中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

高压密闭酸溶-电感耦合等离子体发射光谱法测定硼矿石中的硼

王蕾, 于汀汀, 孙红宾, 张保科. 高压密闭酸溶-电感耦合等离子体发射光谱法测定硼矿石中的硼[J]. 岩矿测试, 2024, 43(3): 468-475. doi: 10.15898/j.ykcs.202308070131
引用本文: 王蕾, 于汀汀, 孙红宾, 张保科. 高压密闭酸溶-电感耦合等离子体发射光谱法测定硼矿石中的硼[J]. 岩矿测试, 2024, 43(3): 468-475. doi: 10.15898/j.ykcs.202308070131
WANG Lei, YU Tingting, SUN Hongbin, ZHANG Baoke. Boron Analysis in Boron Ores by Inductively Coupled Plasma-Optical Emission Spectrometry with Sealed Acid Digestion at High Pressure[J]. Rock and Mineral Analysis, 2024, 43(3): 468-475. doi: 10.15898/j.ykcs.202308070131
Citation: WANG Lei, YU Tingting, SUN Hongbin, ZHANG Baoke. Boron Analysis in Boron Ores by Inductively Coupled Plasma-Optical Emission Spectrometry with Sealed Acid Digestion at High Pressure[J]. Rock and Mineral Analysis, 2024, 43(3): 468-475. doi: 10.15898/j.ykcs.202308070131

高压密闭酸溶-电感耦合等离子体发射光谱法测定硼矿石中的硼

  • 基金项目: 国家重点研发计划项目(2021YFC2903000)课题“战略性矿产多元素同时分析技术和标准化”
详细信息
    作者简介: 王蕾,高级工程师,从事地质样品分析方法研究与应用。E-mail:13311060626@189.cn
    通讯作者: 张保科,高级工程师,从事地质样品分析方法研究与应用。E-mail:zhangbaoke@mail.cgs.gov.cn
  • 中图分类号: O657.31

Boron Analysis in Boron Ores by Inductively Coupled Plasma-Optical Emission Spectrometry with Sealed Acid Digestion at High Pressure

More Information
  • 应用电感耦合等离子体发射光谱法(ICP-OES)分析硼矿石中的硼含量,样品分解方法多采用酸溶法和熔融法,硼酸在浓酸溶液中加热蒸发时形成易挥发的BF3或BCl3,造成硼的损失。熔融法可分解难溶于酸的硅硼钙石、电气石等样品,但将大量钠盐引入了样品中,基体较大,检出限高。本文建立了高压密闭酸溶、ICP-OES测定硼矿石中硼含量的方法。样品经硝酸和氢氟酸在高压密闭溶样罐中分解完全、定容稀释后,样品溶液用配备耐氢氟酸进样系统的ICP-OES测定。在ICP-OES中,硼有三条常用分析谱线,选取249.677nm为硼的分析谱线,标准曲线的线性相关系数大于0.9995。采用本方法对硼镁矿、锰方硼石和盐湖型固体硼矿三种类型5个不同含量范围的实际样品进行测定,相对标准偏差(RSD,n=11)为0.39%~2.66%,方法检出限为1.76µg/g,硼含量定量范围为5.87µg/g~10.8%。经标准物质验证,硼含量测定值与标准值一致,与容量法和微波消解法测定结果吻合。本方法试剂用量少,无需蒸干样品溶液,有效地避免了硼酸易挥发和试剂用量大的问题。

  • 加载中
  • 表 1  实验用样品信息

    Table 1.  Information of experimental samples

    样品编号采样地点样品类型硼含量
    (%)
    NBFB-1辽宁宽甸硼镁矿10.8
    NBFB-2天津蓟县锰方硼石1.48
    NBFB-3辽宁宽甸硼镁矿7.77
    NBFB-4辽宁宽甸硼镁矿2.95
    NBFB-5青海大柴旦盐湖盐湖型固体硼矿0.27
    下载: 导出CSV

