中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

西藏羊八井高温地热水砷和氟浓度及来源探析

许耿, 肖方景, 崔小梅, 布多, 张强英. 西藏羊八井高温地热水砷和氟浓度及来源探析[J]. 岩矿测试, 2024, 43(3): 487-500. doi: 10.15898/j.ykcs.202310260168
引用本文: 许耿, 肖方景, 崔小梅, 布多, 张强英. 西藏羊八井高温地热水砷和氟浓度及来源探析[J]. 岩矿测试, 2024, 43(3): 487-500. doi: 10.15898/j.ykcs.202310260168
XU Geng, XIAO Fangjing, CUI Xiaomei, BU Duo, ZHANG Qiangying. Concentrations and Sources of Arsenic and Fluoride in High-Temperature Geothermal Water from Yangbajing, Xizang[J]. Rock and Mineral Analysis, 2024, 43(3): 487-500. doi: 10.15898/j.ykcs.202310260168
Citation: XU Geng, XIAO Fangjing, CUI Xiaomei, BU Duo, ZHANG Qiangying. Concentrations and Sources of Arsenic and Fluoride in High-Temperature Geothermal Water from Yangbajing, Xizang[J]. Rock and Mineral Analysis, 2024, 43(3): 487-500. doi: 10.15898/j.ykcs.202310260168

西藏羊八井高温地热水砷和氟浓度及来源探析

  • 基金项目: 国家自然科学基金项目(22266032);第二次青藏高原综合科学考察研究项目(2019QZKK0603); 西藏自治区科技厅中央引导地方科技发展资金项目(XZ202202YD0016C);中央支持地方高校改革发展计划项目([2023]1号)
详细信息
    作者简介: 许耿,硕士研究生,主要从事水污染及其控制技术研究。E-mail:xgydsa@163.com
    通讯作者: 布多,博士,教授,主要从事环境化学与环境生态学研究。E-mail:phudor@vip.163.com。;  张强英,博士,副教授,主要从事地热水水质调查、水污染及其控制技术研究。E-mail:zhangqiangying@utibet.edu.cn
  • 中图分类号: P618.64;P641.12

Concentrations and Sources of Arsenic and Fluoride in High-Temperature Geothermal Water from Yangbajing, Xizang

More Information
  • 砷(As)和氟(F)是西藏羊八井高温地热流体中两种典型的高浓度有害元素,通过地热开发可以进一步促进与加速地热源As和F向地表或近地表环境释放,导致地表水和土壤环境污染。如何从As和F浓度分布特征联系水化学特征从而揭示水体As和F的富集规律,对丰富和认识西藏地区水环境中As和F的环境地球化学行为具有重要意义。本文结合野外调查现场测定了水体常规理化指标,包括水温、pH值、电导率(EC)、总溶解固体(TDS)和盐度(SAL),采用原子荧光光谱法和X射线荧光光谱法分别测定水体和土壤样品中的As浓度,离子选择性电极法测定水体和土壤样品中的F浓度,评价As和F超标风险,探析其富集机制。结果表明:水化学类型为Na-HCO3∙Cl型,水体Na+浓度高达445.5mg/L,Ca2+浓度低至3.31mg/L,水体pH在7.87~9.42之间,富钠贫钙高pH是羊八井地热水和温泉水最主要的水化学特征。受水汽蒸发浓缩影响,温泉水As和F浓度高于地热水,两元素浓度最高分别达6.50mg/L和17.89mg/L。地热废水的不当处理存在水体和土壤As和F暴露风险,地热水和温泉水As和F浓度显著高于《地热资源评价方法》(DZ40—85)对有害成分规定的最高允许排放浓度(总砷为0.50mg/L,氟化物为10mg/L)。而土壤中总As浓度为79.50~99.08mg/kg,F浓度为1162.70~1285.10mg/kg,显著高于西藏土壤背景值。地热水体和地表土壤As和F富集主要为水-岩浸溶相互作用,独特的水化学特征为水体As和F浸取溶出提供了有利条件。

  • 加载中
  • 图 1  羊八井地热发电站位置(a)及周围分布格局(b)

    Figure 1. 

    图 2  水体水化学成分Piper三线图

    Figure 2. 

    图 3  水体中总As(a)和F浓度(b),温泉水水汽蒸发(c)和地热钻井口(d)照片

    Figure 3. 

