Research on Pre-Treatment Technology and Analysis Methods for Main Components in Soluble Potassium Salt
-
摘要:
钾盐是中国最紧缺的矿产资源之一,为农业三大肥料中钾肥的主要原料,当前具有开发利用价值的主要是可溶性钾盐资源。而目前可溶性钾盐尚无国家标准物质和标准分析方法,本文对称样量、固液比、溶解温度、溶解时间、搅拌条件、超声时间和功率等条件进行实验研究,利用电热板和超声振荡两种溶解方式,建立了可溶性钾盐中主要成分钾、钠、钙、镁、氯和硫酸根离子的分析方法。采用电感耦合等离子体发射光谱仪测定样品中的Ca2+、Mg2+ 、K+和Na+的含量,离子色谱仪测定样品中Cl−和SO4 2−的含量,两种溶解方法分析可溶性钾盐样品中上述离子的实验结果基本吻合。电热板溶解方法精密度为0.52%~3.19%(RSD,n=11),超声振荡溶解方法精密度为0.55%~3.07%(RSD,n=11),两种方法检出限为0.01~0.05μg/g。利用主要成分百分含量加和、加标回收率、阴阳离子平衡验证方法准确性,两种溶解方法的主要成分加和在99.0%~101.0%之间,加标回收率 在95.3%~103.8%,阴阳离子平衡在−3%~3%之间,均满足DZ/T 0130.3—2006质量管理规范中的分析要求。两种可溶性钾盐的溶解方法均可在日常检测中应用,对于较大批的钾盐样品分析,电热板溶解法整体工作效率较高,更适用于实验室内批量样品分析;超声振荡器溶解方法与电热板溶解方法相比,更为简单快速,对于少量样品的分析,效率更高,且超声波振荡器方便野外携带,使用在钾盐的野外现场勘探工作中,可较大地提高工作效率,实时指导找矿行动顺利开展。
Abstract:Potassium salt is one of the scarcest mineral resources in China, and it is the main raw material for potassium fertilizer in the three major fertilizers of agriculture. Currently, soluble potassium salt resources are the main ones with development and utilization value. At present, there is no national standard material or standard analysis method for soluble potassium salts. In the experiments, soluble potassium salt samples were dissolved by electric heating plate and ultrasonic oscillation. According to the main components of soluble potassium salts, a method for the determination of K+, Na+, Ca2+ and Mg2+ by ICP-OES and a method for the determination of Cl− and SO4 2− by ion chromatography (IC) in soluble potassium salts were established. Through experimental conditions, the dissolution temperature of the electric heating plate was determined to be 160℃ and slightly boiled for 20min; the ultrasonic oscillation dissolution power was 60Hz and the time was 20min. The precision of the two methods was between 0.55%−3.19% (RSD, n=11), and the detection limit was between 0.01μg/g to 0.05μg/g. Both dissolution methods of soluble potassium salts can be widely used in daily detection. The electric heating plate dissolution method is more suitable for batch sample analysis in the laboratory. The ultrasonic oscillator dissolution method is simple and fast, and can be widely used in the field exploration of potassium salts, which can greatly improve the work efficiency and guide the smooth development of prospecting operations in real time.