    表 2  硼标准溶液线性回归方程及线性相关系数

    Table 2.  Linear regression equation and linear correlation coefficient of boron standard solution

    硼元素分析谱线
    (nm)
    线性回归方程线性相关系数
    (R2)
    208.889y=168.01x+43.0371.0000
    249.677y=17635x+1474.11.0000
    249.772y=36192x+685470.9996
    下载: 导出CSV

    表 3  本文方法与容量法、微波消解法测定硼含量结果对比

    Table 3.  Comparison of boron content determined by this method, volumetric method and microwave digestion method

    标准物质和
    实际样品
    编号
    硼含量标准值
    (%)
    硼含量测定值(%)
    本文方法 容量法 微波消解法
    YSB1674-05 1.75±0.047 1.74 1.73 1.74
    GBW03132 2.75±0.034 2.74 2.77 2.76
    NBFB-1 10.9 10.9 10.8
    NBFB-3 7.75 7.82 7.80
    下载: 导出CSV

    表 4  样品百分总和结果

    Table 4.  Aggregation results of samples

    实际样品
    编号
    主量元素和烧失量测定值(%)加和
    (%)
    Al2O3CaOTFe2O3K2OMgOMnONa2OP2O5SiO2TiO2B2O3LOI
    NBFB-10.683.506.320.3637.50.390.030.062.810.0534.813.099.5
    NBFB-23.737.822.032.304.4721.80.070.1026.00.144.7722.996.2
    NBFB-31.513.405.060.9037.20.290.080.6316.40.0524.89.81100.2
    NBFB-40.061.910.400.0146.30.080.040.045.290.019.6036.199.9
    NBFB-52.8815.21.030.8118.40.053.490.0416.50.130.8737.997.2
    下载: 导出CSV

    表 5  方法精密度

    Table 5.  Precision test of the method

    实际样品
    编号
    硼含量测定值(%) RSD
    (%)
    11次分次测定值 平均值
    NBFB-1 10.80 10.72 10.80 10.84 10.79
    10.80 10.76 10.80 10.86
    10.86 10.77
    10.80 0.39
    NBFB-2 1.48 1.49 1.50 1.49 1.47 1.49
    1.50 1.49 1.47 1.46 1.47
    1.48 0.81
    NBFB-3 7.71 7.73 7.73 7.82 7.73 7.76
    7.87 7.86 7.71 7.86 7.75
    7.77 0.82
    NBFB-4 3.00 3.08 2.91 3.04 2.96 2.90
    3.03 2.82 2.92 2.89 2.89
    2.95 2.66
    NBFB-5 0.26 0.27 0.26 0.27 0.26 0.27
    0.28 0.27 0.26 0.27 0.27
    0.27 2.23
    下载: 导出CSV
  • [1]

    《岩石矿物分析》编委会. 岩石矿物分析(第四版 第二分册)[M]. 北京: 地质出版社, 2011: 376−396.

    The editorial committee of “Rock and Mineral Analysis”. Rock and Mineral Analysis (The 4th edition, Volume Ⅱ) [M]. Beijing: Geological Publishing House, 2011: 376−396.

    [2]

    于微. 分光光度法测定水系沉积物中硼[J]. 吉林地质, 2014, 33(4): 61−63. doi: 10.3969/j.issn.1001-2427.2014.04.014

    Yu W. Determination of boron in stream sediments by spectrophotometric method[J]. Jilin Geology, 2014, 33(4): 61−63. doi: 10.3969/j.issn.1001-2427.2014.04.014

    [3]

    邢书才, 杨永, 岳亚萍. 姜黄素分光光度法测定水中硼的优化检测条件研究[J]. 中国测试, 2019, 45(6): 65−69.

    Xing S C, Yang Y, Yue Y P. Study on the optimizing conditions for determining boron in water by curcumin spectrophotometry[J]. China Measurement & Test, 2019, 45(6): 65−69.

