中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

混合酸消解-电感耦合等离子体质谱法测定区域地球化学样品中的银

潘倩妮, 刘伟, 何雨珊, 阳国运. 混合酸消解-电感耦合等离子体质谱法测定区域地球化学样品中的银[J]. 岩矿测试, 2024, 43(3): 459-467. doi: 10.15898/j.ykcs.202211210221
引用本文: 潘倩妮, 刘伟, 何雨珊, 阳国运. 混合酸消解-电感耦合等离子体质谱法测定区域地球化学样品中的银[J]. 岩矿测试, 2024, 43(3): 459-467. doi: 10.15898/j.ykcs.202211210221
PAN Qianni, LIU Wei, HE Yushan, YANG Guoyun. Determination of Silver in Regional Geochemical Samples by Inductively Coupled Plasma-Mass Spectrometry with Mixed Acids Digestion[J]. Rock and Mineral Analysis, 2024, 43(3): 459-467. doi: 10.15898/j.ykcs.202211210221
Citation: PAN Qianni, LIU Wei, HE Yushan, YANG Guoyun. Determination of Silver in Regional Geochemical Samples by Inductively Coupled Plasma-Mass Spectrometry with Mixed Acids Digestion[J]. Rock and Mineral Analysis, 2024, 43(3): 459-467. doi: 10.15898/j.ykcs.202211210221

混合酸消解-电感耦合等离子体质谱法测定区域地球化学样品中的银

  • 基金项目: 广西科技基地和人才专项“中-柬岩溶关键带科学与技术联合研究中心平台建设”(桂科AD20297091)
详细信息
    作者简介: 潘倩妮,工程师,主要从事岩石矿物无机分析相关工作。E-mail:625597546@qq.com
  • 中图分类号: O614.122;P595

Determination of Silver in Regional Geochemical Samples by Inductively Coupled Plasma-Mass Spectrometry with Mixed Acids Digestion

  • 建立了应用电感耦合等离子体质谱法(ICP-MS)分析地球化学样品中痕量银的方法,探究在动能歧视模式(KED)下,分别通入不同流速碰撞/反应气体(He)的干扰消除效果。Ag的两个稳定同位素因受到锆、铌氧化物(90Zr16O1H、91Zr16O、92Zr16O1H、93Nb16O)等的质谱干扰,对于干扰元素锆、铌含量较高而银含量低的样品,即使采用干扰系数校正也存在较大误差。结果表明:在KED模式下,通过加大氦气流速至7.0mL/min,基体元素如锆、铌氧化物产率降低,基本上消除了锆、铌氧化物对痕量Ag的多原子离子干扰。本文采用混合酸(硝酸-氢氟酸-高氯酸)敞开酸溶消解样品,残渣用王水复溶提取,结合KED模式选出干扰较小的同位素109Ag作为测定同位素,以103Rh作为内标校正基体干扰和仪器信号漂移。经国家一级标准物质验证,分析结果在标准值的允许误差范围内,方法的检出限(3SD)为0.005µg/g,测定结果的相对标准偏差(RSD,n=12)为1.43%~11.22%,满足地质矿产实验室测试质量管理规范(DZ/T 0130.4—2006)对精密度的要求。本方法适用于土壤、水系沉积物、岩石等区域地球化学样品中痕量银的分析。

  • 加载中
  • 图 1  氦气流速对93Nb-109Ag、91Zr-109Ag干扰系数的影响

    Figure 1. 

    图 2  氦气流速对Ag信背比的影响

    Figure 2. 

    表 1  混合酸消解结合ICP-MS法分析标准物质中银含量的精密度测试结果

    Table 1.  The precision test results for Ag analysis in standard samples using mixed acids digestion-ICP-MS

    标准物质编号 银含量(µg/g) RSD
    (%)
    12次分次测定值 平均值
    GBW07105
    (岩石)
    0.038 0.045 0.039 0.045 0.041 11.22
    0.035 0.034 0.041 0.046
    0.034 0.042 0.046 0.041
    GBW07402
    (土壤)
    0.052 0.051 0.053 0.049 0.052 6.32
    0.055 0.051 0.050 0.048
    0.047 0.053 0.058 0.057
    GBW07307a
    (水系沉积物)
    1.212 1.221 1.195 1.187 1.202 1.43
    1.182 1.175 1.222 1.221
    1.218 1.210 1.195 1.186
    下载: 导出CSV

    表 2  混合酸消解结合ICP-MS法分析标准物质中银含量的准确度测试结果

    Table 2.  The accuracy test results for Ag analysis in standard samples using mixed acids digestion-ICP-MS method