-
-
表 1 电热板溶解法和超声振荡溶解法不同称样量下主要成分的测定结果
Table 1. Measurement results of main components pretreated with electric heating plate dissolution method and ultrasonic oscillation dissolution method under different sample sizes
实验样品 称样量
(g)电热板溶解法中主要成分的测定值(%) 超声振荡溶解法中主要成分的测定值(%) K+ Na+ Ca2+ Mg2+ Cl− SO4 2− K+ Na+ Ca2+ Mg2+ Cl− SO4 2− 样品A 1.0000 10.95 27.11 0.014 0.015 45.29 4.65 10.93 26.97 0.014 0.013 45.91 4.69 2.0000 10.94 27.08 0.016 0.013 45.80 4.86 10.75 27.07 0.016 0.014 45.55 4.97 4.0000 11.11 26.97 0.015 0.013 46.03 4.48 10.69 27.39 0.014 0.013 45.27 4.55 样品B 1.0000 14.86 23.60 0.019 0.011 39.33 12.37 14.78 23.93 0.018 0.011 39.71 12.39 2.0000 14.90 23.58 0.018 0.011 39.80 12.74 14.90 23.81 0.016 0.011 39.35 12.57 4.0000 14.92 23.95 0.018 0.012 39.95 12.43 14.75 23.55 0.020 0.012 39.98 12.84 表 2 电热板溶解法中不同固液比主要成分的测定结果
Table 2. Measurement results of main components pretreated with electric heating plate dissolution method under different solid-liquid ratios
溶解加水量
(mL)样品C中主要成分的测定值(%) K+ Na+ Ca2+ Mg2+ Cl− SO4 2− 50
75
100
20016.75
16.98
16.64
16.7926.73
27.04
26.85
26.930.024
0.026
0.023
0.0220.006
0.006
0.005
0.00454.25
54.07
54.12
53.850.083
0.081
0.075
0.077表 3 电热板溶解方法中不同溶解温度和溶解时间下主要成分的测定结果
Table 3. Measurement results of main components pretreated with electric heating plate dissolution method under different dissolution temperatures and dissolution time
实验样品 溶解温度
(℃)不同溶解温度下主要成分的测定值(%) 溶解时间
(min)不同溶解时间下主要成分的测定值(%) K+ Na+ Ca2+ Mg2+ Cl− SO4 2− K+ Na+ Ca2+ Mg2+ Cl− SO4 2− 样品A 180 10.91 27.06 0.013 0.014 45.91 4.95 10
20
3010.52 27.42 0.014 0.013 45.67 4.71 160 10.53 27.13 0.015 0.014 45.56 4.70 11.05 27.28 0.015 0.014 45.90 4.39 140 10.45 27.27 0.017 0.017 45.08 4.62 10.71 27.31 0.017 0.012 46.13 4.65 样品B 180 14.74 23.55 0.020 0.012 39.63 12.32 10
20
3014.36 23.72 0.018 0.010 39.78 12.39 160 14.32 23.79 0.019 0.012 40.02 12.76 14.81 23.52 0.020 0.013 39.16 12.56 140 14.51 23.41 0.017 0.011 39.29 12.40 14.44 23.32 0.017 0.011 39.93 12.82 表 4 电热板溶解方法不同搅拌条件下主要成分的测定结果
Table 4. Measurement results of main components pretreated with electric heating plate dissolution method under different stirring conditions
实验样品 搅拌间隔时间
(min)样品中主要成分的测定值(%) K+ Na+ Ca2+ Mg2+ Cl− SO4 2− 样品A 10 10.72 27.23 0.015 0.014 45.43 4.89 5 10.50 27.32 0.016 0.013 45.91 4.66 2 10.41 27.58 0.013 0.013 45.36 4.61 样品B 10 14.20 23.45 0.016 0.010 39.85 12.57 5 14.42 23.61 0.019 0.012 39.66 12.41 2 14.57 23.29 0.018 0.010 39.39 12.85 表 5 超声振荡溶解方法中不同超声时间和超声功率下主要成分的测定结果
