中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

三氯化六氨合钴法测定土壤中阳离子交换量的方法优化

张磊, 王蕾, 贾正勋, 樊兴涛, 郭琳. 三氯化六氨合钴法测定土壤中阳离子交换量的方法优化[J]. 岩矿测试, 2024, 43(3): 509-516. doi: 10.15898/j.ykcs.202304240054
引用本文: 张磊, 王蕾, 贾正勋, 樊兴涛, 郭琳. 三氯化六氨合钴法测定土壤中阳离子交换量的方法优化[J]. 岩矿测试, 2024, 43(3): 509-516. doi: 10.15898/j.ykcs.202304240054
ZHANG Lei, WANG Lei, JIA Zhengxun, FAN Xingtao, GUO Lin. Optimization of Cation Exchange Capacity Determination in Soil by Hexamminecobalt Trichloride Method[J]. Rock and Mineral Analysis, 2024, 43(3): 509-516. doi: 10.15898/j.ykcs.202304240054
Citation: ZHANG Lei, WANG Lei, JIA Zhengxun, FAN Xingtao, GUO Lin. Optimization of Cation Exchange Capacity Determination in Soil by Hexamminecobalt Trichloride Method[J]. Rock and Mineral Analysis, 2024, 43(3): 509-516. doi: 10.15898/j.ykcs.202304240054

三氯化六氨合钴法测定土壤中阳离子交换量的方法优化

  • 基金项目: 国家重点研发计划项目(2021YFC2903000)课题“战略性矿产现场快速分析装备、技术和应用示范”
详细信息
    作者简介: 张磊,硕士,工程师,主要从事岩石矿物测试技术应用与研究。E-mail: zhang.lei.198806@163.com
    通讯作者: 郭琳,高级工程师,从事地质样品主量痕量成分分析研究。E-mail:guolno_1@aliyun.com
  • 中图分类号: S151.93;O657.32

Optimization of Cation Exchange Capacity Determination in Soil by Hexamminecobalt Trichloride Method

More Information
  • 土壤阳离子交换量(CEC)是评价土壤保肥能力和改良土壤、合理施肥的重要依据,同时也能影响土壤中污染物的迁移转化。与传统的乙酸铵交换法、乙酸钙交换法测定CEC的方法相比,三氯化六氨合钴法的操作步骤简洁,检测效率高,试剂消耗量小,对大批量样品的分析有明显优势。但该方法的适用范围较小,对中性和碱性样品检测结果好,而对酸性样品的检测结果偏低至50%。为解决以上问题,本文以2mol/L氢氧化钠溶液调节pH至碱性,样品的CEC测定值有显著提高,酸性和碱性样品测定结果均可达到标准值范围内。通过绘制pH调节曲线,得到不同pH范围的土壤样品中加入2mol/L氢氧化钠溶液体积,以此调节未知样品的pH值,实现CEC的准确测定。在原有的方法基础上调节样品pH至碱性,优化后的方法精密度范围为1.02%~3.82%(n=6)。

  • 加载中
  • 图 1  样品溶液pH值调节效果

    Figure 1. 

    表 1  标准物质和实际样品详细信息

    Table 1.  pH and CEC in reference materials and samples

    标准物质pH值CEC标准值
    (cmol+/kg)
    标准物质和实际样品pH值CEC标准值
    (cmol+/kg)
    GBW074126.816.0±2.1GBW07414a8.1817.0±1.0
    GBW074138.1513.0±1.1GBW074608.59.6±1.3
    GBW074148.1822.4±1.7样品16.23
    GBW074156.0819.6±2.2样品27.80
    GBW074164.7111.2±1.5样品35.51
    GBW074176.86.0±0.5
    下载: 导出CSV

    表 2  标准物质的pH值、标准值及不同pH条件下CEC的测定结果

    Table 2.  The pH, standard values of national reference materials and the determination results of CEC at different pH.