    标准物质类型 标准物质编号 银含量(µg/g) ∆logC
    标准值 测定平均值
    土壤 GBW07401 0.35±0.05 0.370 0.024
    GBW07402 0.054±0.007 0.049 −0.042
    GBW07403 0.091±0.007 0.086 −0.025
    GBW07404 0.070±0.011 0.065 −0.032
    GBW07405 4.4±0.4 4.334 −0.007
    GBW07406 0.20±0.02 0.216 0.033
    水系沉积物 GBW07307a 1.20±0.08 1.212 0.004
    GBW07308a 0.12±0.02 0.118 −0.007
    GBW07358 0.14±0.01 0.141 0.003
    GBW07360 0.74±0.14 0.747 0.004
    GBW07362 0.092±0.005 0.091 −0.005
    GBW07363 0.082±0.008 0.081 −0.005
    岩石 GBW07105 0.040±0.008 0.0447 0.048
    GBW07107 0.047±0.009 0.052 0.044
    下载: 导出CSV

    表 3  驻留时间对测试精密度的影响

    Table 3.  Influence of dwell time on the precision of measurement

    驻留时间
    (s)
    银含量(µg/g) RSD
    (%)
    8次分次测定值 平均值
    0.01 0.123 0.126 0.119 0.120 0.124 3.14
    0.125 0.131 0.121 0.125
    0.03 0.125 0.127 0.127 0.13 0.127 2.24
    0.129 0.121 0.125 0.128
    0.05 0.126 0.123 0.125 0.119 0.124 1.93
    0.126 0.126 0.124 0.123
    0.10 0.130 0.128 0.130 0.128 0.128 1.76
    0.125 0.128 0.126 0.132
    0.20 0.122 0.126 0.119 0.120 0.120 2.59
    0.119 0.121 0.121 0.115
    下载: 导出CSV

    表 4  稀释体积对含离线内标的样品溶液测定精密度的影响

    Table 4.  Influence of dilution volume on the precision determination for the sample solution containing off-line internal standard material

    含内标的样品
    溶液
    稀酸的
    加入量
    (mL)
    稀释后
    体积
    (mL)
    内标
    回收率
    (%)
    银含量
    测定值
    (μg/g)
    RSD
    (%)
    2.21µg/g测定液
    (1.0mL)
    9.0 10.0 96.0 2.216 1.26
    9.2 10.2 95.2 2.181
    9.8 10.8 87.0 2.213
    10.1 11.1 84.8 2.222
    10.7 11.7 80.8 2.245
    11.0 12.0 75.7 2.262
    0.54µg/g测定液
    (1.0mL)
    9.0 10.0 95.9 0.538 1.48
    9.2 10.2 91.3 0.537
    9.8 10.8 87.7 0.540
    10.1 11.1 83.0 0.535
    10.7 11.7 77.3 0.557
    11.0 12.0 75.0 0.544
    下载: 导出CSV

    表 5  不同实验室利用混合酸消解结合ICP-MS法测试实际样品的分析结果对比

    Table 5.  Comparison of the analysis results for actual samples using mixed acids digestion-ICP-MS method in different laboratories

    样品编号银含量测定值(µg/g)相对偏差绝对值
    (%)
    实验室1实验室2
    样品-1 0.137 0.140 2.17
    样品-2 0.061 0.066 7.87
    样品-3 0.057 0.052 9.17
    样品-4 0.067 0.065 3.03
    样品-5 0.062 0.066 6.25
    样品-6 0.086 0.089 3.43
    样品-7 0.082 0.090 9.30
    样品-8 0.087 0.088 1.14
    样品-9 0.072 0.076 5.41
    样品-10 0.114 0.099 14.1
    下载: 导出CSV

    表 6  混合酸消解结合ICP-MS法和发射光谱法测试结果对比

    Table 6.  Comparison of the determination results between the mixed acids digestion-ICP-MS method and emission spectroscopy method

    样品编号 银含量测定值(µg/g) 相对偏差
    d(%)
    双侧检验
    t
    本文方法
    测定值
    发射光谱法
    测定值
    样品1 0.062 0.066 −6.25 1.30
    样品2 0.066 0.063 4.65
    样品3 0.055 0.052 5.61
    样品4 0.057 0.054 5.41
    样品5 0.060 0.054 10.5
    样品6 0.058 0.061 −5.04
    样品7 0.063 0.059 6.56
    下载: 导出CSV
  • [1]

    邹雯雯, 岳春雷, 赵祖亮, 等. 微波消解-火焰原子吸收光谱法测定铜精矿中银[J]. 冶金分析, 2018, 38(9): 59−62.