Table 5. Measurement results of main components pretreated with ultrasonic oscillation dissolution method under different ultrasonic time and ultrasonic power
实验样品 超声功率
(Hz)超声时间
(min)样品中主要成分的测定值(%) K+ Na+ Ca2+ Mg2+ Cl− SO4 2− 样品A 60 20
40
6010.79
10.82
10.7527.32
27.51
27.570.014
0.016
0.0170.013
0.014
0.01245.58
46.03
45.374.70
4.33
4.42样品B 60 20
40
6014.86
14.68
14.7523.90
23.49
23.560.017
0.019
0.0200.010
0.011
0.01239.65
39.92
39.2312.75
12.47
12.62样品A 40 20
40
6010.74
10.86
10.8027.58
27.29
27.280.016
0.014
0.0120.013
0.014
0.01345.88
45.52
45.414.58
4.87
4.62样品B 40 20
40
6014.60
14.41
14.4723.74
23.84
23.620.017
0.018
0.0200.013
0.011
0.01039.90
39.55
39.3912.47
12.32
12.66表 6 方法检出限
Table 6. Detection limit of the method
组分 测定波长
(nm)方法检出限(µg/g) 电热板溶解法 超声振荡溶解法 K+ 766.490 0.02 0.02 Na+ 330.237 0.01 0.02 Ca2+ 317.933 0.01 0.02 Mg2+ 279.077 0.02 0.02 Cl− / 0.05 0.05 SO4 2− / 0.05 0.05 表 7 方法精密度和加标回收率
Table 7. Precision and spiked recovery rate of the method
实验样品 分析方法 组分 测定值
(%)加标量
(%)测得总量
(%)RSD
(%)回收率
(%)样品D 电热板溶解法 K+ 8.34 5.00 13.13 2.25 95.80 Na+ 11.08 10.0 20.80 1.80 97.20 Ca2+ 0.026 0.050 0.074 3.19 96.61 Mg2+ 6.61 5.00 11.66 1.82 101.0 Cl− 32.76 25.0 58.24 0.92 101.9 SO4 2− 17.19 10.0 26.98 0.85 97.90 超声振荡
溶解法K+ 8.32 5.00 13.18 1.39 97.20 Na+ 10.94 10.0 20.90 1.19 99.55 Ca2+ 0.025 0.050 0.076 2.96 102.0 Mg2+ 6.56 5.00 11.47 1.43 98.20 Cl− 33.04 25.0 57.67 1.68 98.52 SO4 2− 17.36 10.0 26.89 0.74 95.30 样品E 电热板溶解法 K+ 11.44 5.00 16.30 0.94 97.20 Na+ 6.94 10.0 16.51 1.62 95.70 Ca2+ 0.031 0.050 0.079 2.78 96.00 Mg2+ 6.84 5.00 11.62 1.26 95.62 Cl− 41.68 25.0 66.37 0.52 98.76 SO4 2− 0.823 1.00 1.79 1.14 96.70 超声振荡
溶解法K+ 11.23 5.00 16.0 1.63 95.80 Na+ 6.83 5.00 12.02 1.28 103.8 Ca2+ 0.031 0.050 0.081 3.07 100.4 Mg2+ 6.96 5.00 11.78 1.64 96.40 Cl− 41.63 25.0 66.08 0.55 97.80 SO4 2− 0.804 1.00 1.78 1.42 97.60 表 8 本文方法与经典分析方法测定结果比对
Table 8. Comparison of measurement results of main components by this method and classical methods
组分 分析方法 样品A
(%)样品B
(%)样品C
(%)样品D
(%)样品E
(%)K+ 电热板溶解法 10.49 14.85 16.85 8.32 11.23 超声振荡溶解法 10.75 14.70 16.98 8.49 11.44 AAS法 11.45 14.31 16.17 8.59 11.62 Na+ 电热板溶解法 27.07 23.93 27.04 10.94 6.94 超声振荡溶解法 27.23 23.67 26.89 11.08 6.77 AAS法 26.05 23.05 26.13 11.22 6.59 Ca2+ 电热板溶解法 0.014 0.016 0.026 0.025 0.031 超声振荡溶解法 0.016 0.018 0.025 0.026 0.032 EDTA容量法 0.016 0.018 0.023 0.029 0.035 Mg2+ 电热板溶解法 0.013 0.011 0.006 6.56 6.84 超声振荡溶解法 0.014 0.012 0.006 6.61 6.96 EDTA容量法 0.015 0.014 0.005 6.73 6.71 Cl− 电热板溶解法 45.55 39.71 54.07 33.04 41.63 超声振荡溶解法 45.91 39.53 53.88 32.76 41.68 硝酸银容量法 45.35 39.15 53.68 33.23 42.05 SO4 2− 电热板溶解法 4.69 12.24 0.083 17.19 0.80 超声振荡溶解法 4.58 12.39 0.081 17.26 0.83 重量法 4.88 12.05 0.089 17.64 0.85 表 9 样品主要成分百分含量等相关信息
