中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

超声萃取-高效液相色谱-串联质谱法测定土壤中三种硝基酚类化合物

乔淞汾, 秦冲, 刘爱琴, 安彩秀, 刘安, 杨利娟, 孙凯茜, 冉卓. 超声萃取-高效液相色谱-串联质谱法测定土壤中三种硝基酚类化合物[J]. 岩矿测试, 2024, 43(3): 501-508. doi: 10.15898/j.ykcs.202303170036
引用本文: 乔淞汾, 秦冲, 刘爱琴, 安彩秀, 刘安, 杨利娟, 孙凯茜, 冉卓. 超声萃取-高效液相色谱-串联质谱法测定土壤中三种硝基酚类化合物[J]. 岩矿测试, 2024, 43(3): 501-508. doi: 10.15898/j.ykcs.202303170036
QIAO Songfen, QIN Chong, LIU Aiqin, AN Caixiu, LIU An, YANG Lijuan, SUN Kaixi, RAN Zhuo. Determination of Three Nitrophenol Compounds in Soil by Ultrasonic Extraction-High Performance Liquid Chromatography-Mass Spectrometry[J]. Rock and Mineral Analysis, 2024, 43(3): 501-508. doi: 10.15898/j.ykcs.202303170036
Citation: QIAO Songfen, QIN Chong, LIU Aiqin, AN Caixiu, LIU An, YANG Lijuan, SUN Kaixi, RAN Zhuo. Determination of Three Nitrophenol Compounds in Soil by Ultrasonic Extraction-High Performance Liquid Chromatography-Mass Spectrometry[J]. Rock and Mineral Analysis, 2024, 43(3): 501-508. doi: 10.15898/j.ykcs.202303170036

超声萃取-高效液相色谱-串联质谱法测定土壤中三种硝基酚类化合物

  • 基金项目: 河北省地质矿产勘查开发局科技项目“土壤中酚类化合物分析方法研究”(13000023P0069B4101215)
详细信息
    作者简介: 乔淞汾,硕士,工程师,主要从事地质实验测试工作。E-mail:1535722404@qq.com
    通讯作者: 刘安,硕士,工程师,主要从事地质实验测试工作。E-mail: 357296414@qq.com
  • 中图分类号: O657.72;O657.63;S151.95

Determination of Three Nitrophenol Compounds in Soil by Ultrasonic Extraction-High Performance Liquid Chromatography-Mass Spectrometry

More Information
  • 硝基酚类化合物作为一类有机化工原料,具有高毒性和致癌性,可通过空气、水传播进入土壤造成污染,危害人类健康。以往采用气相色谱法和气相色谱-质谱法直接测定硝基酚类化合物,存在色谱灵敏度低、峰形差等问题。为提高灵敏度,通常需要对硝基酚类化合物进行衍生化处理,但衍生化方法步骤繁琐耗时。为实现土壤中硝基酚类化合物的快速准确分析,本文建立了超声萃取-高效液相色谱-串联质谱法分析土壤中三种硝基酚类化合物的方法。用二氯甲烷-正己烷(2∶1,V/V)混合溶剂超声萃取土壤中硝基酚类化合物,在超声萃取液中加入强碱性水溶液(pH>12),将下层有机相除去。将水溶液调至酸性(pH<2)后,用二氯甲烷-乙酸乙酯(4∶1,V/V)混合溶剂萃取三种硝基酚类化合物。萃取液浓缩后用10%乙腈-水溶液定容至10.0mL,高效液相色谱-串联质谱仪测定,外标法定量。性能评价的结果表明方法精密度(RSD<10%,n=6)和准确度都可以满足测定要求,三种硝基酚类化合物的方法检出限为0.1~0.2μg/kg,加标回收率为61.7%~90.8%。本方法具有前处理简单、检出限低等优点,可应用于土壤中硝基酚类化合物的测定和评估。

  • 加载中
  • 图 1  三种硝基酚类化合物标准溶液的总离子流图

    Figure 1. 

    图 2  不同实验条件下三种硝基酚类化合物的回收率对比

    Figure 2. 

    表 1  三种硝基酚类化合物的质谱参数

    Table 1.  Parameters of mass spectrometry for the determination of three nitrophenol compounds.