    [4]

    赵志刚, 韦雪梅, 赵华丽. 高氯酸消解电位滴定法测定硼粉纯度[J]. 化学分析计量, 2022, 31(6): 46−49. doi: 10.3969/j.issn.1008-6145.2022.06.011

    Zhao Z G, Wei X M, Zhao H L. Determination of the purity of boron powder by potentiometric titration after sample digested by perchloric[J]. Chemical Analysis and Meterage, 2022, 31(6): 46−49. doi: 10.3969/j.issn.1008-6145.2022.06.011

    [5]

    王顺祥, 龚仓, 吴少青, 等. 固体进样-CCD光电直读发射光谱法测定地球化学样品中微量银、硼和锡[J]. 中国无机分析化学, 2023, 13(8): 863−868. doi: 10.3969/j.issn.2095-1035.2023.08.012

    Wang S X, Gong C, Wu S Q, et al. Determination of trace silver, boron and tin in geochemical samples by CCD optical direct-reading emission spectrometer with solid injection[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(8): 863−868. doi: 10.3969/j.issn.2095-1035.2023.08.012

    [6]

    张元, 王文东, 卢兵, 等. 碱熔-阳离子交换树脂分离ICP-MS法测定厚覆盖区地球化学调查样品中硼锗溴钼锡碘钨[J]. 岩矿测试, 2022, 41(1): 99−108.

    Zhang Y, Wang W D, Lu B, et al. Determination of boron, germanium, bromine, molybdenum, tin, iodine and tungsten in geochemical survey sample by ICP-MS with alkali fusion-cation exchange resin separation[J]. Rock and Mineral Analysis, 2022, 41(1): 99−108.

    [7]

    Manousi N, Kabir A, Furton K G, et al. Dual lab-in-syringe flow-batch platform for automatic fabric disk sorptive extraction/back-extraction as a front end to inductively coupled plasma atomic emission spectrometry[J]. Analytical Chemistry, 2022, 94(38): 12943−12947. doi: 10.1021/acs.analchem.2c02268

    [8]

    Vievard J, Amoikon T L, Coulibaly N A, et al. Extraction and quantification of pesticides and metals in palm wines by HS-SPME/GC–MS and ICP-AES/MS[J]. Food Chemistry, 2022, 393: 133352. doi: 10.1016/j.foodchem.2022.133352

    [9]

    Zeng Y, Yokoyama Y, Hirabayashi S, et al. A rapid and precise method of establishing age model for coral skeletal radiocarbon to study surface oceanography using coupled X-ray photos and ICP-AES measurement[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2022, 533: 23−28.

    [10]

    Erickson B. Product review: ICP-AES remains competitive[J]. Analytical Chemistry, 1998, 70(5): 211A−215A. doi: 10.1021/ac9817725

    [11]

    刘向磊, 孙文军, 任彧仲, 等. 微波消解 混合模式电感耦合等离子体质谱法测定土壤或沉积物中银、锡、硼[J]. 质谱学报, 2022, 43(4): 522−532. doi: 10.7538/zpxb.2021.0205

    Liu X L, Sun W J, Ren Y Z, et al. Determination of sliver, tin and boron in soil or sediment sample with microwave digestion by mixed mode inductive coupled plasma mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2022, 43(4): 522−532. doi: 10.7538/zpxb.2021.0205

    [12]

    刘跃, 王记鲁, 李静, 等. 高压密闭消解-电感耦合等离子体质谱(ICP-MS)法测定土壤背景点样品中的29种元素[J]. 中国无机分析化学, 2023, 13(2): 136−142.

    Liu Y, Wang J L, Li J, et al. Determination of 29 elements in soil background site samples by inductively coupled plasma mass spectrometry with high pressure closed digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(2): 136−142.

    [13]

    赵庆令, 李清彩, 蒲军, 等. 电感耦合等离子体发射光谱法同时测定土壤样品中砷硼铈碘铌硫钪锶钍锆等 31种元素[J]. 岩矿测试, 2010, 29(4): 455−457.

    Zhao Q L, Li Q C, Pu J, et al. Simultaneous determination of 31 elements in soil samples by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2010, 29(4): 455−457.