Table 9. Relevant information such as the percentage content of the main components in samples
参数 样品A 样品B 样品C 样品D 样品E 电热板
溶解法超声振荡
溶解法电热板
溶解法超声振荡
溶解法电热板
溶解法超声振荡
溶解法电热板
溶解法超声振荡
溶解法电热板
溶解法超声振荡
溶解法K+ (%) 10.49 10.75 14.85 14.70 16.85 16.98 8.33 8.49 11.23 11.44 Na+ (%) 27.07 27.23 23.93 23.67 27.04 26.89 10.94 11.08 6.94 6.77 Ca2+ (%) 0.014 0.016 0.016 0.018 0.026 0.025 0.025 0.026 0.031 0.032 Mg2+ (%) 0.013 0.014 0.011 0.012 0.006 0.006 6.56 6.61 6.84 6.96 Cl− (%) 45.55 45.91 39.71 39.53 54.07 53.88 33.04 32.76 41.68 41.63 SO4 2− (%) 4.69 4.58 12.24 12.39 0.083 0.081 17.19 17.36 0.823 0.804 HCO3− (%) 0.074 0.072 0.045 0.042 0.005 0.004 0.009 0.008 0.012 0.012 CO32− (%) 0.088 0.085 0.171 0.168 0.001 0.001 / / / / H2O− (%) 4.95 4.76 3.74 3.85 1.16 1.03 4.80 4.91 7.13 7.23 水不溶物(%) 5.82 5.67 4.19 4.37 0.54 0.43 4.18 4.02 3.60 3.76 总水分(%) 5.20 5.05 4.07 4.17 1.18 1.08 18.83 18.92 28.02 28.08 加和方式1(%) 98.76 99.09 98.90 98.75 99.78 99.33 85.07 85.26 78.29 78.63 加和方式2(%) 99.01 99.38 99.23 99.07 99.80 99.38 99.10 99.27 99.18 99.48 B3+ (%) 0.51 0.49 0.78 0.76 / / 0.020 0.021 0.012 0.012 Li+ (%) / / / / / / 0.016 0.016 0.010 0.011 阳离子(mmol/g) 1.45 1.46 1.42 1.41 1.61 1.61 1.23 1.24 1.15 1.16 阴离子(mmol/g) 1.38 1.39 1.38 1.37 1.53 1.52 1.29 1.29 1.19 1.19 R/(+/−)(%) 2.30 2.49 1.71 1.25 2.63 2.71 -2.39 -1.64 -1.67 -1.27 pH 9.50 9.51 9.97 9.98 9.02 9.03 7.93 7.94 7.47 7.46 -
[1] 赵元艺, 焦鹏程, 李波涛, 等. 中国可溶性钾盐资源地质特征与潜力评价[J]. 矿床地质, 2010, 29(4): 649−656.
Zhao Y Y, Jiao P C, Li B T, et al. Geological characteristics and resource potential of soluble potash in China[J]. Mineral Deposits, 2010, 29(4): 649−656.
[2] 郑绵平, 齐文, 张永生. 中国钾盐地质资源现状与找钾方向初步分析[J]. 地质通报, 2006, 25(11): 1239−1246.
Zheng M P, Qi W, Zhang Y S. Present situation of potash resources and direction of potash search in China[J]. Geological Bulletin of China, 2006, 25(11): 1239−1246.
[3] 牟思宇, 沙景华, 闫晶晶, 等. 中国钾盐供应安全的主成分-灰色关联分析[J]. 中国矿业, 2018, 27(3): 27−31.
Mou S Y, Sha J H, Yan J J, et al. Principal component and gray correlation analysis of potash supply safety in China[J]. China Mining Magazine, 2018, 27(3): 27−31.