    图 4  土壤中总As浓度(a)和总F浓度(b)

    Figure 4. 

    Figure E.1. 

    表 1  样品分析方法及测定条件

    Table 1.  Sample analysis methods and measurement conditions

    样品类型和元素 分析方法 检出限 RSD 仪器测定条件
    水体As、Hg、Sb、Se AFS As:0.0096μg/L
    Hg:0.0017μg/L
    Sb:0.01μg/L
    Se:0.01μg/L
    <5% (1)还原剂:0.5% (m/m) NaOH+2% (m/m) KBH4
    (2)载液:5% (V/V)盐酸
    (3)载气(Ar)流速0.4L/min
    土壤As XRF 1mg/kg <5% 分析线Kβ;能量11.72keV;电压50kV;分析时间300s;滤光片Ag
    土壤和水体F ISE 定量下限0.09mg/L <5% 10mL样品+1mL总离子强度调节缓冲溶液(TISAB)
    水体Ca2+、K+、Na+、Mg2+、Cl、NO3 IC Ca2+:0.011mg/L
    K+:0.02mg/L
    Na+:0.005mg/L
    Mg2+:0.013mg/L
    Cl:0.032mg/L
    NO3 :0.054mg/L
    <5% (1) EGC-III淋洗液自动发生器;DS6型电导检测器
    阳离子测定条件:CSRS 300-4 mm阳离子抑制器;CS12A型分离柱(4mm×250mm);淋洗液20mmol/L硫酸;流速1mL/min;进样体积500μL
    (2)阴离子测定条件:ASRS 300-4 mm阴离子抑制器;Ion Pac AS19型分离柱(4mm×250mm);淋洗液:30mmol/L KOH; 流速1mL/min;进样体积500μL
    水体CO3 2−、HCO3 容量法 <1% 5%酚酞-乙醇指示剂;1%溴酚蓝指示剂;双指示剂滴定分析法
    水体Ca、K、Na、Mg、Fe、Al、Mn ICP-OES Ca:0.003mg/L
    K:0.06mg/L
    Na:0.02mg/L
    Mg:0.02mg/L
    Fe:0.002mg/L
    Al:0.03mg/L
    Mn:0.005mg/L
    <5% (1)射频功率1250W;等离子体气(Ar)流速15L/min;辅助气(Ar)流速0.2L/min;雾化器气体(Ar)流速0.75L/min;样品提升量1.5L/min;观测方式:垂直;冲洗时间30s;积分时间5s;重复测定3次
    (2)最佳波长选择:Ca 317.933nm、K 766.49nm、Na 588.995nm、Mg 285.213nm、Fe 238.204nm、Al 396.153nm、Mn 285.213nm
    水体V、Be、Zn、Cr、Co、Ni、Mn、Pb、Mo、Ti、Cu、Ba、Cd ICP-MS
    Zn、Cr、Be、Co、Ni、Mn、Cu、Cd: 1~10ng/L;
    Mo、Pb、Ba、Ti、V: 0.1~1ng/L
    <5% (1)射频功率1150W;等离子体气(Ar)流速17 L/min;辅助气(Ar)流速1.2 L/min;载气(Ar)流速1.06 L/min;扫描模式为跳峰;重复测定3次
    (2)m/z: 51V、9Be、66Zn、52Cr、59Co、60Ni、55Mn、208Pb、98Mo、48Ti、63Cu、115Ba、111Cd
    下载: 导出CSV

    表 2  水体和土壤中As和F浓度测定准确性验证

    Table 2.  The accuracy of measuring As and F concentrations in water and soil samples

    样品类型 元素 加标值
    (mg/L)
    测定值
    (mg/L)
    回收率
    (%)
    地热水As03.16±0.10
    36.25±0.12103.0±2.69
    F015.91±0.24
    1530.65±0.4798.2±3.16
    温泉水As04.18±0.07
    48.78±0.12114.8±2.98
    F017.67±0.23
    2037.65±0.1599.9±0.75
    土壤样品元素标准值
    (mg/kg)
    测定值
    (mg/kg)
    回收率
    (%)
    沉积物GBW07310As25±3.028.4±0.85113.5±3.40
    F149±25138.0±16.5792.6±11.10
    下载: 导出CSV

