中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

基于HPLC和MC-ICP-MS的植物叶绿素镁同位素测试方法

安子涵, 张宏宇, 殷佳欣, 张攀, 姚敏, 黄康俊. 基于HPLC和MC-ICP-MS的植物叶绿素镁同位素测试方法[J]. 岩矿测试, 2024, 43(3): 476-486. doi: 10.15898/j.ykcs.202208300161
引用本文: 安子涵, 张宏宇, 殷佳欣, 张攀, 姚敏, 黄康俊. 基于HPLC和MC-ICP-MS的植物叶绿素镁同位素测试方法[J]. 岩矿测试, 2024, 43(3): 476-486. doi: 10.15898/j.ykcs.202208300161
AN Zihan, ZHANG Hongyu, YIN Jiaxin, ZHANG Pan, YAO Min, HUANG Kangjun. Determination of Magnesium Isotopic Composition of Plant Chlorophylls Based on HPLC and MC-ICP-MS[J]. Rock and Mineral Analysis, 2024, 43(3): 476-486. doi: 10.15898/j.ykcs.202208300161
Citation: AN Zihan, ZHANG Hongyu, YIN Jiaxin, ZHANG Pan, YAO Min, HUANG Kangjun. Determination of Magnesium Isotopic Composition of Plant Chlorophylls Based on HPLC and MC-ICP-MS[J]. Rock and Mineral Analysis, 2024, 43(3): 476-486. doi: 10.15898/j.ykcs.202208300161

基于HPLC和MC-ICP-MS的植物叶绿素镁同位素测试方法

  • 基金项目: 国家自然科学基金项目(42373061,41890845)
详细信息
    作者简介: 安子涵,硕士研究生,主要从事地球生物学方向研究。E-mail:202021424@stumail.nwu.edu.cn
    通讯作者: 黄康俊,博士,教授,主要从事非传统稳定同位素地球化学研究。E-mail:hkj@nwu.edu.cn
  • 中图分类号: O657.63

Determination of Magnesium Isotopic Composition of Plant Chlorophylls Based on HPLC and MC-ICP-MS

More Information
  • 叶绿素a和叶绿素b是植物光合作用时吸收光能的主要色素,其中叶绿素b能帮助叶绿素a扩展吸收光谱促使其吸收更多光能,叶绿素a和叶绿素b比例的改变有助于植物适应光照变化。准确测定叶绿素a和叶绿素b的镁同位素值对研究叶绿素形成过程中镁的生物合成路径等问题具有重要意义,其中将叶绿素a和叶绿素b分离并收集是使用多接收电感耦合等离子体质谱仪(MC-ICP-MS)准确测定两者镁同位素值的关键。高效液相色谱(HPLC)是分离叶绿素的常用仪器,但目前HPLC分离叶绿素的方法主要聚焦于细菌和藻类叶绿素分离。因此,需开发一套能将植物叶绿素a和叶绿素b分离的方法,且该方法分离的样品适用于MC-ICP-MS的镁同位素测定。本文基于665nm检测波长和C18色谱柱(7.6mm×250mm,5μm),以三因素三水平正交设计优化HPLC条件,分析影响样品运行因素间的关系,得出符合要求的参数条件。经过优化的HPLC方法柱温为25℃,流速为1mL/min,流动相为甲醇-丙酮(80∶20,V/V)。结果表明:通过外标法定量分析叶绿素a和叶绿素b所得标准曲线在5~50mg/L浓度范围内的相关系数均大于0.9996,检测限为0.40~1.09mg/L,定量限为1.22~3.31mg/L,相对标准偏差(RSD)小于8.10%,样品加标回收率介于91.92%~111.11%。采用该方法对样品进行分离后,再利用MC-ICP-MS对前处理后的样品进行镁同位素测定,标准-样品间插法测定的数据表明镁同位素测试结果可靠,证明本文建立的方法为植物叶绿素a和叶绿素b的分离提供了技术支撑,且分离样品可用于镁同位素测定。

  • 加载中
  • 图 1  叶绿素分离条件正交试验色谱图

    Figure 1. 

    图 2  叶绿素样品和海水样品的镁同位素值

    Figure 2. 