[4] 罗婷, 张永庆, 郑明贵, 等. 中国钾盐资源安全评估与预警研究[J]. 地球科学进展, 2022, 37(6): 575−587.
Luo T, Zhang Y Q, Zheng M G, et al. Security assessment and early warning of potash resources in China[J]. Advances in Earth Science, 2022, 37(6): 575−587.
[5] 徐其辉, 苗忠英, 娄鹏程, 等. 北羌塘坳陷中侏罗统夏里组蒸发岩硫同位素特征及其钾盐成矿意义[J]. 矿床地质, 2023, 42(2): 366−380.
Xu Q H, Miao Z Y, Lou P C, et al. Sulfur isotope characteristics of evaporite and its metallogenic significance of potassium salts from middle Jurassic Xiali Formation in North Qiangtang Depression[J]. Mineral Deposits, 2023, 42(2): 366−380.
[6] 商朋强, 祁才吉, 焦森, 等. 中国钾盐矿产预测评价模型和资源潜力分析[J]. 地质通报, 2019, 38(10): 1758−1767. doi: 10.12097/j.issn.1671-2552.2019.10.016
Shang P Q, Qi C J, Jiao S, et al. Potash assessment models and resource potential analysis in China[J]. Geological Bulletin of China, 2019, 38(10): 1758−1767. doi: 10.12097/j.issn.1671-2552.2019.10.016
[7] 张苏江, 崔立伟, 高鹏鑫, 等. 中国钾盐资源形势分析及管理对策建议[J]. 无机盐工业, 2015, 47(11): 1−6.
Zhang S J, Cui L W, Gao P X, et al. Analysis on development situation of potash ore resources and recommended management strategies in China[J]. Inorganic Chemicals Industry, 2015, 47(11): 1−6.
[8] 王春连, 刘成林, 王立成, 等. 钾盐矿床成矿条件研究若干进展[J]. 地球科学进展, 2013, 28(9): 976−987. doi: 10.11867/j.issn.1001-8166.2013.09.0976
Wang C L, Liu C L, Wang L C, et al. Reviews on potash deposit metallogenic conditions[J]. Advances in Earth Science, 2013, 28(9): 976−987. doi: 10.11867/j.issn.1001-8166.2013.09.0976
[9] 张永生, 郑绵平. 中国钾盐矿产基地成矿规律与深部探测技术示范[J]. 地学前缘, 2021, 28(6): 1−9.
Zhang Y S, Zheng M P. Metallogenic models of potassium ore deposits in China and demonstration of deep exploration technology[J]. Earth Science Frontiers, 2021, 28(6): 1−9.
[10] 李欣萌, 尹诗惠, 张旭冉, 等. 柴达木盆地大浪滩低品位钾盐矿物相分析[J]. 山东化工, 2019, 22(48): 125−126.
Li X M, Yin S H, Zhang X R, et al. Mineral facies analysis of low-grade potash ore in Dalangtan Qaidam Basin[J]. Shandong Chemical Industry, 2019, 22(48): 125−126.
[11] 谭慧婷, 孙伟, 崔玉照, 等. 钾矿资源现状与杂卤石的开发应用分析[J]. 无机盐工业, 2022, 54(6): 23−30.
Tan H T, Sun W, Cui Y Z, et al. Present situation of potash resources and analysis of development and application of polyhalite[J]. Inorganic Chemicals Industry, 2022, 54(6): 23−30.
[12] 白仟, 袁俊宏, 王章俊. 国内外水溶性钾盐资源及我国钾盐产业发展现状[J]. 资源与产业, 2014, 16(2): 37−46.
Bai Q, Yuan J H, Wang Z J. Industrial advances of soluble potash resources in China and overseas[J]. Resources & Industries, 2014, 16(2): 37−46.
[13] 刘琦, 冯振华, 管川, 等. 钾石盐溶浸开采溶解实验研究[J]. 化工矿物与加工, 2019(11): 19−23.