    表 3  水质常规理化参数

    Table 3.  Conventional physicochemical parameters of the water quality

    采样时间 水期 样品类型 采样位置 水温
    (℃)
    pH 电导
    (μS/cm)
    TDS
    (mg/L)
    盐度
    (mg/L)
    2021年6月 丰水期 温泉水 温泉洗浴入口 41.4 9.42 1690 1180 914
    地热水 电站钻井口 76.0 9.15 1699 1220 952
    2021年11月 平水期 温泉水 温泉洗浴排废口 29.6 7.87 1882 1340 956
    地热水 电站钻井口 78.0 8.95 1670 1213 935
    2022年4月 枯水期 温泉水 温泉洗浴排废口 28.3 7.93 1783 1238 974
    地热水 电站钻井口 77.5 9.14 1678 1126 983
    下载: 导出CSV

    表 4  地热水和温泉水中主要阴阳离子浓度

    Table 4.  Concentrations of major anion and cation ions in the geothermal and hot spring waters

    样品类型 阳离子浓度(mg/L) 阴离子浓度(mg/L) 阳离子当量浓度
    (mmol/L)
    阴离子当量浓度
    (mmol/L)
    相对误差
    (%)
    Ca2+ Mg2+ K+ Na+ Cl SO4 2− CO3 2− HCO3
    地热水
    (钻井口)一电厂
    6.66 0.20 35.19 445.5 331.6 16.79 85.95 546.4 20.63 21.53 2.13
    地热水
    (废井口)二电厂
    3.31 0.013 3.42 147.2 59.26 26.30 14.51 260.1 6.66 6.97 2.28
    温泉水洗浴
    (入口)
    38.23 10.86 15.91 183.4 72.46 99.9 4.84 262.3 11.19 8.59 13.15
    温泉水洗浴
    (排废)
    31.45 5.66 47.02 328.5 91.60 229 ND 428.9 17.53 14.38 9.85
    注:“ND”为未检出。
    下载: 导出CSV

    表 5  地热水和温泉水中金属元素浓度

    Table 5.  The metal element concentrations in geothermal and hot spring waters

    样品类型
    金属元素浓度(mg/L)
    Ca K Mg Na Fe V Be Mn Cr Pb Sb
    温泉水 35.74 15.46 10.20 195.4 0.091 0.009 0.002 0.14 0.035 0.0002 0.014
    地热水 6.36 36.63 <0.013 456.5 0.047 0.013 0.005 0.012 0.049 0.0002 0.027
    样品类型 Mo Cd Ti Se Zn Cu Ni Co Ba Hg
    温泉水 0.035 0.0002 0.018 ND 0.002 0.0008 0.0032 0.00013 0.16 <0.0004
    地热水 0.070 0.0001 0.025 ND 0.003 0.0014 0.0029 0.00003 0.090 <0.0004
    注:“ND”表示未检出。
    下载: 导出CSV
  • [1]

    Wang G L, Zhang W, Ma F, et al. Overview on hydrothermal and hot dry rock researches in China[J]. China Geology, 2018, 1(2): 273−285. doi: 10.31035/cg2018021

    [2]

    多吉. 典型高温地热系统——羊八井热田基本特征[J]. 中国工程科学, 2003(1): 42−47. doi: 10.3969/j.issn.1009-1742.2003.01.008

    Duo J. The basic characteristics of the Yangbajing geothermal field—A typical high temperature geothermal system[J]. Strategic Study of CAE, 2003(1): 42−47. doi: 10.3969/j.issn.1009-1742.2003.01.008

    [3]

    陈卫营, 薛国强, 赵平, 等. 西藏羊八井地热田SOTEM探测及热储结构分析[J]. 地球物理学报, 2023, 66(11): 4805−4816. doi: 10.6038/cjg2023Q0848

    Chen W Y, Xue G Q, Zhao P, et al. SOTEM exploration and reservoir structure analysis of Yangbajain geothermal field, Xizang[J]. Chinese Journal of Geophysics, 2023, 66(11): 4805−4816. doi: 10.6038/cjg2023Q0848

    [4]

    Wang X, Wang G, Gan H, et al. Genetic mechanisms of sinter deposit zones in the Yangyi geothermal field, Tibet: Evidence from the hydrochemistry of geothermal fluid[J]. Geothermics, 2022, 103: 102408. doi: 10.1016/j.geothermics.2022.102408

    [5]

