扬州市不同功能区表层土壤中多环芳烃的含量、来源及其生态风险[J]. 环境科学, 2020, 41(4): 1847-1854. doi: 10.3969/j.issn.1000-6923.2020.04.053
Yao C, Ni J Z, Liu R, et al. Contents, sources and ecological risk assessment of polycyclic aromatic hydrocarbons in surface soils of various functional zones in Yangzhou City, China[J]. Environmental Science, 2020, 41(4): 1847-1854. doi: 10.3969/j.issn.1000-6923.2020.04.053
[11] 李欣红, 史咲頔, 马瑾, 等. 浙江省农田土壤多环芳烃污染及风险评价[J]. 农业环境科学学报, 2019, 38(7): 1531-1540. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201907014.htm
Li X H, Shi X D, Ma J, et al. Comtamination and risk assessment of polycyclic aromatic hydrocarbons in farmland soils of Zhejiang Province, China[J]. Journal of Agro-Environment Science, 2019, 38(7): 1531-1540. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201907014.htm
[12] 李嘉康, 宋雪英, 魏建兵, 等. 沈北新区土壤中多环芳烃污染特征及源解析[J]. 环境科学, 2018, 39(1): 379-388. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201801051.htm
Li J K, Song X Y, Wei J B, et al. Pollution characteristics and source apportionment of polycyclic aromatic hydrocarbons in soils of Shenyang North New Area[J]. Environmental Science, 2018, 39(1): 379-388. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201801051.htm
[13] 张道来, 刘娜, 朱志刚, 等. 山东半岛典型海岸带多环芳烃分布特征、来源解析及风险评价[J]. 岩矿测试, 2016, 35(5): 521-529. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.05.011
Zhang D L, Liu N, Zhu Z G, et al. Distribution, sources and risk assessment of polycyclic aromatic hydrocarbons in surface sediments from typical coast of Shandong Peninsulia[J]. Rock and Mineral Analysis, 2016, 35(5): 521-529. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.05.011
[14] 倪进治, 陈卫锋, 杨红玉, 等. 福州市不同功能区土壤中多环芳烃的含量及其源解析[J]. 中国环境科学, 2012, 32(5): 921-926. doi: 10.3969/j.issn.1000-6923.2012.05.023
Ni J Z, Chen W F, Yang H Y, et al. Concentrations and sources of soil PAHs in various functional zones of Fuzhou City[J]. China Environmental Science, 2012, 32(5): 921-926. doi: 10.3969/j.issn.1000-6923.2012.05.023
[15] 王迪, 罗铭, 张茜, 等. 天津西青区不同功能区土壤中多环芳烃分布特征研究[J]. 农业环境科学学报, 2012, 31(12): 2374-2380. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201212011.htm
Wang D, Luo M, Zhang Q, et al. Distribution characteristics of polycyclic aromatic hydrocarbons in different functional zones of soils from Xiqing District in Tianjin, China[J]. Journal of Agro-Environment Science, 2012, 31(12): 2374-2380. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201212011.htm
[16] 杜芳芳, 杨毅, 刘敏, 等. 上海市表层土壤中多环芳烃的分布特征与源解析[J]. 中国环境科学, 2014, 34(4): 989-995. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201404038.htm
Du F F, Yang Y, Liu M, et al. Distribution and source apportionment of polycyclic aromatic hydrocarbons in surface soils in Shanghai[J]. China Environmental Science, 2014, 34(4): 989-995. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201404038.htm
[17] Peng C, Chen W P, Liao X L, et al. Polycyclic aromatic hydrocarbons in urban soils of Beijing: Status, sources, distribution and potential risk[J]. Environmental Pollution, 2011, 159: 802-808. doi: 10.1016/j.envpol.2010.11.003
[18] Li X H, Ma L L, Liu X F, et al. Polycyclic aromatic hydrocarbon in urban soil from Beijing, China[J]. Journal of Environmental Sciences, 2006, 18(5): 944-950. doi: 10.1016/S1001-0742(06)60019-3
[19] Ma L L, Chu S G, Wang X T, et al. Polycyclic aromatic hydrocarbons in the surface soils from outskirts of Beijing, China[J]. Chemosphere, 2005, 58: 1355-1363. doi: 10.1016/j.chemosphere.2004.09.083
[20] Qu Y J, Gong Y W, Ma J, et al. Potential sources, influencing factors, and health risks of polycyclic aromatic hydrocarbons(PAHs)in the surface soil of urban parks in Beijing, China[J]. Environmental Pollution, 2020, 260: 114016. doi: 10.1016/j.envpol.2020.114016
[21] Tang L L, Tang X Y, Zhu Y G, et al. Contamination of polycyclic aromatic hydrocarbons (PAHs) in urban soils in Beijing, China[J]. Environment International, 2005, 31: 822-828. doi: 10.1016/j.envint.2005.05.031
[22] 石钰婷, 何江涛, 金爱芳. 北京市东南郊不同灌区表层土壤中PAHs来源解析[J]. 现代地质, 2011, 25(2): 393-400. doi: 10.3969/j.issn.1000-8527.2011.02.025
Shi Y T, He J T, Jin A F. Sources apportionment of PAHs in the surface soil of different irrigation areas in southeast suburb of Beijing[J]. Geoscience, 2011, 25(2): 393-400. doi: 10.3969/j.issn.1000-8527.2011.02.025
[23] 北京市统计局. 北京统计年鉴2020[M]. 北京: 中国统计出版社, 2020.