    表 1  叶绿素分离条件正交试验设计与结果

    Table 1.  Designs and results of orthogonal test on chlorophyll separation conditions

    正交试验编号 影响因素 正交试验结果
    A柱温
    (℃)
    B流速
    (mL/min)
    C流动相
    (V/V)
    叶绿素a
    保留时间(min)
    叶绿素a和叶绿素b
    分离度
    1 A1:25 B1:0.8 C1:甲醇-丙酮
    (90∶10)
    22.08 6.22
    2 A1:25 B2:1.0 C2:甲醇-丙酮
    (80∶20)
    13.34 4.60
    3 A1:25 B3:1.2 C3:甲醇-丙酮
    (70∶30)
    8.53 3.19
    4 A2:30 B1:0.8 C2:甲醇-丙酮
    (80∶20)
    15.16 4.85
    5 A2:30 B2:1.0 C3:甲醇-丙酮
    (70∶30)
    9.44 3.51
    6 A2:30 B3:1.2 C1:甲醇-丙酮
    (90∶10)
    13.42 4.99
    7 A3:35 B1:0.8 C3:甲醇-丙酮
    (70∶30)
    10.93 3.49
    8 A3:35 B2:1.0 C1:甲醇-丙酮
    (90∶10)
    14.77 5.40
    9 A3:35 B3:1.2 C2:甲醇-丙酮
    (80∶20)
    9.37 4.47
    叶绿素a和叶绿素b
    分离度
    T1 14.01 14.56 16.61
    T2 13.35 13.51 13.92
    T3 13.36 12.65 10.19
    $ \overline{{T}}_1 $ 4.67 4.85 5.54
    $ \overline{{T}}_2 $ 4.45 4.50 4.64
    $ \overline{{T}}_3 $ 4.45 4.22 3.40
    R 0.22 0.63 2.14
    叶绿素a
    保留时间
    T1 43.95 48.17 50.27
    T2 38.02 37.55 37.87
    T3 35.07 31.32 28.90
    $ \overline{{T}}_1 $ 14.65 16.06 16.76
    $ \overline{{T}}_2 $ 12.67 12.52 12.62
    $ \overline{{T}}_3 $ 11.69 10.44 9.63
    R 2.96 5.62 7.13

    注:Ti代表各因素相同水平实验结果之和,$ \mathit{\overline{T}_i} $代表实验结果的平均值,相同因素下Ti越大,表明该水平对实验结果影响越大;R代表极差,是各水平最大平均值与最小平均值之差,R值越大,表明该因素对实验结果影响越大。

    下载: 导出CSV

    表 2  方法检测限和定量限

    Table 2.  Detection limit and quantification limit of the method

    叶绿素类别 方法检测限
    (mg/L)
    方法定量限
    (mg/L)
    叶绿素a 0.40 1.22
    叶绿素b 1.09 3.31
    下载: 导出CSV

    表 3  方法精密度

    Table 3.  Precision of the method

    叶绿素类别 浓度(mg/L) RSD
    (%)
    叶绿素a 9.00 8.79 9.09 9.04 9.16 8.44 2.99
    16.86 16.31 16.07 14.44 17.58 14.94 7.32
    35.38 35.49 32.31 35.47 34.06 35.62 3.79
    叶绿素b 8.86 8.12 8.50 8.02 8.82 7.79 5.30
    15.33 14.71 14.11 12.71 15.45 13.05 8.10
    36.24 36.16 33.35 36.00 34.92 36.78 3.51
    下载: 导出CSV

    表 4  样品加标回收率

    Table 4.  Spiked recoveries of the samples

    植物种类 叶绿素种类 取样量
    (µg)
    加标量
    (µg)
    7次实测值(µg) 样品加标回收率(%)
    水稻 叶绿素a 2.11 2.50 4.80 4.82 4.87 4.82 4.78 4.87 4.81 107.60 108.40 110.40 108.40 106.80 110.40 108.00
    叶绿素b 0.82 0.99 1.80 1.73 1.83 1.74 1.87 1.88 1.92 98.99 91.92 102.02 92.93 106.06 107.07 111.11
    玉米 叶绿素a 1.88 2.19 4.09 4.21 4.26 4.22 4.24 4.23 4.26 100.91 106.39 108.68 106.85 107.76 107.31 108.68
    叶绿素b 0.48 0.66 1.14 1.12 1.16 1.21 1.19 1.17 1.18 100.00 96.97 103.03 110.61 107.58 104.55 106.06
    下载: 导出CSV