    标准物质
    编号
    调节pH前
    CEC测定值
    (cmol+/kg)
    调节pH后
    CEC测定值
    (cmol+/kg)
    CEC
    标准值
    (cmol+/kg)
    pH
    标准值
    GBW07412 8.6 18.4 16.0±2.1 6.80
    GBW07413 5.5 8.2 13.0±1.1 8.15
    GBW07414 19.1 23.4 22.4±1.7 8.18
    GBW07415 9.8 16.0 19.6±2.2 6.08
    GBW07460 6.9 7.7 9.6±1.3 8.50
    下载: 导出CSV

    表 3  不同土壤pH值范围下,2mol/L氢氧化钠溶液用量

    Table 3.  Dosage of 2mol/L NaOH solution under different soil pH ranges

    土壤样品pH值范围 取用2mol/L氢氧化钠溶液
    体积(mL)
    4~5 0.35
    5~6 0.25
    6~7 0.20
    >7 0.15
    下载: 导出CSV

    表 4  方法准确度和精密度实验结果

    Table 4.  Precision and accuracy tests of the method

    标准物质编号 CEC标准值
    (cmol+/kg)
    CEC单次测定值
    (cmol+/kg)
    CEC测定平均值
    (cmol+/kg)
    RSD
    (%)
    GBW07412 16.0±2.1 16.3  16.6  15.7 16.2 2.09
    16.5  16.1  15.9
    GBW07413 13.0±1.1 10.7  11.0  10.6 10.9 2.81
    11.0  11.4  10.7
    GBW07414 22.4±1.7 21.1  21.2  21.1 21.3 1.02
    21.5  21.4  21.6
    GBW07415 19.6±2.2 17.0  17.3  17.3 17.3 1.06
    17.2  17.5  17.4
    GBW07416 11.2±1.5 11.4  10.6  11.4 11.3 3.82
    11.9  11.4  11.2
    GBW07417 6.0±0.5 6.5  6.5  6.5 6.4 1.61
    6.4  6.2  6.5
    GBW07414a 17.0±1.0 17.0  15.2  16.0 16.1 3.82
    16.2  15.7  16.3
    GBW07460 9.6±1.3 7.6  7.7  7.6 7.6 1.32
    7.5  7.4  7.5
    样品1 11.9  11.6  11.7 11.7 1.93
    11.6  11.9  11.3
    样品2 22.6  23.1  22.5 22.5 1.50
    22.1  22.6  22.3
    样品3 8.8  8.4  8.2 8.4 3.01
    8.6  8.2  8.2
    下载: 导出CSV
  • [1]

    赵莉. 乙酸铵交换法测定土壤阳离子交换量的不确定度评定研究[J]. 环境科学与管理, 2015, 40(10): 146−149.

    Zhao L. Uncertainty in determining of cation exchange capacity in soil samples by ammonium acetate exchange method[J]. Environmental Science and Management, 2015, 40(10): 146−149.

    [2]

    康婷, 周春火, 魏宗强, 等. 江西省土壤阳离子交换量区域分布特征及其影响因素[J]. 中国农学通报, 2021, 37(14): 66−71.

    Kang T, Zhou C H, Wei Z Q, et al. Regional distribution characteristics and influencing factors of soil cation exchange capacity in Jiangxi[J]. Chinese Agricultural Science Bulletin, 2021, 37(14): 66−71.

    [3]

    Ngo D N G, Chuang X Y, Huang C P, et al. Compositional characterization of nine agricultural waste biochars: The relations between alkaline metals and cation exchange capacity with ammonium adsorption capability[J]. Journal of Environmental Chemical Engineering, 2023(11): 110003.

    [4]

    Jiang J, Wang Y P, Yu M X, et al. Soil organic matter in important for acid buffering and reducing aluminum leaching from acidic forest soils[J]. Chemical Geology, 2018(501): 86−94.

    [5]

    Shekofteh H, Ramazani F, Shirani H. Optimal feature selection for predicting soil CEC: Comparing the hybrid of ant colony organization algorithm and adaptive network-based fuzzy system with multiple linear regression[J]. Geoderma, 2017(298): 27−34.

