中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

北羌塘盆地东部上三叠统波里拉组碳酸盐岩矿物特征分析

刘晓, 张启燕, 史维鑫, 葛天助, 宋利强. 北羌塘盆地东部上三叠统波里拉组碳酸盐岩矿物特征分析[J]. 岩矿测试, 2024, 43(3): 440-448. doi: 10.15898/j.ykcs.202212010227
引用本文: 刘晓, 张启燕, 史维鑫, 葛天助, 宋利强. 北羌塘盆地东部上三叠统波里拉组碳酸盐岩矿物特征分析[J]. 岩矿测试, 2024, 43(3): 440-448. doi: 10.15898/j.ykcs.202212010227
LIU Xiao, ZHANG Qiyan, SHI Weixin, GE Tianzhu, SONG Liqiang. Mineralogical Characteristics of Carbonate Rocks of the Upper Triassic Bolila Formation in the Eastern Part of the North Qiangtang Basin[J]. Rock and Mineral Analysis, 2024, 43(3): 440-448. doi: 10.15898/j.ykcs.202212010227
Citation: LIU Xiao, ZHANG Qiyan, SHI Weixin, GE Tianzhu, SONG Liqiang. Mineralogical Characteristics of Carbonate Rocks of the Upper Triassic Bolila Formation in the Eastern Part of the North Qiangtang Basin[J]. Rock and Mineral Analysis, 2024, 43(3): 440-448. doi: 10.15898/j.ykcs.202212010227

北羌塘盆地东部上三叠统波里拉组碳酸盐岩矿物特征分析

  • 基金项目: 中国地质调查局地质调查项目 “岩心数字化与应用示范”(DD20230601)
详细信息
    作者简介: 刘晓,硕士,工程师,主要从事石油地质和岩心数字化应用。E-mail:sea_251@163.com
    通讯作者: 张启燕,硕士,高级工程师,主要从事岩心数字化方向及应用。E-mail:zqy25105@163.com
  • 中图分类号: P592

Mineralogical Characteristics of Carbonate Rocks of the Upper Triassic Bolila Formation in the Eastern Part of the North Qiangtang Basin

More Information
  • 北羌塘东部上三叠统波里拉组是羌塘盆地重点油气勘探目标层位,受沉积和成岩作用影响,地层压实作用强烈,矿物颗粒极小,属于致密油气储层。本文采用数字岩心技术——背散射扫描电镜成像技术(MAPS)和矿物成分定量分析技术(QEMSCAN),对波里拉组矿物进行微观尺度扫描和分析,表征其矿物成分、颗粒形态、空间分布及结构特征。结果表明:波里拉组方解石以泥晶为主,胶结作用明显,物性致密,孔径小(<5μm),局部发生白云化作用,白云石主要为粉-细晶,以自形晶为主,多呈线接触。矿物在纵向呈规律变化:底部为泥灰岩,陆源碎屑含量较高(>56.57%),其次为方解石(25.79%),磨圆度较差,成分成熟度和结构成熟度均较低;中段陆源碎屑矿物和方解石呈条带交错分布,方解石较石英含量增加(方解石47.43%,石英28.54%),沿晶间普遍发育的草莓状黄铁矿簇直径可达10μm,整体为氧化界面之下的还原环境;顶部以方解石为主(>90%),颗粒直径多为10~50μm,颗粒间多呈线接触,粒间孔几乎不发育,局部发生层状白云化作用。矿物特征显示波里拉组沉积物源受浅海碳酸盐岩沉积环境和陆源碎屑输入双重影响,具有典型的混积岩特征,沉积环境从早期陆源碎屑供给较为充足,到晚期以碳酸盐岩沉积为主,整体为海相碳酸盐沉积。

  • 加载中
  • 图 1  波里拉组岩心表面图像

    Figure 1. 

    图 2  波里拉组岩心样品矿物成分定量分析结果

    Figure 2. 

    图 3  波里拉组岩心样品矿物含量对比

    Figure 3. 

    图 4  波里拉组岩心样品QEMSCAN、MAPS和能谱结果

    Figure 4. 

    图 5  样品BLL-A矿物微观结构特征

    Figure 5. 

    图 6  样品BLL-C矿物微观结构特征

    Figure 6. 

    图 7  样品BLL-B矿物颗粒粒径分布

    Figure 7. 