    表 5  本实验样品镁同位素值与文献报道值的对比

    Table 5.  Comparison of magnesium isotope values in this experiment and reported values in literatures

    样品类型 样品或叶绿素类别 序号 δ26Mg(‰) 2SD(‰) δ25Mg(‰) 2SD(‰) n 数据来源
    海水 海水 1 −0.78 0.05 −0.41 0.02 3 本文实验
    2 −0.84 0.11 −0.42 0.09 4 35
    3 −0.83 0.05 / / 3 36
    水稻 叶绿素a 4 −0.40 0.07 −0.22 0.06 3 本文实验
    叶绿素b 5 −0.88 0.07 −0.48 0.05 3 本文实验
    玉米 叶绿素a 6 1.69 0.13 0.87 0.04 3 本文实验
    叶绿素b 7 −0.64 0.06 −0.34 0.03 3 本文实验
    水芹 叶绿素a 8 −0.414 0.12 −0.21 0.08 5 11
    9 −0.440 0.19 −0.22 0.14 5 11
    玉米 叶绿素a 10 2.16 0.16 1.12 0.12 5 11
    11 2.75 0.20 1.56 0.16 5 11
    常春藤 叶绿素a 12 −0.022 0.119 −0.027 0.095 4 14
    13 0.014 0.029 −0.012 0.022 1 14
    叶绿素b 14 −0.455 0.090 −0.262 0.074 4 14
    15 −0.380 0.029 −0.232 0.026 1 14
    下载: 导出CSV
  • [1]

    刘金科, 韩贵琳. 镁同位素在森林生态系统研究中的应用[J]. 生态学杂志, 2019, 38(3): 899−907. doi: 10.13292/j.1000-4890.201903.005

    Liu J K, Han G L. Research advances about magnesium isotope in forest ecosystems[J]. Chinese Journal of Ecology, 2019, 38(3): 899−907. doi: 10.13292/j.1000-4890.201903.005

    [2]

    陈良碧, 蔡丹, 张林安, 等. 植物镁离子转运及镁胁迫响应机制研究进展[J]. 生命科学研究, 2021, 25(5): 442−447. doi: 10.16605/j.cnki.1007-7847.2021.08.0189

    Chen L B, Cai D, Zhang L A, et al. Advances in mechanisms of magnesium transport and response to magnesium stress in plants[J]. Life Science Research, 2021, 25(5): 442−447. doi: 10.16605/j.cnki.1007-7847.2021.08.0189

    [3]

    Tian X Y, He D D, Bai S, et al. Physiological and molecular advances in magnesium nutrition of plants[J]. Plant and Soil, 2021, 468(1-2): 1−17. doi: 10.1007/s11104-021-05139-w

    [4]

    Kleczkowski L A, Igamberdiev A U. Magnesium signaling in plants[J]. International Journal of Molecular Sciences, 2021, 22(3): 1159. doi: 10.4161/15592324.2014.992287

    [5]

    Xie K, Cakmak I, Wang S Y, et al. Synergistic and antagonistic interactions between potassium and magnesium in higher plants[J]. The Crop Journal, 2021, 9(2): 249−256. doi: 10.1016/j.cj.2020.10.005

    [6]

    Ishfaq M, Wang Y Q, Yan M W, et al. Physiological essence of magnesium in plants and its widespread deficiency in the farming system of China[J]. Frontiers in Plant Science, 2022, 13: 802274. doi: 10.3389/fpls.2022.802274

    [7]

    李佳佳, 于旭东, 蔡泽坪, 等. 高等植物叶绿素生物合成研究进展[J]. 分子植物育种, 2019, 17(18): 6013−6019. doi: 10.13271/j.mpb.017.006013