Beijing Municipal Bureau of Statistics. Beijing statistical yearbook 2020[M]. Beijing: China Statistics Publishing House, 2020.
[24] 佚名. 北京焦化厂: 留住工业记忆[J]. 北京规划建设, 2009(1): 134-135. https://www.cnki.com.cn/Article/CJFDTOTAL-GHJS200901031.htm
Anonymous. Beijing coking plant: Retain industrial memory[J]. Beijing Planning and Construction, 2009(1): 134-135. https://www.cnki.com.cn/Article/CJFDTOTAL-GHJS200901031.htm
[25] 吴志远, 张丽娜, 夏天翔, 等. 基于土壤重金属及PAHs来源的人体健康风险定量评价: 以北京某工业污染场地为例[J]. 环境科学, 2020, 41(9): 4180-4196. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202009037.htm
Wu Z Y, Zhang L N, Xia T X, et al. Quantitative assessment of human health risks based on soil heavy metals and PAHs sources: Take a polluted industrial site of Beijing as an example[J]. Environmental Science, 2020, 41(9): 4180-4196. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202009037.htm
[26] 李宾. 首钢工业景观格局变迁研究(1919-2019)[J]. 中国园林, 2020, 36(3): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYL202003003.htm
Li B. On the patterns of changes in Shougang industrial landscape (1919-2019)[J]. Chinese Garden, 2020, 36(3): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYL202003003.htm
[27] 韩鹏, 孙天河, 袁国礼, 等. 首钢地区表层土壤重金属的分布特征及污染评价[J]. 现代地质, 2012, 26(5): 963-971. doi: 10.3969/j.issn.1000-8527.2012.05.016
Han P, Sun T H, Yuan G L, et al. Distribution and assessment of heavy metals in topsoil of capital steel factory in Beijng, China[J]. Geoscience, 2012, 26(5): 963-971. doi: 10.3969/j.issn.1000-8527.2012.05.016
[28] 邢宇鑫, 闫广新, 侯秋丽, 等. 北京门头沟矿集区土壤重金属空间分布及污染特征[J]. 农业资源与环境学报, 2016, 33(6): 499-507. https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ201606001.htm
Xing Y X, Yan G X, Hou Q L, et al. Spatial distribution and pollution characteristics of heavy metals in soil of Mentougou mining area of Beijng City, China[J]. Journal of Agricultural Resources and Environment, 2016, 33(6): 499-507. https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ201606001.htm
[29] 唐莹, 孙敏, 武相林, 等. 永定河上游门头沟区煤矸石及周边土壤重金属污染评价[C]//中国环境科学学会2019年科学技术年会——环境工程技术创新与应用分论坛, 2019.
Tang Y, Sun M, Wu X L, et al. Evaluation of heavy metal pollution of coal gangue and surrounding soil in Mentougou District of the Upper Yongding River[C]//2019 Annual Scientific and Technological Conference of Chinese Society for Environmental Sciences-Sub-forum on Innovation and Application of Environmental Engineering Technology, 2019.
[30] Ontiveros-Cuadras J F, Ruiz-Fernandez A C, Sanchez-Cabeza J A, et al. Recent history of persistent organic pollutants(PAHs, PCBs, PBDEs) in sediments from a large tropical lake[J]. Journal of Hazardous Materials, 2019, 368: 264-273. doi: 10.1016/j.jhazmat.2018.11.010
[31] Harrison R M, Smith D J T, Luhana L. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, U. K[J]. Environmental Science and Technology, 1996, 30: 825-832. doi: 10.1021/es950252d
[32] Mastral A M, Callen M, Murillo R. Assessment of PAH emissions as a function of coal combustion variables[J]. Fuel Processing Technology, 1996, 75(13): 1533-1536. https://www.sciencedirect.com/science/article/pii/0016236196001202
[33] Lang Y H, Yang W. Source apportionment of PAHs using unmix model for Yantai costal surface sediments, China[J]. Bulletin of Environmental Contamination and Toxicology, 2014, 92: 30-35. doi: 10.1007/s00128-013-1164-7
[34] Lakhani A, Querol X M. Source apportionment of particle bound polycyclic aromatic hydrocarbons at an industrial location in Agra, India[J]. The Scientific World Journal, 2012, 2012: 781291. https://pubmed.ncbi.nlm.nih.gov/22606062/
[35] 孟祥帅, 陈鸿汉, 郑从奇, 等. 焦化厂不同污染源作用下土壤PAHs污染特征[J]. 中国环境科学, 2020, 40(11): 4857-4864. doi: 10.3969/j.issn.1000-6923.2020.11.026
Meng X S, Chen H H, Zheng C Q, et al. Pollution characteristics of PAHs in soil at an abandoned coking plant affected by different sources[J]. China Environment Science, 2020, 40(11): 4857-4864. doi: 10.3969/j.issn.1000-6923.2020.11.026