    胡志华, 高洪雷, 万汉平, 等. 西藏羊八井地热田水热蚀变的时空演化特征[J]. 地质论评, 2022, 68(1): 359−374. doi: 10.16509/j.georeview.2021.12.105

    Hu Z H, Gao H L, Wan H P, et al. Temporal and spatial evolution of hydrothermal alteration in the Yangbajing Geothermal Field, Xizang (Tibet)[J]. Geological Review, 2022, 68(1): 359−374. doi: 10.16509/j.georeview.2021.12.105

    [6]

    刘高令, 姜贞贞, 刘高博, 等. 西藏地区羊八井地热水中胶体粒子分析与表征[J]. 岩矿测试, 2023, 42(6): 1156−1164. doi: 10.15898/j.ykcs.202303130034

    Liu G L, Jiang Z Z, Liu G B, et al. Analysis and characterization of colloidal particles in Yangbajing geothermal water, Tibet[J]. Rock and Mineral Analysis, 2023, 42(6): 1156−1164. doi: 10.15898/j.ykcs.202303130034

    [7]

    赵平, 金建, 张海政, 等. 西藏羊八井地热田热水的化学组成[J]. 地质科学, 1998(1): 62−73.

    Zhao P, Jin J, Zhang H Z, et al. Chemical composition of thermal water in the Yangbajing geothermal field, Tibet[J]. Scientia Geologica Sinica, 1998(1): 62−73.

    [8]

    孙红丽, 马峰, 蔺文静, 等. 西藏高温地热田地球化学特征及地热温标应用[J]. 地质科技情报, 2015, 34(3): 171−177.

    Sun H L, Ma F, Lin W J, et al. Geochemical characteristics and geothermometer application in high-temperature geothermal field in Tibet[J]. Geological Science and Technology Information, 2015, 34(3): 171−177.

    [9]

    刘勇, 王阳, 布多, 等. 羊八井地热水中金属特征分析及对周边环境的影响[J]. 西藏科技, 2014(9): 22−24. doi: 10.3969/j.issn.1004-3403.2014.09.008

    Liu Y, Wang Y, Bu D, et al. Characterization of metals in geothermal water from Yangbajing and their impact on the surrounding environment[J]. Tibet Science and Technology, 2014(9): 22−24. doi: 10.3969/j.issn.1004-3403.2014.09.008

    [10]

    张庆, 谭红兵, 渠涛, 等. 西藏地热水中典型有害元素对河流水质的影响[J]. 水资源保护, 2014, 30(4): 23−29. doi: 10.3969/j.issn.1004-6933.2014.04.006

    Zhang Q, Tan H B, Qu T, et al. Impacts of typical harmful elements in geothermal water on river water quality in Tibet[J]. Water Resources Protection, 2014, 30(4): 23−29. doi: 10.3969/j.issn.1004-6933.2014.04.006

    [11]

    魏晓阳, 郭清海, 袁建飞, 等. 高温地热流体来源氟在环境中的分布特征——以西藏羊八井热田为例[J]. 东华理工大学学报(自然科学版), 2009, 32(1): 38−44. doi: 10.3969/j.issn.1674-3504.2009.01.006

    Wei X Y, Guo Q H, Yuan J F, et al. Environmental migration and transformation of fluoride from high-temperature geothermal fluid: A case study at Yangbajing, Tibet, China[J]. Journal of East China Institute of Technology, 2009, 32(1): 38−44. doi: 10.3969/j.issn.1674-3504.2009.01.006

    [12]

    郭清海, 叶露, 魏晓阳, 等. 富砷地热废水排放的水环境效应——以西藏羊八井热田为例[J]. 环境科学与技术, 2009, 32(9): 116−119, 128. doi: 10.3969/j.issn.1003-6504.2009.09.026

    Guo Q H, Ye L, Wei X Y, et al. Water-environmental effects induced by discharging geothermal wastewater with high as levels: A case study at Yangbajing in Tibet[J]. Environmental Science & Technology, 2009, 32(9): 116−119, 128. doi: 10.3969/j.issn.1003-6504.2009.09.026

    [13]

    Guo Q H, Wang Y X, Liu W. Major hydrogeochemical processes in the two reservoirs of the Yangbajing geothermal field, Tibet, China[J]. Journal of Volcanology and Geothermal Research, 2007, 166(3): 255−268. doi: 10.1016/j.jvolgeores.2007.08.004

    [14]

    Zheng T, Deng Y, Lin H, et al. Hydrogeochemical controls on As and B enrichment in the aqueous environment from the Western Tibetan Plateau: A case study from the Singe Tsangpo River Basin[J]. Science of the Total Environment, 2022, 817: 152978. doi: 10.1016/j.scitotenv.2022.152978

    [15]

    孙红丽, 马峰, 刘昭, 等. 西藏高温地热显示区氟分布及富集特征[J]. 中国环境科学, 2015, 35(1): 251−259.