    Li J J, Yu X D, Cai Z P, et al. An overview of chlorophyll biosynthesis in higher plants[J]. Molecular Plant Breeding, 2019, 17(18): 6013−6019. doi: 10.13271/j.mpb.017.006013

    [8]

    Hu X Y, Gu T Y, Khan I, et al. Research progress in the interconversion, turnover and degradation of chlorophyll[J]. Cells, 2021, 10(11): 3134. doi: 10.3390/cells10113134

    [9]

    Qiu N W, Jiang D C, Wang X S, et al. Advances in the members and biosynthesis of chlorophyll family[J]. Photosynthetica, 2019, 57(4): 974−984. doi: 10.32615/ps.2019.116

    [10]

    黄康俊, 滕方振, 沈冰, 等. 镁同位素示踪表生地质过程的原理及应用[J]. 矿物岩石地球化学通报, 2022, 41(2): 213−234, 201. doi: 10.19658/j.issn.1007-2802.2022.41.014

    Huang K J, Teng F Z, Shen B, et al. Tracing surficial processes by magnesium isotopes: Principles and applications[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022, 41(2): 213−234, 201. doi: 10.19658/j.issn.1007-2802.2022.41.014

    [11]

    Wrobel K, Karasiński J, Tupys A, et al. Magnesium-isotope fractionation in chlorophyll-a extracted from two plants with different pathways of carbon fixation (C3, C4)[J]. Molecules, 2020, 25(7): 1644. doi: 10.3390/molecules25071644

    [12]

    Moynier F, Fujii T. Theoretical isotopic fractionation of magnesium between chlorophylls[J]. Scientific Reports, 2017, 7: 6973. doi: 10.1038/s41598-017-07305-6

    [13]

    Black J R, Yin Q Z, Casey W H. An experimental study of magnesium-isotope fractionation in chlorophyll-a photosynthesis[J]. Geochimica et Cosmochimica Acta, 2006, 70(16): 4072−4079. doi: 10.1016/j.gca.2006.06.010

    [14]

    Black J R, Yin Q Z, Rustad J R, et al. Magnesium isotopic equilibrium in chlorophylls[J]. Journal of the American Chemical Society, 2007, 129(28): 8690−8691. doi: 10.1021/ja072573i

    [15]

    Ra K, Kitagawa H. Magnesium isotope analysis of different chlorophyll forms in marine phytoplankton using multi-collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2007, 22(7): 817−821. doi: 10.1039/b701213f

    [16]

    Pokharel R, Gerrits R, Schuessler J A, et al. Magnesium stable isotope fractionation on a cellular level explored by cyanobacteria and black fungi with implications for higher plants[J]. Environmental Science & Technology, 2018, 52(21): 12216−12224. doi: 10.1021/acs.est.8b02238

    [17]

    Isaji Y, Yoshimura T, Araoka D, et al. Magnesium isotope fractionation during synthesis of chlorophyll a and bacteriochlorophyll a of benthic phototrophs in hypersaline environments[J]. ACS Earth and Space Chemistry, 2019, 3(6): 1073−1079. doi: 10.1021/acsearthspacechem.9b00013

    [18]

    Yamori W, Hikosaka K, Way D A. Temperature response of photosynthesis in C3, C4, and CAM plants: Temperature acclimation and temperature adaptation[J]. Photosynthesis Research, 2014, 119(1-2): 101−117. doi: 10.1007/s11120-013-9874-6

    [19]

    杨淑华, 巩志忠, 郭岩, 等. 中国植物应答环境变化研究的过去与未来[J]. 中国科学:生命科学, 2019, 49(11): 1457−1478. doi: 10.1360/SSV-2019-0201

    Yang S H, Gong Z Z, Guo Y, et al. Studies on plant responses to environmental change in China: The past and the future[J]. Scientia Sinica Vitae, 2019, 49(11): 1457−1478. doi: 10.1360/SSV-2019-0201

    [20]

    张宏宇. 胡敏酸对水稻吸收硒和镉的影响研究[D]. 武汉: 中国地质大学(武汉), 2020: 24-25.

    Zhang H Y. Effect of humic acid on selenium and cadmium uptake in rice (Oryza sativa L. )[D]. Wuhan: China University of Geosciences (Wuhan), 2020: 24−25.