    表 1  实验样品地质信息

    Table 1.  Geological information of experimental samples

    样品编号深度(m)岩性
    BLL-A236.89灰色泥晶灰岩
    BLL-B278.74灰绿色泥晶砂屑灰岩
    BLL-C471.87灰色砂屑灰岩
    BLL-D489.46浅灰色泥灰岩
    下载: 导出CSV

    表 2  波里拉组岩心样品矿物微观特征描述

    Table 2.  Mineral microscopic characteristics of core samples in the Bolila Formation

    样品编号 样品位置
    (m)
    岩性 主要矿物成分 矿物分布和微观结构特征
    BLL-A 236.89 泥晶灰岩 方解石(93.19%) 方解石含量超过90%,其他矿物零星分布
    BLL-B 278.74 泥晶砂屑灰岩 方解石(70.04%)
    白云石(15.58%)
    上部区域颗粒较丰富,主要为石英、方解石,粒径普遍大于200μm,方解石颗粒
    被细粒的黏土矿物包裹。下部方解石—白云石—石英—黏土矿物形成极细纹层
    BLL-C 471.87 砂屑灰岩 方解石(47.43%)
    石英(28.54%)
    陆源碎屑矿物和方解石呈条带状交错分布,黏土矿物、有机质、黄铁矿均比较发育。
    长石发生较强的蚀变,黄铁矿沿晶间发育
    BLL-D 489.46 泥灰岩 石英(37.08%)
    方解石(25.79%)
    黏土矿物含量较高且呈层理分布,黄铁矿含量较高
    下载: 导出CSV
  • [1]

    曾溅辉, 杨智峰, 冯枭, 等. 致密储层油气成藏机理研究现状及其关键科学问题[J]. 地球科学进展, 2014, 29(6): 651−661. doi: 10.11867/j.issn.1001-8166.2014.06.0651

    Zeng J H, Yang Z F, Feng X, et al. Study status and key scientific issue of tight reservoir oil and gas accumulation mechanism[J]. Advances in Earth Science, 2014, 29(6): 651−661. doi: 10.11867/j.issn.1001-8166.2014.06.0651

    [2]

    朱筱敏, 潘荣, 朱世发, 等. 致密储层研究进展和热点问题分析[J]. 地学前缘, 2018, 25(2): 141−146.

    Zhu X M, Pan R, Zhu S F, et al. Research progress and core issues in tight reservoir exploration[J]. Earth Science Frontiers, 2018, 25(2): 141−146.

    [3]

    邹才能, 杨智, 朱如凯, 等. 中国非常规油气勘探开发与理论技术进展[J]. 地质学报, 2015, 91(6): 979−1007. doi: 10.3969/j.issn.0001-5717.2015.06.001

    Zou C N, Yang Z, Zhu R K, et al. Progress in China’s unconventional oil & gas exploration and development and theoretical technologies[J]. Acta Geologica Sinica, 2015, 91(6): 979−1007. doi: 10.3969/j.issn.0001-5717.2015.06.001

    [4]

    邹才能, 杨智, 何东博, 等. 常规-非常规天然气理论、技术及前景[J]. 石油勘探与开发, 2018, 45(4): 575−587. doi: 10.11698/PED.2018.04.04

    Zou C N, Yang Z, He D B, et al. Theory, technology and prospects of conventional and unconventional natural gas[J]. Petroleum Exploration and Development, 2018, 45(4): 575−587. doi: 10.11698/PED.2018.04.04

    [5]

    贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129−136.

    Jia C Z, Zheng M, Zhang Y F. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2): 129−136.

    [6]

    邹才能, 贾进华, 侯连华, 等. “连续型”油气藏及其在全球的重要性: 成藏、分布与评价[J]. 石油勘探与开发, 2009, 36(6): 669−682. doi: 10.3321/j.issn:1000-0747.2009.06.001

    Zou C N, Jia J H, Hou L H, et al. Global importance of “continuous” petroleum reservoirs: Accumulation, distribution and evaluation[J]. Petroleum Exploration and Development, 2009, 36(6): 669−682. doi: 10.3321/j.issn:1000-0747.2009.06.001

    [7]

    吕利刚, 张涛, 李杰, 等. 储层矿物类型对致密油藏CO2驱替效果的影响[J]. 大庆石油地质与开发, 2023, 42(1): 159−168.

    Lyu L G, Zhang T, Li J, et al. Influence of reservoir mineral types on CO2 displacement effect of tight reservoir[J]. Petroleum Geology & Oilfield Development in Daqing, 2023, 42(1): 159−168.