    [14]

    杜宝华, 盛迪波, 王日中, 等. 电感耦合等离子体发射光谱(ICP-OES)法测定含硼聚乙烯核屏蔽材料中的硼[J]. 中国无机分析化学, 2023, 13(3): 274−277. doi: 10.3969/j.issn.2095-1035.2023.03.012

    Du B H, Sheng D B, Wang R Z, et al. Determination of boron content in boron-containing polyethylene nuclear shielding materials by ICP-OES[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(3): 274−277. doi: 10.3969/j.issn.2095-1035.2023.03.012

    [15]

    方宏树, 孔晓彦, 胡兰基. ICP-OES法测定盐湖土壤中锂和硼的方法研究[J]. 当代化工, 2023, 52(1): 248−252.

    Fang H S, Kong X Y, Hu L J. Study on the determination method of lithium and boron in salt lake soil by ICP-OES[J]. Contemporary Chemical Industry, 2023, 52(1): 248−252.

    [16]

    黄合生, 邢文青, 黄波, 等. ICP-AES法测定凝渣剂中铝和硼元素含量[J]. 南方金属, 2023, 250: 19−23.

    Huang H S, Xing W B, Huang B, et al. Determination of aluminum and boron in slag coagulant by inductively coupled plasma[J]. South Metals, 2023, 250: 19−23.

    [17]

    李冰, 马新荣, 杨红霞, 等. 封闭酸溶-电感耦合等离子体原子发射光谱法同时测定地质样品中硼砷硫[J]. 岩矿测试, 2003, 22(4): 241−247. doi: 10.3969/j.issn.0254-5357.2003.04.001

    Li B, Ma X R, Yang H X, et al. Determination of boron, arsenic and sulfur in geological samples by inductively coupled plasma atomic emission spectrometry with sample treatment by pressurized decomposition[J]. Rock and Mineral Analysis, 2003, 22(4): 241−247. doi: 10.3969/j.issn.0254-5357.2003.04.001

    [18]

    Zarcinas B A, Cartwright B. Acid dissolution of soils and rocks for the determination of boron inductively coupled plasma atomic emission spectrometry[J]. Analyst, 1987, 112(8): 1107−1112. doi: 10.1039/an9871201107

    [19]

    方宏树, 何媛媛, 鲁海妍. 过氧化钠熔融ICP-OES法试测定地矿样品中的硼[J]. 化学工程师, 2023(1): 24−28.

    Fang H S, He Y Y, Lu H Y. Determination of boron in geological and mineral samples by sodium peroxide melting ICP-OES[J]. Chemical Engineer, 2023(1): 24−28.

    [20]

    易田芳, 向勇, 蒋建军, 等. 四酸微波消解-电感耦合等离子体发射光谱(ICP-OES)法测定土壤和沉积物中全硼含量[J]. 中国无机分析化学, 2023, 13(6): 576−581. doi: 10.3969/j.issn.2095-1035.2023.06.010

    Yi T F, Xiang Y, Jiang J J, et al. Determination of total boron in soil and deposit by inductively coupled plasma optical emission spectroscopy with four acids-microwave digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(6): 576−581. doi: 10.3969/j.issn.2095-1035.2023.06.010

    [21]

    《矿产资源工业要求手册》编委会. 矿产资源工业要求手册[M]. 北京: 地质出版社, 2012.

    [22]

    肖凡, 张宁, 姜云军, 等. 密闭酸溶-电感耦合等离子体原子发射光谱法测定地球化学调查样品中硼[J]. 冶金分析, 2018, 38(6): 50−54.

    Xiao F, Zhang N, Jiang Y J, et al. Determination of boron in geochemical survey sample by inductively coupled plasma atomic emission spectrometry after acid dissolution in closed system[J]. Metallurgical Analysis, 2018, 38(6): 50−54.