    Zhou W W, Yue C L, Zhao Z L, et al. Determination of silver in copper concentrate by microwave digestion-flame atomic absorption spectrometry[J]. Metallurgical Analysis, 2018, 38(9): 59−62.

    [2]

    李静. 火焰原子吸收光谱法测定铜锍中银[J]. 黄金, 2017, 38(3): 83−85. doi: 10.11792/hj20170320

    Li J. Determination of silver in copper matte by flame atomic absorption spectrometry[J]. Gold, 2017, 38(3): 83−85. doi: 10.11792/hj20170320

    [3]

    Chun G Y, Ping L, Yang Y Z. Determination of trace silver in environmental samples by room temperature ionic liquid-based preconcentration and flame atomic absorption spectrometry[J]. Microchim Acta, 2011, 175: 333−339. doi: 10.1007/s00604-011-0677-1

    [4]

    苏丹, 刘向东, 张凯歌. 石墨炉原子吸收法测定地质样品中痕量银[J]. 黄金, 2015, 36(10): 85−88. doi: 10.11792/hj201510020

    Su D, Liu X D, Zhang K G. Determination of trace silver in geological samples by graphite furnace atomic absorption spectrometry[J]. Gold, 2015, 36(10): 85−88. doi: 10.11792/hj201510020

    [5]

    黎红波, 朱言, 张代云, 等. 石墨炉原子吸收光谱法连续测定土壤中银和镉[J]. 云南地质, 2019, 38(3): 381−386. doi: 10.3969/j.issn.1004-1885.2019.03.023

    Li H B, Zhu Y, Zhang D Y, et al. Continuous determination of Ag and cadmium in soil by graphite furnace atomic absorption spectrometry[J]. Yunnan Geology, 2019, 38(3): 381−386. doi: 10.3969/j.issn.1004-1885.2019.03.023

    [6]

    Pei L, Li L P. Determination of silver(Ⅰ) ion in water samples by graphite furnace atomic absorption spectrometry after preconcentration with dispersive liquid-liquid microextraction[J]. Microchim Acta, 2010, 168: 45−50. doi: 10.1007/s00604-009-0253-0

    [7]

    李小辉, 孙慧莹, 于亚辉, 等. 交流电弧发射光谱法测定地球化学样品中银锡硼[J]. 冶金分析, 2017, 37(4): 16−21.

    Li X H, Sun H Y, Yu Y H, et al. Determination of silver, tin and boron in geochemical sample by alternating current (AC) arc emission spectrometry[J]. Metallurgical Analysis, 2017, 37(4): 16−21.

    [8]

    黄海波, 沈加林, 陈宇, 等. 全谱发射光谱仪应用于分析地质样品中的银锡硼钼铅[J]. 岩矿测试, 2020, 39(4): 555−565.

    Huang H B, Shen J L, Chen Y, et al. Simultaneous determination of silver, boron, tin, molybdenum and lead in geological samples by atomic emission spectrometer with full spectrum[J]. Rock and Mineral Analysis, 2020, 39(4): 555−565.

    [9]

    王顺祥, 龚仓, 吴少青, 等. 固体进样-CCD光电直读发射光谱法测定地球化学样品中微量银、硼和锡[J]. 中国无机分析化学, 2023, 13(8): 863−868. doi: 10.3969/j.issn.2095-1035.2023.08.012

    Wang S X, Gong C, Wu S Q, et al. Determination of trace sliver, boron and tin in geochemical samples by CCD optical direct-reading emission spectrometer with solid injection[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(8): 863−868. doi: 10.3969/j.issn.2095-1035.2023.08.012

    [10]

    Hong L, Rui B J, Xiao D X, et al. Single particle ICP-MS combined with filtration membrane for accurate determination of silver nanoparticles in the real aqueous environment[J]. Analytical Sciences, 2023, 39: 1349−1359. doi: 10.1007/s44211-023-00347-z

    [11]

    Stefania G, Chiara G, Maria B, et al. The role of different soil sample digestion methods on trace elements analysis: A comparison of ICP-MS and INAA measurement results[J]. Accreditation and Quality Assurance, 2007, 12: 84−93. doi: 10.1007/s00769-006-0238-1

    [12]

    Zhong X L, Li P Z, Feng T. Influence of sample pre-treatment on the determination of trace silver and cadmium in geological and environmental samples by quadrupole inductively coupled plasma mass spectrometry[J]. Microchim Acta, 2007, 156: 263−269.

    [13]

    迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007: 140−142.

    Chi Q H, Yan M C. Handbook of Elemental Abundance for Applied Geochemistry [M]. Beijing: Geological Publishing House, 2007: 140−142.