    硝基酚类化合物 母离子
    m/z
    去簇电压
    (V)
    子离子1
    碰撞能
    (V)
    子离子2
    碰撞能
    (V)
    2,6-二硝基酚 183.0 −71 79.0/−30 64.1/−30
    2,4-二硝基酚 183.0 −112 108.9/−30 123.0/−22
    4-硝基酚 137.9 −70 46.1/−48 91.9/−26
    下载: 导出CSV

    表 2  三种硝基酚化合物的线性回归方程、相关系数、方法检出限、精密度和加标回收率

    Table 2.  Linear regression equations, correlation coefficients, method detection limits, precision and spiked recoveries (n=6) of three nitrophenol compounds.

    硝基酚化合物 线性回归方程 相关
    系数
    (r)
    检出限
    (µg/kg)
    HJ703—2014
    检出限
    (µg/kg)
    液相色谱法29
    检出限
    (µg/kg)
    气相色谱-
    质谱法20
    检出限
    (µg/kg)
    加标浓度
    2μg/kg
    (n=6)
    加标浓度
    5μg/kg
    (n=6)
    加标浓度
    20μg/kg
    (n=6)
    回收率
    (%)
    RSD
    (%)
    回收率
    (%)
    RSD
    (%)
    回收率
    (%)
    RSD
    (%)
    2,6-二硝基酚 y=21742x−9327 0.9997 0.1 61.7 5.4 70.3 4.4 68.5 4.6
    2,4-二硝基酚 y=539061x−151658 0.9992 0.2 80 1.47 73.2 5.9 90.8 3.8 79.5 3.5
    4-硝基酚 y=307087x−20313 0.9999 0.1 40 20 3.95 62.9 7.6 73.2 3.5 63.2 4.4
    注:“−”表示该方法未涉及此化合物。
    下载: 导出CSV
  • [1]

    汤茜, 范艺馨, 苏欣, 等. N/B/Fe共掺杂生物质炭阴极制备及电芬顿降解对硝基酚[J]. 化工进展, 2021, 40(7): 4064−4073. doi: 10.16085/j.issn.1000-6613.2020-1646

    Tang Q, Fan Y X, Su X, et al. Preparation of N/B/Fe co-doped biochar cathode for degradation of p-nitrophenol[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 4064−4073. doi: 10.16085/j.issn.1000-6613.2020-1646

    [2]

    Xiong Z K, Zhang H, Zhang W C, et al. Removal of nitrophenols and their derivatives by chemical redox: A review[J]. Chemical Engineering Journal, 2019, 359: 13−31. doi: 10.1016/j.cej.2018.11.111

    [3]

    滕少香, 盛国平, 刘贤伟, 等. 芳香族硝基化合物的微生物降解[J]. 化学进展, 2009, 21(2): 534−539.

    Teng S X, Sheng G P, Liu X W, et al. Microbial degradation of nitroaromatic compounds[J]. Progress in Chemistry, 2009, 21(2): 534−539.

    [4]

    Li E, Bolser D G, Kroll K J, et al. Comparative toxicity of three phenolic compounds on the embryo of fathead minnow, pimephales promelas[J]. Aquatic Toxicology, 2018, 201: 66−72. doi: 10.1016/j.aquatox.2018.05.024

    [5]

    陶慧, 黄理金, 欧阳磊, 等. 氨基化共价有机骨架固相微萃取涂层用于水体中酚类的高效萃取[J]. 岩矿测试, 2022, 41(6): 1040−1049. doi: 10.3969/j.issn.0254-5357.2022.6.ykcs202206015

    Tao H, Huang L J, Ouyang L, et al. An amino-functionalized covalent organic framework coating for highly efficient solid phase microextraction of trace phenols in water[J]. Rock and Mineral Analysis, 2022, 41(6): 1040−1049. doi: 10.3969/j.issn.0254-5357.2022.6.ykcs202206015

    [6]

    李易, 陆锐, 沈锦优, 等. 废水中硝基芳香化合物检测方法研究进展[J]. 环境化学, 2016, 35(7): 1474−1485. doi: 10.7524/j.issn.0254-6108.2016.07.2015113001

    Li Y, Lu R, Shen J Y, et al. Detection methods for nitroaromatic compounds in wastewater[J]. Environmental Chemistry, 2016, 35(7): 1474−1485. doi: 10.7524/j.issn.0254-6108.2016.07.2015113001

    [7]

    朱薇, 李强, 范军, 等. GCMS测定地表水中12种硝基酚含量[J]. 环境化学, 2021, 40(10): 3279−3282.