Liu Q, Feng Z H, Guan C, et al. Experimental study on solution of sylvinite leaching mining[J]. Industrial Minerals & Processing, 2019(11): 19−23.
[14] 刘威. 可溶性钾盐矿加工工艺实践[J]. 化工矿物与加工, 2014, 43(3): 49−53.
Liu W. Practice of soluble potash processing technology[J]. Industrial Minerals & Processing, 2014, 43(3): 49−53.
[15] 《岩石矿物分析》编委会. 岩石矿物分析(第四版 第二分册)[M]. 北京: 地质出版社, 2011: 477.
The Editorial Committee of 《Rock and Mineral Analysis》.Rock and Mineral Analysis (The fourth edition:Vol.Ⅱ)[M]. Beijing: Geology Press, 2011: 477.
[16] 韩晓. EDTA络合滴定法快速测定矿石中钙、镁[J]. 中国无机分析化学, 2019, 9(2): 54−57.
Han X. Rapid determination of calcium and magnesium in ore by EDTA complex metric titration[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(2): 54−57.
[17] 康晓燕, 刘皓. 电导滴定联机测定钾盐中钾的含量[J]. 陕西师范大学学报(自然科学版), 2002, 14(3): 140−141.
Kang X Y, Liu H. Quantitative determination of potassium by on line conductivity titration technique[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2002, 14(3): 140−141.
[18] 马军, 李欣萌, 尹诗惠, 等. 大浪滩盐湖低品位钾盐矿溶浸工艺研究[J]. 临沂大学学报, 2019, 41(6): 26−31.
Ma J, Li X M, Yin S H, et al. A study on the technology of leaching low-grade potassium salt ore in Dalangtan salt lake[J]. Journal of Linyi University, 2019, 41(6): 26−31.
[19] 匡洪红, 韩仲果. 火焰原子吸收法测定氯化钾产品中钠离子含量[J]. 盐业与化工, 2010, 39(2): 26−27.
Kuang H H, Han Z G. Determination of sodium ion content in potassium chloride by flame AAS[J]. Journal of Saltl Chemical Industry, 2010, 39(2): 26−27.
[20] 张桂芹, 孙建之, 马培华, 等. 火焰原子吸收和发射光谱法测定盐湖卤水的锂钠钙镁离子[J]. 盐业与化工, 2007, 36(1): 10−12.
Zhang G Q, Sun J Z, Ma P H, et al. Determination of Li+, Na+, Ca2+, Mg2+ content of salt lake brine by flame atomic absorption and flame emission spectrum method[J]. Journal of Salt Chemical Industry, 2007, 36(1): 10−12.
[21] 杨红梅. 紫外光谱法测定钾盐中钾含量的方法研究[J]. 安徽农业科学, 2012, 40(4): 2032−2033. doi: 10.3969/j.issn.0517-6611.2012.04.040
Yang H M. Study on determination of potassium content in sylvite by ultraviolet spectrophotometry[J]. Journal of Anhui Agricultural Sciences, 2012, 40(4): 2032−2033. doi: 10.3969/j.issn.0517-6611.2012.04.040
[22] 李可及. 熔融制样X射线荧光光谱法测定岩盐中的主量成分[J]. 岩矿测试, 2016, 35(3): 290−294.
Li K J. Determination of major components in rock salt by X-ray fluorescence spectrometry with sample fusion[J]. Rock and Mineral Analysis, 2016, 35(3): 290−294.
[23] 张旭, 李文波, 马成冰, 等. X射线荧光光谱法测定光卤石成分[J]. 理化检验(化学分册), 2017, 53(7): 818−820.
Zhang X, Li W B, Ma C B, et al. Determination of components in carnallite by X-ray fluorescence spectroscopy[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2017, 53(7): 818−820.