    [14]

    张金, 李鹰, 李剑. 碰撞反应池-电感耦合等离子体质谱(ICP-MS)法测定三氧化钨中钠钾铜砷钼锑磷硫[J]. 中国无机分析化学, 2023, 13(10): 1113−1117. doi: 10.3969/j.issn.2095-1035.2023.10.010

    Zhang J, Li Y, Li J. Determination of sodium, potassium, copper, arsenic, molybdenum, antimony, phosphorus and sulfur in tungsten trioxide by inductivity coupled plasma mass spectrometry with collision reaction cell[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(10): 1113−1117. doi: 10.3969/j.issn.2095-1035.2023.10.010

    [15]

    白金峰, 刘彬, 张勤, 等. 碰撞池-电感耦合等离子体质谱法测定地球化学样品中钒和铬[J]. 冶金分析, 2009, 29(6): 17−22. doi: 10.3969/j.issn.1000-7571.2009.06.003

    Bai J F, Liu B, Zhang Q, et al. Determination of vanadium and chromium in geochemical samples by inductively coupled plasma mass spectrometry with collision cell technology[J]. Metallurgical Analysis, 2009, 29(6): 17−22. doi: 10.3969/j.issn.1000-7571.2009.06.003

    [16]

    刘跃, 林冬, 王记鲁, 等. 四种碰撞/反应模式-电感耦合等离子体串联质谱法测定土壤和水系沉积物样品中的银[J]. 岩矿测试, 2022, 41(6): 1017−1028. doi: 10.3969/j.issn.0254-5357.2022.6.ykcs202206013

    Liu Y, Lin D, Wang J L, et al. Determination of silver in soil and stream sediments by ICP-MS/MS with four collision/reaction modes[J]. Rock and Mineral Analysis, 2022, 41(6): 1017−1028. doi: 10.3969/j.issn.0254-5357.2022.6.ykcs202206013

    [17]

    徐进力, 邢夏, 唐瑞玲, 等. 动能歧视模式ICP-MS测定地球化学样品中14种痕量元素[J]. 岩矿测试, 2019, 38(4): 394−402.

    Xu J L, Xing X, Tang R L, et al. Determination of 14 trace elements in geochemical samples by ICP-MS using kinetic energy discrimination mode[J]. Rock and Mineral Analysis, 2019, 38(4): 394−402.

    [18]

    王岚, 杨丽芳, 谭西早, 等. 膜去溶-电感耦合等离子体质谱法测定环境地质样品中的镉[J]. 岩矿测试, 2017, 36(6): 574−580.

    Wang L, Yang L F, Tan X Z, et al. Determination of Cd in environmental geological samples by inductively coupled plasma-mass spectrometry with membrane desolvation[J]. Rock and Mineral Analysis, 2017, 36(6): 574−580.

    [19]

    王妃, 王德淑, 汤德能. 浅析锡对电感耦合等离子体质谱法测定镉的干扰[J]. 中国无机分析化学, 2015, 5(2): 12−18. doi: 10.3969/j.issn.2095-1035.2015.02.003

    Wang F, Wang D S, Tang D N. The interference of tin on the determination of cadmium by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(2): 12−18. doi: 10.3969/j.issn.2095-1035.2015.02.003

    [20]

    禹莲玲, 郭斌, 柳昭, 等. 电感耦合等离子体质谱法测定高锡地质样品中的痕量镉[J]. 岩矿测试, 2020, 39(1): 77−84.

    Yu L L, Guo B, Liu Z, et al. Determination of low-content cadmium in Sn-rich geological samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(1): 77−84.

    [21]

    邢智, 漆亮. P507萃淋树脂分离-电感耦合等离子体质谱法快速测定化探样品中的银[J]. 岩矿测试, 2013, 32(3): 398−401. doi: 10.3969/j.issn.0254-5357.2013.03.007

    Xing Z, Qi L. Separation with P507 levextrel resin for rapid determination of Ag in geochemical exploration samples by ICP-MS[J]. Rock and Mineral Analysis, 2013, 32(3): 398−401. doi: 10.3969/j.issn.0254-5357.2013.03.007

    [22]

    刘彤彤, 钱银弟, 黄登丽. 磷酸沉淀分离-电感耦合等离子体质谱法测定化探样品中的痕量银[J]. 岩矿测试, 2021, 40(5): 650−658.

    Liu T T, Qian Y D, Huang D L. Determination of trace silver in geochemical samples by inductively coupled plasma-mass spectrometry with phosphoric acid precipitation separation[J]. Rock and Mineral Analysis, 2021, 40(5): 650−658.