    Zhu W, Li Q, Fan J, et al. Determination of 12 nitrophenols in surface water by gas chromatography-mass spectrometry[J]. Environmental Chemistry, 2021, 40(10): 3279−3282.

    [8]

    Wang S G, Ma Y X, Wang L Y. Nanomaterials for luminescence detection of nitroaromatic explosives[J]. Trends in Analytical Chemistry, 2015, 65: 13−21. doi: 10.1016/j.trac.2014.09.007

    [9]

    Xu W T, Chen J A, Qiu Y, et al. Highly efficient microwave catalytic oxidation degradation of 4-nitrophenol over magnetically separable NiCo2O4-Bi2O2CO3 composite without adding oxidant[J]. Separation an Purification Technology, 2019, 213: 426−436. doi: 10.1016/j.seppur.2018.12.061

    [10]

    Liu X Y, Wang B J, Jiang C Y, et al. Simultaneous biodegradation of nitrogen-containing aromatic compounds in a sequencing batch bioreactor[J]. Journal of Environmental Sciences, 2007, 19(5): 530−535. doi: 10.1016/S1001-0742(07)60088-6

    [11]

    马亮, 王玉功, 李玉泽, 等. 超声波提取-气相色谱法测定油田区土壤中21种酚类化合物[J]. 分析测试技术与仪器, 2019, 25(4): 273−280. doi: 10.16495/j.1006-3757.2019.04.010

    Ma L, Wang Y G, Li Y Z, et al. Determination of 21 phenolic compounds in oilfield soil by ultrasonic extraction-gas chromatography[J]. Analysis and Testing Technloly and Instruments, 2019, 25(4): 273−280. doi: 10.16495/j.1006-3757.2019.04.010

    [12]

    时磊, 吕爱娟, 蔡小虎, 等. 索氏提取-气相色谱法测定高含水率土壤中21种酚类化合物[J]. 理化检验(化学分册), 2019, 55(8): 892−897.

    Shi L, Lyu A J, Cai X H, et al. GC determination of 21 phenolic compounds in high moisture-conten soil with soxhlet extraction[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 55(8): 892−897.

    [13]

    罗宇, 孟文达, 张建新, 等. 气相色谱法测定土壤样品中21种酚类化合物的研究[J]. 中国资源综合利用, 2020, 38(12): 11−14. doi: 10.3969/j.issn.1008-9500.2020.12.004

    Luo Y, Meng W D, Zhang J X, et al. Study on determination of 21 phenolic compounds in soil samples by gas chromatography[J]. China Resources Comprehensive Utilization, 2020, 38(12): 11−14. doi: 10.3969/j.issn.1008-9500.2020.12.004

    [14]

    彭礼枚, 谭丽君, 蒋建军, 等. 固相萃取-气相色谱法测定水中20种酚类化合物[J]. 化学分析计量, 2022, 31(6): 6−9.

    Peng L M, Tan L J, Jiang J J, et al. Determination of 20 phenolic compounds in water by gas chromatography with solid phase extraction[J]. Chemical Analysis and Meterage, 2022, 31(6): 6−9.

    [15]

    李杨, 张书芬, 邢家溧, 等. 固相萃取-气相色谱-串联质谱法检测水中18种酚类化合物[J]. 色谱, 2020, 38(8): 953−960.

    Li Y, Zhang S F, Xing J L, et al. Determination of 18 phenolic compounds in water by gas chromatography tandem mass spectrometry coupled with solid phase extraction[J]. Chinese Journal of Chromatography, 2020, 38(8): 953−960.

    [16]

    胡祖国, 曹攽, 李紫艺. 超声波萃取-气相色谱-质谱法测定土壤中7种酚类化合物[J]. 冶金分析, 2016, 36(2): 27−32.

    Hu Z G, Cao B, Li Z Y. Determination of seven phenols in soil by gas chromatography-mass spectrometry after ultrasonic extraction[J]. Metallurgical Analysis, 2016, 36(2): 27−32.