    [8]

    尤源, 梁晓伟, 冯胜斌, 等. 鄂尔多斯盆地长7段致密储层主要黏土矿物特征及其地质意义[J]. 天然气地球科学, 2019, 30(8): 1233−1241. doi: 10.11764/j.issn.1672-1926.2019.05.023

    You Y, Liang X W, Feng S B, et al. Features and geological significance of main clay minerals in Chang 7 tight sandstone reservoir, Ordos Basin[J]. Natural Gas Geoscience, 2019, 30(8): 1233−1241. doi: 10.11764/j.issn.1672-1926.2019.05.023

    [9]

    汪贺, 师永民, 徐大卫, 等. 非常规储层孔隙结构表征技术及进展[J]. 油气地质与采收率, 2019, 26(5): 21−30.

    Wang H, Shi Y M, Xu D W, et al. Unconventional reservoir pore structure characterization techniques and progress[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(5): 21−30.

    [10]

    Lu Y Y, Chen X Y, Tang J T, et al. Relationship between pore structure and mechanical properties of shale on supercritical carbon dioxide saturation[J]. Energy, 2019, 172: 270−285. doi: 10.1016/j.energy.2019.01.063

    [11]

    黄道军, 李新虎, 刘燕, 等. 鄂尔多斯盆地中东部本溪组致密砂岩储层特征及有利层段优选[J]. 西安科技大学学报, 2023, 43(1): 109−118.

    Huang D J, Li X H, Liu Y, et al. Characteristics and favorable intervals selection of tight sandstone reservoirs in Benxi Formation, Central-Eastern Orddos Basin[J]. Journal of Xi’an University of Science and Technology, 2023, 43(1): 109−118.

    [12]

    朱如凯, 金旭, 王晓琦, 等. 复杂储层多尺度数字岩石评价[J]. 地球科学, 2018, 43(5): 1773−1782.

    Zhu R K, Jin X, Wang X Q, et al. Multi-scale digital rock evaluation on complex reservoir[J]. Earth Science, 2018, 43(5): 1773−1782.

    [13]

    林承焰, 吴玉其, 任丽华, 等. 数字岩心建模方法研究现状及展望[J]. 地球物理学进展, 2018, 33(2): 679−689. doi: 10.6038/pg2018BB0335

    Lin C Y, Wu Y Q, Ren L H, et al. Review of digital core modeling methods[J]. Progress in Geophysics, 2018, 33(2): 679−689. doi: 10.6038/pg2018BB0335

    [14]

    陈秀娟, 刘之的, 刘宇曦, 等. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22−31.

    Chen X J, Liu Z D, Liu Y X, et al. Research into the pore structure of tight reservoirs: A review[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 22−31.

    [15]

    于兴河, 李顺利, 杨志浩. 致密砂岩气储层的沉积-成岩成因机理探讨与热点问题[J]. 岩性油气藏, 2015, 27(1): 1−13. doi: 10.3969/j.issn.1673-8926.2015.01.001

    Yu X H, Li S L, Yang Z H. Discussion on deposition-diagenesis genetic mechanism and hot issues of tight sandstone gas reservoir[J]. Lithologic Reservoirs, 2015, 27(1): 1−13. doi: 10.3969/j.issn.1673-8926.2015.01.001

    [16]

    刘亢, 曹代勇, 林中月, 等. 湘西北地区下志留统龙马溪组页岩矿物成分特征及意义[J]. 海相油气地质, 2018, 23(2): 70−76. doi: 10.3969/j.issn.1672-9854.2018.02.009

    Liu K, Cao D Y, Lin Z Y, et al. Characteristics and significance of mineral compositions of shale in lower Silurian Longmaxi Formation, Northwestern Hu’nan[J]. Marine Origin Petroleum Geology, 2018, 23(2): 70−76. doi: 10.3969/j.issn.1672-9854.2018.02.009

    [17]

    王坤阳, 杜谷, 杨玉杰, 等. 应用扫描电镜与X射线能谱仪研究黔北黑色页岩储层孔隙及矿物特征[J]. 岩矿测试, 2014, 33(5): 634−639. doi: 10.3969/j.issn.0254-5357.2014.05.004

    Wang K Y, Du G, Yang Y J, et al. Characteristics study of reservoirs pores and mineral compositions for black shale, Northern Guizhou, by using SEM and X-ray EDS[J]. Rock and Mineral Analysis, 2014, 33(5): 634−639. doi: 10.3969/j.issn.0254-5357.2014.05.004

    [18]

    冯笑含, 赵万春, 王婷婷. 非均质致密储层微观力学特征分析及脆性评价方法研究[J]. 特种油气藏, 2019, 26(6): 113−117. doi: 10.3969/j.issn.1006-6535.2019.06.021

    Feng X H, Zhao W C, Wang T T. Micromechanical analysis and brittleness evaluation of heterogeneous tight reservoir[J]. Special Oil & Gas Reservoirs, 2019, 26(6): 113−117. doi: 10.3969/j.issn.1006-6535.2019.06.021