    [21]

    丁跃, 吴刚, 郭长奎. 植物叶绿素降解机制研究进展[J]. 生物技术通报, 2016, 32(11): 1−9. doi: 10.13560/j.cnki.biotech.bull.1985.2016.11.001

    Ding Y, Wu G, Guo C K. Research advance on chlorophyll degradation in plants[J]. Biotechnology Bulletin, 2016, 32(11): 1−9. doi: 10.13560/j.cnki.biotech.bull.1985.2016.11.001

    [22]

    邱念伟, 王修顺, 杨发斌, 等. 叶绿素的快速提取与精密测定[J]. 植物学报, 2016, 51(5): 667−678. doi: 10.11983/CBB15190

    Qiu N W, Wang X S, Yang F B, et al. Fast extraction and precise determination of chlorophyll[J]. Chinese Bulletin of Botany, 2016, 51(5): 667−678. doi: 10.11983/CBB15190

    [23]

    Pniewski F. HPLC separation of cyanobacterial and algal photosynthetic pigments[J]. Biologia, 2020, 75(2): 223−233. doi: 10.2478/s11756-019-00407-8

    [24]

    Hu X Y, Khan I, Jiao Q S, et al. Chlorophyllase, a common plant hydrolase enzyme with a long history, is still a puzzle[J]. Genes, 2021, 12(12): 1871. doi: 10.3390/genes12121871

    [25]

    Barry C S. The stay-green revolution: Recent progress in deciphering the mechanisms of chlorophyll degradation in higher plants[J]. Plant Science, 2009, 176(3): 325−333. doi: 10.1016/j.plantsci.2008.12.013

    [26]

    Hu X, Tanaka A, Tanaka R. Simple extraction methods that prevent the artifactual conversion of chlorophyll to chlorophyllide during pigment isolation from leaf samples[J]. Plant Methods, 2013, 9: 19. doi: 10.1186/1746-4811-9-19

    [27]

    周武先, 段媛媛, 卢超, 等. 高效提取3种不同类型植物叶片色素的方法[J]. 西北农业学报, 2019, 28(1): 97−104. doi: 10.7606/j.issn.1004-1389.2019.01.012

    Zhou W X, Duan Y Y, Lu C, et al. Efficient methods for extracting pigments from three different types of plant leaves[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2019, 28(1): 97−104. doi: 10.7606/j.issn.1004-1389.2019.01.012

    [28]

    刘亚轩, 李晓静, 白金峰, 等. 植物样品中无机元素分析的样品前处理方法和测定技术[J]. 岩矿测试, 2013, 32(5): 681−693. doi: 10.15898/j.cnki.11-2131/td.2013.05.001

    Liu Y X, Li X J, Bai J F, et al. Review on sample pretreatment methods and determination techniques for inorganic elements in plant samples[J]. Rock and Mineral Analysis, 2013, 32(5): 681−693. doi: 10.15898/j.cnki.11-2131/td.2013.05.001

    [29]

    李杨子, 黄华宇, 贺茂勇, 等. 植物的非传统稳定同位素前处理及测定技术研究进展[J]. 地球环境学报, 2023, 14(3): 284−296. doi: 10.7515/JEE221016

    Li Y Z, Huang H Y, He M Y, et al. Advances in non-traditional stable isotope pretreatment and determination techniques for plants[J]. Journal of Earth Environment, 2023, 14(3): 284−296. doi: 10.7515/JEE221016

    [30]

    Bao Z A, Huang K J, Huang T Z, et al. Precise magnesium isotope analyses of high-K and low-Mg rocks by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(5): 940−953. doi: 10.1039/c9ja00002j

    [31]

    刘嘉文, 田世洪, 王玲. 镁同位素体系在重要地质过程中的应用[J]. 地学前缘, 2023, 30(3): 399−424. doi: 10.13745/j.esf.sf.2022.10.46

    Liu J W, Tian S H, Wang L. Application of magnesium stable isotopes for studying important geological processes—A review[J]. Earth Science Frontiers, 2023, 30(3): 399−424. doi: 10.13745/j.esf.sf.2022.10.46

    [32]