    [23]

    孙朝阳, 戴雪峰, 代小吕, 等. 氨水分离-电感耦合等离子体质谱法测定化探样品中的银[J]. 岩矿测试, 2015, 34(3): 292−296.

    Sun C Y, Dai X F, Dai X L, et al. Determination of silver in samples for geochemical exploration by inductively coupled plasma-mass spectrometry after ammonia complexation[J]. Rock and Mineral Analysis, 2015, 34(3): 292−296.

    [24]

    刘海明, 武明丽, 成景特. 酸溶分解-电感耦合等离子体质谱内标法测定地质样品中的痕量银[J]. 岩矿测试, 2021, 40(3): 444−450.

    Liu H M, Wu M L, Cheng J T. Determination of trace silver in geological samples by inductively coupled plasma-mass spectrometry with acid decomposition and internal standard calibration[J]. Rock and Mineral Analysis, 2021, 40(3): 444−450.

    [25]

    李晓云, 王羽, 金婵, 等. 微波消解-高分辨电感耦合等离子体质谱法测定土壤中 8 种金属元素[J]. 岩矿测试, 2022, 41(3): 374−383. doi: 10.3969/j.issn.0254-5357.2022.3.ykcs202203004

    Li X Y, Wang Y, Jin C, et al. Determination of 8 metal elements in soil by high-resolution inductively coupled plasma-mass spectrometry with microwave digestion[J]. Rock and Mineral Analysis, 2022, 41(3): 374−383. doi: 10.3969/j.issn.0254-5357.2022.3.ykcs202203004

    [26]

    龚仓, 丁洋, 陆海川, 等. 五酸溶样-电感耦合等离子体质谱法同时测定地质样品中的稀土等28种金属元素[J]. 岩矿测试, 2021, 40(3): 340−348.

    Gong C, Ding Y, Lu H C, et al. Simultaneous determination of 28 elements including rare earth elements by ICP-MS with five-acid dissolution[J]. Rock and Mineral Analysis, 2021, 40(3): 340−348.

    [27]

    张志喜, 黄惠琴. 电感耦合等离子体质谱法测定地球化学样品中的银、砷、锑、铋[J]. 中国无机分析化学, 2014, 4(1): 46−49. doi: 10.3969/j.issn.2095-1035.2014.01.012

    Zhang Z X, Huang H Q. Determination of silver, arsenic, antimony and bismuth in geochemical samples using inductively coupled plasma mass spectrometry together with aqua regia decomposition[J]. Chinese Journal of Inorganic Analytical Chemistry, 2014, 4(1): 46−49. doi: 10.3969/j.issn.2095-1035.2014.01.012

    [28]

    杨艳明. 电感耦合等离子体质谱法测定水系沉积物中银铜砷锑铋镉[J]. 冶金分析, 2019, 39(7): 58−64.

    Yang Y M. Determination of silver, copper, arsenic, antimony, bismuth and cadmium in stream sediment by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2019, 39(7): 58−64.

    [29]

    刘彤彤, 黄登丽. 王水溶样-电感耦合等离子体质谱法测定化探样品中的痕量银[J]. 冶金分析, 2017, 41(7): 61−66.

    Liu T T, Huang D L. Determination of trace silver in geochemical samples by inductively coupled plasma mass spectrometry after sample dissolution with aqua regia[J]. Metallurgical Analysis, 2017, 41(7): 61−66.

    [30]

    张宇婷, 孙丰月, 李予晋, 等. 王水提取-在线氩气稀释-电感耦合等离子体质谱(ICP-MS)法测定地质样品中的银[J]. 中国无机分析化学, 2023, 13(3): 249−255. doi: 10.3969/j.issn.2095-1035.2023.03.008

    Zhang Y T, Sun F Y, Li Y J, et al. Determination of silver in geological samples by online argon gas dilution-inductively coupled plasma-mass spectrometry with aqua regia extraction[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(3): 249−255. doi: 10.3969/j.issn.2095-1035.2023.03.008

    [31]

    刘向磊, 孙文军, 文田耀, 等. 三酸分步消解-电感耦合等离子体质谱法测定土壤详查样品中23种金属元素[J]. 岩矿测试, 2020, 39(5): 793−800.

    Liu X L, Sun W J, Wen T Y, et al. Determination of 23 metal elements in detailed soil survey samples by inductively coupled plasma-mass spectrometry with three acid stepwise digestion[J]. Rock and Mineral Analysis, 2020, 39(5): 793−800.

  • 加载中

(2)

(6)

计量
  • 文章访问数:  40
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2022-11-21
修回日期:  2023-03-16
录用日期:  2024-04-20
刊出日期:  2024-05-31

目录