    Sun H L, Ma F, Liu Z, et al. The distribution and enrichment characteristics of fluoride in geothermal active area in Tibet[J]. China Environmental Science, 2015, 35(1): 251−259.

    [16]

    Li S, Wang M, Yang Q, et al. Enrichment of arsenic in surface water, stream sediments and soils in Tibet[J]. Journal of Geochemical Exploration, 2013, 135: 104−116. doi: 10.1016/j.gexplo.2012.08.020

    [17]

    Guo Q, He T, Wu Q, et al. Constraints of major ions and arsenic on the geological genesis of geothermal water: Insight from a comparison between Xiong’an and Yangbajing, two hydrothermal systems in China[J]. Applied Geochemistry, 2020, 117: 104589. doi: 10.1016/j.apgeochem.2020.104589

    [18]

    Guo Q H, Planer-Friedrich B, Liu M L, et al. Magmatic fluid input explaining the geochemical anomaly of very high arsenic in some Southern Tibetan geothermal waters[J]. Chemical Geology, 2019, 513: 32−43. doi: 10.1016/j.chemgeo.2019.03.008

    [19]

    Qiao W, Cao W, Gao Z, et al. Contrasting behaviors of groundwater arsenic and fluoride in the lower reaches of the Yellow River Basin, China: Geochemical and modeling evidences[J]. Science of the Total Environment, 2022, 851: 158134. doi: 10.1016/j.scitotenv.2022.158134

    [20]

    王妍妍, 曹文庚, 潘登, 等. 豫北平原地下水高砷和高氟分布规律与成因[J]. 岩矿测试, 2022, 41(6): 1095−1109. doi: 10.15898/j.cnki.11-2131/td.202110090141

    Wang Y Y, Cao W G, Pan D, et al. Distribution and origin of high arsenic and fluoride in groundwater of the North Henan Plain[J]. Rock and Mineral Analysis, 2022, 41(6): 1095−1109. doi: 10.15898/j.cnki.11-2131/td.202110090141

    [21]

    孙明露. 西藏羊八井地区地热资源水化学特征与成因机制研究[D]. 拉萨: 西藏大学, 2023.

    Sun M L. Hydrochemical characteristics and genetic mechanism of geothermal resource in the Yangbajing area, Tibet[D]. Lhasa: Tibet University, 2023.

    [22]

    马丹, 鲍新华, 张大勇, 等. 拉萨河羊八井剖面水化学特征及水质评价[J]. 科学技术与工程, 2018, 18(15): 190−195. doi: 10.3969/j.issn.1671-1815.2018.15.028

    Ma D, Bao X H, Zhang D Y, et al. Hydro-chemical characteristics and water quality evaluation of the Yangbajing section in the Lhasa River Basin[J]. Science Technology and Engineering, 2018, 18(15): 190−195. doi: 10.3969/j.issn.1671-1815.2018.15.028

    [23]

    布多, 李明礼, 许祖银, 等. 西藏拉萨河流域巴嘎雪湿地水化学特征[J]. 中国环境科学, 2016, 36(3): 793−797. doi: 10.3969/j.issn.1000-6923.2016.03.023

    Bu D, Li M L, Xu Z Y, et al. Study on aquatic chemistry characteristics of Bagaxue wetland in Lhasa River Basin, Tibet[J]. China Environmental Science, 2016, 36(3): 793−797. doi: 10.3969/j.issn.1000-6923.2016.03.023

    [24]

    Guo Q. Hydrogeochemistry of high-temperature geothermal systems in China: A review[J]. Applied Geochemistry, 2012, 27(10): 1887−1898. doi: 10.1016/j.apgeochem.2012.07.006

    [25]