    [23]

    王蕾, 张保科, 马生凤, 等. 封闭压力酸溶-电感耦合等离子体光谱法测定钨矿石中的钨[J]. 岩矿测试, 2014, 33(5): 661−664. doi: 10.3969/j.issn.0254-5357.2014.05.008

    Wang L, Zhang B K, Ma S F, et al. Determination of wolfram in tungsten ore by pressurized acid digestion-inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2014, 33(5): 661−664. doi: 10.3969/j.issn.0254-5357.2014.05.008

    [24]

    叶家瑜, 江宝林. 区域地球化学勘查样品分析方法[M]. 北京: 地质出版社, 2004: 226-227.

    [25]

    金佳旭, 郑旭, 付彦吉, 等. 不同酸液作用下牛蹄塘组页岩孔隙结构演化特征试验研究[J]. 工程地质学报, 2021, 29(3): 891−900.

    Jin J X, Zhen X, Fu Y J, et al. Experimental study of acidization impact to pore topological structure variation of Niutitang shale[J]. Journal of Engineering Geology, 2021, 29(3): 891−900.

    [26]

    印万忠. 氢氟酸在硅酸盐矿物浮选中的作用机制[J]. 黄金学报, 1999, 1(4): 271−274.

    Yin W Z. Effect mechanism of hydrofluoric acid in flotation of silicate minerals[J]. Gold Journal, 1999, 1(4): 271−274.

    [27]

    杨林, 邹国庆, 周武权, 等. 微波消解-电感耦合等离子体质谱(ICP-MS)法测定稀有多金属矿中锂铍铌钽铷铯[J]. 中国无机分析化学, 2023, 13(8): 825−830. doi: 10.3969/j.issn.2095-1035.2023.08.006

    Yang L, Zou G Q, Zhou W Q, et al. Determination of Li, Be, Nb, Ta, Rb, Cs in rare polymetallic ores by inductively coupled plasma mass spectrometry (ICP-MS) with microwave digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(8): 825−830. doi: 10.3969/j.issn.2095-1035.2023.08.006

    [28]

    朱健, 马程程, 赵磊, 等. 高压密闭消解-电感耦合等离子体质谱法测定煤中17种金属元素[J]. 理化检验(化学分册), 2014, 50(8): 960−963.

    Zhu J, Ma C C, Zhao L, et al. ICP-MS determination of 17 metal elements in coal with high-pressure closed digestion[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2014, 50(8): 960−963.

    [29]

    马亮帮, 张大勇, 腾格尔, 等. 高压密闭消解-电感耦合等离子体质谱(ICP-MS)法测定煤中稀土元素[J]. 中国无机分析化学, 2019, 9(4): 27−30.

    Ma L B, Zhang D Y, Tenger, et al. Determination of rare earth elements in coal by inductively coupled plasma-mass spectrometry with high-pressure closed digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(4): 27−30.

    [30]

    李迎春, 周伟, 王健, 等. X射线荧光光谱法测定高锶高钡的硅酸盐样品中主量元素[J]. 岩矿测试, 2013, 32(2): 249−253.

    Li Y C, Zhou W, Wang J, et al. Determination of major elements in silicate samples with high content strontium and barium by X-ray fluorescence spectrometry[J]. Rock and Mineral Analysis, 2013, 32(2): 249−253.

    [31]

    李迎春, 张磊, 周伟, 等. 熔融制样-波长色散和能量色散X射线荧光光谱仪应用于硅酸盐类矿物及疑难样品分析[J]. 岩矿测试, 2020, 39(6): 828−838.

    Li Y C, Zhang L, Zhou W, et al. Determination of major and minor elements in rock, soils and sediments and complex samples by wavelength and energy dispersive X-ray fluorescence Spectrometry with fusion sampling[J]. Rock and Mineral Analysis, 2020, 39(6): 828−838.

  • 加载中

(5)

计量
  • 文章访问数:  62
  • PDF下载数:  0
  • 施引文献:  0
出版历程
收稿日期:  2023-08-07
修回日期:  2024-03-08
录用日期:  2024-03-20
刊出日期:  2024-05-31

目录