[24] 刘晓, 袁继海, 孙东阳, 等. 便携式锂钾分析仪在钾盐资源现场勘查中的应用[J]. 地球学报, 2021, 42(4): 573−578. doi: 10.3975/cagsb.2020.103001
Liu X, Yuan J H, Sun D Y, et al. On-site application of portable Li-K analyzer in the exploration of potash resources[J]. Acta Geoscientica Sinica, 2021, 42(4): 573−578. doi: 10.3975/cagsb.2020.103001
[25] 焦距, 詹秀春, 樊兴涛, 等. 能量色散 X 射线荧光光谱法现场测定钾盐钻井泥浆中的钾、溴、锶[J]. 分析试验室, 2016, 35(9): 1111−1116.
Jiao J, Zhan X C, Fan X T, et al. On-site determination of K, Br and Sr in sylvite drilling mud by energy dispersive X-ray fluorescence spectrometry[J]. Chinese Journal of Analysis Laboratory, 2016, 35(9): 1111−1116.
[26] Vievard J, Amoikon T L, Coulibaly N A, et al. Extraction and quantification of pesticides and metals in palm wines by HS-SPME/GC-MS and ICP-AES/MS[J]. Food Chemistry, 2022, 393: 133352. doi: 10.1016/j.foodchem.2022.133352
[27] Zeng Y, Yokoyama Y, Hirabayashi S, et al. A rapid and precise method of establishing age model for coral skeletal radiocarbon to study surface oceanography using coupled X-ray photos and ICP-AES measurement[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2022, 533: 23−28.
[28] Phitchan S, Nunticha L, Charles P S, et al. Carbonic acid eluent ion chromatography[J]. Analytical Chemistry, 2019, 91(5): 3636−3644. doi: 10.1021/acs.analchem.8b05627
[29] 王斌, 刘巍平, 王荣, 等. 离子色谱法测定钾盐矿中硫酸根和溴离子的含量[J]. 理化检验(化学分册), 2018, 54(7): 806−809.
Wang B, Liu W P, Wang R, et al. Determination of sulfate and bromine ions in potassium salt mines by ion chromatography[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(7): 806−809.
[30] 王培艳, 马成冰. 滤纸制样-X射线荧光光谱法测定钾石岩中的主量元素[J]. 理化检验(化学分册), 2018, 54(3): 353−354.
Wang P Y, Ma C B. Determination of major elements in potassium salt by X-ray fluorescence spectroscopy with filter paper sample preparation[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(3): 353−354.
[31] 黎春阁, 安莲英, 陈晓庆. 杂卤石溶解行为及制备矿物复合肥可行性分析[J]. 化工矿物与加工, 2013, 42(1): 20−23.
Li C G, An L Y, Chen X Q. Dissolution behavior of polyhalite and feasibility study on production of mineral compound fertilizer[J]. Industrial Minerals & Processing, 2013, 42(1): 20−23.
[32] 王洋, 张露露, 王艳超, 等. 钾盐矿床中含石膏盐样品测定的质量控制方法改进[J]. 中国无机分析化学, 2019, 9(6): 35−40. doi: 10.3969/j.issn.2095-1035.2019.06.008
Wang Y, Zhang L L, Wang Y C, et al. Improvement of quality control method for determination of gypsum salt samples in potassium salt[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(6): 35−40. doi: 10.3969/j.issn.2095-1035.2019.06.008
[33] 靳芳, 李吉生, 王慧. 盐湖固体盐样及卤水样的质量控制方法[J]. 分析试验室, 2010, 29(1): 164−166.
Jin F, Li J S, Wang H. Quality control methods for solid salt samples and brine samples from salt lakes[J]. Chinese Journal of Analysis Laboratory, 2010, 29(1): 164−166.
[34] 李海明, 李守文, 张富强, 等. 固体化学盐样检测数据的质量控制[J]. 岩矿测试, 2011, 30(4): 505−509. doi: 10.3969/j.issn.0254-5357.2011.04.025
Li H M, Li S W, Zhang F Q, et al. Quality control the testing data of solid chemical salt samples[J]. Rock and Mineral Analysis, 2011, 30(4): 505−509. doi: 10.3969/j.issn.0254-5357.2011.04.025
-