    Planer-Friedrich B, London J, Mccleskey R B, et al. Thioarsenates in geothermal waters of Yellowstone National Park: Determination, preservation, and geochemical importance[J]. Environmental Science and Technology, 2007, 41(15): 5245−5251. doi: 10.1021/es070273v

    [26]

    Yoshizuka K, Nishihama S, Sato H. Analytical survey of arsenic in geothermal waters from sites in Kyushu, Japan, and a method for removing arsenic using magnetite[J]. Environmental Geochemistry and Health, 2010, 32(4): 297−302. doi: 10.1007/s10653-010-9300-3

    [27]

    Kundu N, Panigrahi M K, Sharma S P, et al. Delineation of fluoride contaminated groundwater around a hot spring in Nayagarh, Orissa, India using geochemical and resistivity studies[J]. Environmental Geology, 2002, 43(1-2): 228−235. doi: 10.1007/s00254-002-0651-7

    [28]

    Birkle P, Merkle B. Environmental impact by spill of geothermal fluids at the geothermal field of Los Azufres, Michoacan, Mexico[J]. Water Air and Soil Pollution, 2000, 124(3-4): 371−410. doi: 10.1023/A:1005242824628

    [29]

    Sracek O, Wanke H, Ndakunda N N, et al. Geochemistry and fluoride levels of geothermal springs in Namibia[J]. Journal of Geochemical Exploration, 2015, 148: 96−104. doi: 10.1016/j.gexplo.2014.08.012

    [30]

    Stefánsson A, Arnórsson S. Feldspar saturation state in natural waters[J]. Geochimicaet Cosmochimica Acta, 2000, 64(15): 2567−2584. doi: 10.1016/S0016-7037(00)00392-6

    [31]

    Gherardi F, Panichi C, Gonfiantini R, et al. Isotope systematics of C-bearing gas compounds in the geothermal fluids of Larderello, Italy[J]. Geothermics, 2005, 34(4): 442−470. doi: 10.1016/j.geothermics.2004.09.005

    [32]

    张晓平. 西藏土壤环境背景值的研究[J]. 地理科学, 1994(1): 49−55. doi: 10.13249/j.cnki.sgs.1994.01.00

    Zhang X P. A study on the background values of soil environment in Tibet[J]. Geoscience, 1994(1): 49−55. doi: 10.13249/j.cnki.sgs.1994.01.00

    [33]

    陈刚. 岩溶型地热尾水排放对周边环境的影响[J]. 化工矿产地质, 2021, 43(2): 144−149. doi: 10.3969/j.issn.1006-5296.2021.02.007

    Chen G. Influence of karst geothermal tail water discharge on peripheral environment[J]. Geology of Chemical Minerals, 2021, 43(2): 144−149. doi: 10.3969/j.issn.1006-5296.2021.02.007

    [34]

    冯卫卫, 罗锡明, 刘丹丹. 寨上金矿矿区河流沉积物中砷的形态分析[J]. 生态环境学报, 2011, 20(4): 659−662. doi: 10.3969/j.issn.1674-5906.2011.04.012

    Feng W W, Luo X M, Liu D D. Speciation of arsenic in sediment of the river around Zhaishang goldmine[J]. Ecology and Environmental Sciences, 2011, 20(4): 659−662. doi: 10.3969/j.issn.1674-5906.2011.04.012

    [35]

    刘丹青, 朱梦杰, 汤琳. 上海市土壤氟含量风险管控限值探讨[J]. 中国环境监测, 2021, 37(4): 128−134. doi: 10.19316/j.issn.1002-6002.2021.04.17

    Liu D Q, Zhu M J, Tang L. Discussion on risk control limits of soil fluorine content in Shanghai[J]. Environmental Monitoring in China, 2021, 37(4): 128−134. doi: 10.19316/j.issn.1002-6002.2021.04.17

    [36]

    杨惠. 云南省洱源县高氟温泉水中氟的来源及其对周围环境影响分析[D]. 昆明: 云南师范大学, 2015.

    Yang H. Analysis of the source of fluorine in high-fluorine hot spring water and its impact on the surrounding environment in Eryuan County, Yunnan Province[D]. Kunming: Yunnan Normal University, 2015.

  • 加载中

(5)

(5)

计量
  • 文章访问数:  86
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2023-10-26
修回日期:  2024-01-06
录用日期:  2024-05-08
刊出日期:  2024-05-31

目录