    [19]

    肖光武, 刘丽萍, 秦文凯, 等. 应用矿物成分评价致密油储集层脆性方法[J]. 录井工程, 2017, 28(2): 66−71, 139−140. doi: 10.3969/j.issn.1672-9803.2017.02.014

    Xiao G W, Liu L P, Qin W K, et al. Application of mineral composition to evaluating the brittleness of tight oil reservoir[J]. Mud Logging Engineering, 2017, 28(2): 66−71, 139−140. doi: 10.3969/j.issn.1672-9803.2017.02.014

    [20]

    沈安江, 付小东, 张建勇, 等. 羌塘盆地上三叠统—下侏罗统海相页岩油特征及发现意义[J]. 石油勘探与开发, 2023, 50(5): 962−974. doi: 10.11698/PED.20230001

    Shen A J, Fu X D, Zhang J Y, et al. Characteristics and discovery significance of the upper Triassic—lower Jurassic marine shale oil in Qiangtang Basin, NW China[J]. Petroleum Exploration and Development, 2023, 50(5): 962−974. doi: 10.11698/PED.20230001

    [21]

    杨易卓, 黄志龙, 赵珍, 等. 羌塘盆地毕洛错地区古油藏地球化学特征与油源对比[J]. 地球科学, 2022, 47(5): 1834−1848. doi: 10.3321/j.issn.1000-2383.2022.5.dqkx202205021

    Yang Y Z, Huang Z L, Zhao Z, et al. Geochemical characteristics and oil source correlation of paleo-reservoirs in Biluocuo area, Qiangtang Basin[J]. Editorial Committee of Earth Science—Journal of China University of Geosciences, 2022, 47(5): 1834−1848. doi: 10.3321/j.issn.1000-2383.2022.5.dqkx202205021

    [22]

    王剑, 付修根. 论羌塘盆地沉积演化[J]. 中国地质, 2018, 45(2): 237−259. doi: 10.12029/gc20180203

    Wang J, Fu X G. Sedimentary evolution of the Qiangtang Basin[J]. Geology in China, 2018, 45(2): 237−259. doi: 10.12029/gc20180203

    [23]

    刘中戎, 杨平, 张国常, 等. 北羌塘坳陷上三叠统沉积模式及对油气勘探的启示[J]. 沉积与特提斯地质, 2022, 42(3): 465−480.

    Liu Z R, Yang P, Zhang G C, et al. Sedimentary model and its implications for oil and gas exploration of upper Triassic in Northern Qiangtang Depression[J]. Sedimentary Geology and Tethyan Geology, 2022, 42(3): 465−480.

    [24]

    曾胜强, 王剑, 陈文彬, 等. 羌塘盆地东部晚三叠世—早中侏罗世沉积环境转变研究——来自地质浅钻岩芯的证据[J]. 地质论评, 2021, 67(5): 1231−1244.

    Zeng S Q, Wang J, Chen W B, et al. Late Triassic to early—middle Jurassic depositional environment transformation process study in the Eastern Qiangtang Basin: Evidence from the record by the core samples[J]. Geological Review, 2021, 67(5): 1231−1244.

    [25]

    王剑, 付修根, 沈利军, 等. 论羌塘盆地油气勘探前景[J]. 地质论评, 2020, 66(5): 1091−1113.

    Wang J, Fu X G, Shen L J, et al. Prospect of the potential of oil and gas resources in Qiangtang Basin, Xizang (Tibet)[J]. Geological Review, 2020, 66(5): 1091−1113.

    [26]

    刘若涵, 何碧竹, 郑孟林, 等. 羌塘盆地东部晚三叠世—侏罗纪构造-沉积演化[J]. 岩石学报, 2019, 35(6): 1857−1874.

    Liu R H, He B Z, Zheng M L, et al. Tectonic-sedimentary evolution during late Triassic—Jurassic period in the eastern part of the Qiangtang Basin, Tibet[J]. Acta Petrologica Sinica, 2019, 35(6): 1857−1874.

    [27]

    张启燕, 史维鑫, 刘晓, 等. 高光谱扫描在碳酸盐岩矿物组成分析中的应用[J]. 岩矿测试, 2022, 41(5): 815−825.

    Zhang Q Y, Shi W X, Liu X, et al. Application of hyperspectral scanning in mineral composition analysis of carbonate rocks[J]. Rock and Mineral Analysis, 2022, 41(5): 815−825.

  • 加载中

(7)

(2)

计量
  • 文章访问数:  46
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2022-12-01
修回日期:  2023-10-22
录用日期:  2024-01-12
刊出日期:  2024-05-31

目录