    [17]

    甘志永, 李艳荣, 徐蕾, 等. 顶空固相微萃取-气相色谱-三重四极杆质谱法测定水中14种酚类污染物[J]. 环境科技, 2020, 33(2): 54−58. doi: 10.3969/j.issn.1674-4829.2020.02.012

    Gan Z Y, Li Y R, Xu L, et al. Determination of 14 phenols compounds in water by headspace solid-phase microextraction coupled with gas chromatography-triple quadrupole mass spectrometry[J]. Environmental Science and Technology, 2020, 33(2): 54−58. doi: 10.3969/j.issn.1674-4829.2020.02.012

    [18]

    秦冲, 冉卓, 邹佳洁, 等. 微波萃取-衍生化-气相色谱质谱联用法测定土壤中酚类化合物[J]. 冶金分析, 2022, 42(3): 59−65.

    Qing C, Ran Z, Zou J J, et al. Determination of phenolic compounds in soil by gas chromatography mass spectrometry after microwave extraction and derivatization[J]. Metallurgic Analysis, 2022, 42(3): 59−65.

    [19]

    周浩, 张瑶琴, 刘中, 等. 衍生化气相色谱-质谱联用法测定土壤中多种酚类化合物[J]. 环境监测管理与技术, 2017, 29(4): 53−56. doi: 10.3969/j.issn.1006-2009.2017.04.013

    Zhou H, Zhang Y Q, Liu Z, et al. Determination of phenolic compounds in soil by derivatization gas chromatography mass spectrometric method[J]. The Administration and Technique of Environmental Monitoring, 2017, 29(4): 53−56. doi: 10.3969/j.issn.1006-2009.2017.04.013

    [20]

    李忠煜, 李艳广, 黎卫亮, 等. 衍生化气相色谱-质谱法测定复垦土地样品中19种酚类污染物[J]. 岩矿测试, 2021, 40(2): 239−249. doi: 10.15898/j.cnki.11-2131/td.202007080101

    Li Z Y, Li Y G, Li W L, et al. Determination of 19 phenolic pollutants in reclaimed land samples by derivation gas chromatography-mass spectrometry[J]. Rock and Mineral Analysis, 2021, 40(2): 239−249. doi: 10.15898/j.cnki.11-2131/td.202007080101

    [21]

    侯博, 范艳, 韩永辉, 等. 酸碱净化-改进的衍生化气相色谱/质谱法测定土壤中11种酚类化合物[J]. 化学试剂, 2022, 44(1): 110−115.

    Hou B, Fan Y, Han Y H, et al. Determination of 11 phenolic compounds in soil by acid-base purification-modified derivatization gas chromatography/mass spectrometry[J]. Chemical Reagents, 2022, 44(1): 110−115.

    [22]

    Feng Q Z, Zhao L X, Lin J M. Molecularly imprinted polymer as micro-solid phase extraction combined with high performance liquid chromatography to determine phenolic compounds in environmental water samples[J]. Analytica Chimica Acta, 2009, 650(1): 70−76. doi: 10.1016/j.aca.2009.04.016

    [23]

    Kueseng P, Pawliszyn J. Carboxylated multiwalled carbon nanotubes/polydimethylsiloxane, a new coating for 96-blade solid-phase microextraction for determination of phenolic compounds in water[J]. Journal of Chromatography A, 2013, 1317(19): 199−202.

    [24]

    王嘉琦, 曹英华, 朱琳娜, 等. HLB固相萃取技术HPLC法测定地表水中9种酚类化合物[J]. 分析仪器, 2022(4): 38−41.

    Wang J Q, Cao Y H, Zhu L N, et al. Detection of nine phenolic compounds in surface water by solid phase extaction with HPLC[J]. Analytical Instrumentation, 2022(4): 38−41.

    [25]

    彭子芳, 李琴, 张光瑞, 等. 四氮杂杯[2]芳烃[2]三嗪键合硅胶固相萃取-高效液相色谱法测定河水中硝基苯酚和己烯雌酚[J]. 色谱, 2020, 38(1): 143−148.

    Peng Z F, Li Q, Zhang G R, et al. Soild phase extraction and high performance liquid chromatography with tetraaza[2]arene[2]-triazine bonded silica gel adsorbent for determination of nitrophenols and diethylstilbestrol in river water[J]. Chinese Journal of Chromatography, 2020, 38(1): 143−148.