[36] Achten C, Andersson J T. Overview of polycyclic aromatic compounds (PAC)[J]. Polycyclic Aromatic Compounds, 2015, 35: 177-186. doi: 10.1080/10406638.2014.994071
[37] Keyte I J, Harrison R M, Lammel G. Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons-A review[J]. Chemical Society Reviews, 2013, 42: 9333-9391. doi: 10.1039/c3cs60147a
[38] 黄兴星, 朱先芳, 唐磊, 等. 密云水库上游某铁矿区土壤重金属含量及形态研究[J]. 中国环境科学, 2012, 32(9): 1632-1639. doi: 10.3969/j.issn.1000-6923.2012.09.014
Huang X X, Zhu X F, Tang L, et al. Studies on the distribution and chemical speciation of heavy metals in an iron mine soil of the upstream area of Miyun Reservoir, Beijing[J]. China Environmental Science, 2012, 32(9): 1632-1639. doi: 10.3969/j.issn.1000-6923.2012.09.014
[39] 辜敏, 赵靓, 陈倩, 等. 密云水库土壤重金属污染与生态风险评价[J]. 环境污染与防治, 2020, 42(11): 1398-1404. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR202011017.htm
Gu M, Zhao L, Chen Q, et al. Heavy metal pollution and ecological risk assessment of soil in Miyun Reservoir[J]. Prevention and Control of Environmental Pollution, 2020, 42(11): 1398-1404. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR202011017.htm
[40] Olawoyin R, Heidrich B, Oyewole S, et al. Chemometric analysis of ecological toxicants in petrochemical and industrial environments[J]. Chemosphere, 2014, 112: 114-119. doi: 10.1016/j.chemosphere.2014.03.107
[41] Shao Y X, Wang Y X, Xu X Q, et al. Occurrence and source apportionment of PAHs in highly vulnerable karst system[J]. Science of the Total Environment, 2014, 490: 153-160. doi: 10.1016/j.scitotenv.2014.04.128
[42] Deng W, Li X G, Li S Y, et al. Source apportionment of polycyclic aromatic hydrocarbons in surface sediment of mud areas in the East China Sea using diagnostic ratios and factor analysis[J]. Marine Pollution Bulletin, 2013, 70: 266-273. doi: 10.1016/j.marpolbul.2013.02.032
[43] Shi Y, Murr L E, Soto K F, et al. Characterization and comparison of speciated atmospheric carbonaceous(soot)particulates and their polycyclic aromatic hydrocarbon contents in the context of the Paso del Norte airshed along the United States-Mexico border[J]. Polycyclic Aromatic Compounds, 2007, 27(5): 361-400. doi: 10.1080/10406630701624333
[44] 杨靖宇, 俞元春, 王小龙. 南京市不同功能区林业土壤多环芳烃含量与来源分析[J]. 生态环境学报, 2016, 25(2): 314-319. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201602020.htm
Yang J Y, Yu Y C, Wang X L. Characterization and sources of polycyclic aromatic hydrocarbons in urban forestry soil from different functional areas of Nanjing City[J]. Ecology and Environmental Sciences, 2016, 25(2): 314-319. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201602020.htm
[45] 周燕. 西安市居民区土壤多环芳烃来源及健康风险评价[J]. 环境科学导刊, 2019, 38(6): 71-77. https://www.cnki.com.cn/Article/CJFDTOTAL-YNHK201906016.htm
Zhou Y. Pollution, sources and health risk assessment of polycyclic aromatic hydrocarbons in soils in residential areas of Xi'an City[J]. Environmental Science Survey, 2019, 38(6): 71-77. https://www.cnki.com.cn/Article/CJFDTOTAL-YNHK201906016.htm
[46] 王昱, 卢世国, 冯起, 等. 黑河上中游水质时空分异特征及污染源解析[J]. 中国环境科学, 2019, 39(10): 4194-4204. doi: 10.3969/j.issn.1000-6923.2019.10.020
Wang Y, Lu S G, Feng Q, et al. Spatio-temporal characteristics and source identification of water pollutants in the upper and middle reachers of Heihe River[J]. China Environmental Science, 2019, 39(10): 4194-4204. doi: 10.3969/j.issn.1000-6923.2019.10.020
[47] 杨安, 邢文聪, 王小霞, 等. 西藏中部河流、湖泊表层沉积物及其周边土壤重金属来源解析及风险评价[J]. 中国环境科学, 2020, 40(10): 4557-4567. doi: 10.3969/j.issn.1000-6923.2020.10.043
Yang A, Xing W C, Wang X X, et al. Source and risk assessment of heavy metals in surface sediments of rivers, lakes and their surrounding soils in central Tibet[J]. China Environmental Science, 2020, 40(10): 4557-4567. doi: 10.3969/j.issn.1000-6923.2020.10.043
-