    梁洁, 李栋, 王明达, 等. 利用正交实验法优化青藏高原湖泊沉积色素提取与分析[J]. 中国科学:地球科学, 2016, 46(4): 497−511. doi: 10.1007/s11430-015-5240-1

    Liang J, Li D, Wang M D, et al. Application of orthogonal design to the extraction and HPLC analysis of sedimentary pigments from lakes of the Tibetan Plateau[J]. Science China: Earth Sciences, 2016, 46(4): 497−511. doi: 10.1007/s11430-015-5240-1

    [33]

    程红艳, 陈军辉, 张道来, 等. 超声波辅助提取RP-HPLC法测定浒苔中的叶绿素a、b[J]. 海洋科学, 2010, 34(2): 23−27.

    Cheng H Y, Chen J H, Zhang D L, et al. Determination of chlorophyll a and chlorophyll b in Enteromorpha prolifera by ultrasound-assisted extraction with RP-HPLC[J]. Marine Sciences, 2010, 34(2): 23−27.

    [34]

    江涛, 丛敏, 甘居利, 等. 高效液相色谱法测定海洋水体与沉积物中光合色素[J]. 分析化学, 2012, 40(4): 517−522. doi: 10.3724/SP.J.1096.2012.11089

    Jiang T, Cong M, Gan J L, et al. Determination of photosynthetic pigments in sea water and marine sediments by high performance liquid chromatography[J]. Chinese Journal of Analytical Chemistry, 2012, 40(4): 517−522. doi: 10.3724/SP.J.1096.2012.11089

    [35]

    Bao Z A, Zong C L, Chen K Y, et al. Chromatographic purification of Ca and Mg from biological and geological samples for isotope analysis by MC-ICP-MS[J]. International Journal of Mass Spectrometry, 2020, 448: 116268. doi: 10.1016/j.ijms.2019.116268

    [36]

    Zhang P, Huang K J, Luo M, et al. Constraining the terminal Ediacaran seawater chemistry by Mg isotopes in dolostones from the Yangtze Platform, South China[J]. Precambrian Research, 2022, 377: 106700. doi: 10.1016/j.precamres.2022.106700

    [37]

    王泽洲. 深部碳循环的Zn-Mg同位素示踪[D]. 北京: 中国地质大学(北京), 2020: 83-84.

    Wang Z Z. Tracing the deep carbon cycle using Zn-Mg isotopes[D]. Beijing: China University of Geosciences (Beijing), 2020: 83−84.

    [38]

    程方奎, 严家平, 范廷玉, 等. 基于正交试验法的景观水体叶绿素a最佳提取条件研究[J]. 生态科学, 2014, 33(6): 1085−1090. doi: 10.14108/j.cnki.1008-8873.2014.06.008

    Cheng F K, Yan J P, Fan T Y, et al. Research on optimizing operation parameters for leaching chlorophyll-a of landscape water based on orthogonal experiments[J]. Ecological Science, 2014, 33(6): 1085−1090. doi: 10.14108/j.cnki.1008-8873.2014.06.008

    [39]

    Zhao J, Yao P, Yu Z G, et al. Orthogonal design for optimization of pigment extraction from surface sediments of the Changjiang River Estuary[J]. Acta Oceanologica Sinica, 2011, 30(4): 33−42. doi: 10.1007/s13131-011-0131-6

    [40]

    Vanheukelem L, Lewitus J, Kana T M, et al. Improved separations of phytoplankton pigments using temperature-controlled high performance liquid chromatography[J]. Marine Ecology Progress Series, 1994, 114(3): 303−313. doi: 10.3354/meps114303

    [41]

    Tanaka R, Tanaka A. Chlorophyll cycle regulates the construction and destruction of the light-harvesting complexes[J]. Biochimica et Biophysica Acta-Bioenergetics, 2011, 1807(8): 968−976. doi: 10.1016/j.bbabio.2011.01.002

  • 加载中

(2)

(5)

计量
  • 文章访问数:  72
  • PDF下载数:  0
  • 施引文献:  0
出版历程
收稿日期:  2022-08-30
修回日期:  2024-01-31
录用日期:  2024-02-20
刊出日期:  2024-05-31

目录