    [26]

    华永有, 林麒, 卢翠英. 全自动固相萃取-超高效液相色谱-串联质谱法同时测定江水中8种酚类内分泌干扰物[J]. 理化检验(化学分册), 2019, 55(8): 904−911.

    Hua Y Y, Lin Q, Lu C Y. Simultaneous determination of 8 phenolic endocrine disrupting chemicals in river water by UHPLC-MS/MS with automated soild phase extraction[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 55(8): 904−911.

    [27]

    唐雪, 李强, 郝红元, 等. 超高效液相色谱/三重四极杆质谱-直接进样分析地表水中硝基酚类化合物[J]. 环境化学, 2020, 39(3): 831−834.

    Tang X, Li Q, Hao H Y, et al. Simultaneous determination of nitrophenols in surface water by ultra high performance liquid chromatography-tandem mass spectrometry[J]. Environmental Chemistry, 2020, 39(3): 831−834.

    [28]

    罗碧容, 钱蜀, 潘乐丹, 等. 高效液相色谱-串联质谱法同时测定水中18种酚类污染物[J]. 分析测试学报, 2016, 35(8): 974−980. doi: 10.3969/j.issn.1004-4957.2016.08.008

    Luo B R, Qian S, Pan L D, et al. Simultaneous determination of 18 phenols pollutants in water samples by high performance liquid chromatography-tandem mass spectrometry[J]. Journal of Instrumental Analysis, 2016, 35(8): 974−980. doi: 10.3969/j.issn.1004-4957.2016.08.008

    [29]

    张永兵, 杨文武, 丁金美, 等. 固相萃取-液相色谱法测定土壤中酚类化合物[J]. 环境科学与技术, 2015, 38(2): 110−114.

    Zhang Y B, Yang W W, Ding J M, et al. Determination of phenolic compounds in soil by SPE-HPLC method[J]. Environmental Science & Technology, 2015, 38(2): 110−114.

    [30]

    杨丽莉, 王美飞, 胡恩宇, 等. 超声波提取-气相色谱法测定土壤中21种酚类化合物[J]. 色谱, 2013, 31(11): 1081−1086. doi: 10.3724/SP.J.1123.2013.05005

    Yang L L, Wang M F, Hu E Y, et al. Determination of 21 phenolic compounds in soil by ultrasonic extration-gas chromatography[J]. Chinese Journal of Chromatography, 2013, 31(11): 1081−1086. doi: 10.3724/SP.J.1123.2013.05005

    [31]

    崔连喜, 王艳丽. 加速溶剂萃取-五氟苄基衍生化-气相色谱/质谱法测定土壤中酚类化合物[J]. 中国测试, 2020, 46(11): 62−67. doi: 10.11857/j.issn.1674-5124.2020050073

    Cui L X, Wang Y L. GC/MS determination of phenols in soil after extraction with ASE and derivatization with pentafluorobenzyl bromide[J]. China Measurement and Test, 2020, 46(11): 62−67. doi: 10.11857/j.issn.1674-5124.2020050073

    [32]

    Mohammad H, Yadollah Y, Mohammad R, et al. Microwave-assisted extraction combined with dispersive liquid-liquid microextraction as a new approach to determination of chlorophenols in soil and sediments[J]. Journal of Separation Science, 2012, 35(18): 2469−2475. doi: 10.1002/jssc.201100978

    [33]

    王世玉, 刘菲, 吴文勇, 等. 影响12种壬基酚同分异构体液液萃取效率的因素研究[J]. 岩矿测试, 2014, 33(4): 570−577. doi: 10.3969/j.issn.0254-5357.2014.04.019

    Wang S Y, Liu F, Wu W Y, et al. Study on impact factors of affecting liquid-liquid extraction efficiency of 12 nonylphenol isomers[J]. Rock and Mineral Analysis, 2014, 33(4): 570−577. doi: 10.3969/j.issn.0254-5357.2014.04.019

  • 加载中

(2)

(2)

计量
  • 文章访问数:  38
  • PDF下载数:  0
  • 施引文献:  0
出版历程
收稿日期:  2023-03-17
修回日期:  2023-06-04
录用日期:  2023-08-07
刊出日期:  2024-05-31

目录