    [6]

    Zhao X Z T, Arshad M, Li N, et al. Determination of the optimal mathematical model, sample size, digital data and transect spacing to map CEC (cation exchange capacity) in a sugarcane field[J]. Computers and Electronics in Agriculture, 2020(173): 105436.

    [7]

    Emamgholizadeh S, Bazoobandi A, Mohammadi B, et al. Prediction of soil cation exchange capacity using enhanced machine learning approaches in the southern region of the Caspian Sea[J]. Ain Shams Engineering Journal, 2023(14): 101876.

    [8]

    Aihemaiti A, Jiang J G, Li D A, et al. The interaction of metal concentrations and soil properties on toxic metal accumulation of native plants in vanadium mining area[J]. Journal of Environmental Management, 2018(222): 216−226.

    [9]

    Cui X Y, Mao P, Sun S, et al. Phytoremediation of cadmium contaminated soils by Amaranthus hypochondriacus L: The effects of soil properties highlighting cation exchange capacity[J]. Chemosphere, 2021(283): 131067.

    [10]

    Liddicoat C, Bi P, Waycott M, et al. Ambient soil cation exchange capacity inversely associates with infectious and parasitic disease risk in regional Australia[J]. Science of the Total Environment, 2018(626): 117−125.

    [11]

    白志强, 张世熔, 钟钦梅, 等. 四环盆地西缘土壤阳离子交换量的特征及影响因素[J]. 土壤, 2020, 52(3): 581−587.

    Bai Z Q, Zhang S R, Zhong Q M, et al. Characteristics and impact factors of soil cation exchange capacity in western margin of Sichuan Basin[J]. Soils, 2020, 52(3): 581−587.

    [12]

    Chen Y T, Gao S B, Jones E J, et al. Prediction of soil cay content and cation exchange capacity using visible near-infrared spectroscopy, portable X-ray fluorescence, and X-ray diffraction techniques[J]. Environment Science and Technology, 2021, 55(8): 4629−4637. doi: 10.1021/acs.est.0c04130

    [13]

    Wan M X, Hu M Y, Qu M K, et al. Rapid estimation of soil cation exchange capacity through sensor data fusion of portable XRF spectrometry and vis-NIR spectroscopy[J]. Geoderma, 2020(363): 114163.

    [14]

    Renault P, Cazevieille P, Verdier J, et al. Variations in the cation exchange capacity of a ferralsol supplied with vinasse, under changing aeration conditions comparison between CEC measuring methods[J]. Geoderma, 2009(154): 101−110.

    [15]

    黄英, 白冰, 李洋冰, 等. 三氯化六氨合钴浸提-分光光度法测定泥质砂岩黏土阳离子交换量[J]. 理化检验(化学分册), 2023, 59(2): 232−234.

    Huang Y, Bai B, Li Y B, et al. Determination of cation exchange capacity of argillaceous sandstone clay by cobalt trichloride leaching-spectrophotometry[J]. Physical Testing and Chemical Analysis: Part B (Chemical Analysis), 2023, 59(2): 232−234.

    [16]

    胡梦颖, 张鹏鹏, 徐进力, 等. CEC前处理系统-凯氏定氮仪快速测定土壤中的阳离子交换量[J]. 物探与化探, 2023, 47(2): 458−463.

    Hu M Y, Zhang P P, Xu J L, et al. Rapid determination of soil cation exchange capacity using a cation exchange capacity pretreatment system and a Kjeldahl apparatus[J]. Geophysical and Geochemical Exploration, 2023, 47(2): 458−463.

    [17]

    Enang R K, Kips P A, Yerima B P K, et al. Pedotransfer functions for cation exchange capacity estimation in highly weathered soils of the tropical highlands of NW Cameroon[J]. Geoderma Regional, 2022(29): e00514.

    [18]

    杨利利, 李菲, 陈渝, 等. 分光光度法测定土壤中阳离子交换量的优化改进[J]. 中国农学通报, 2020, 36(35): 119−122.

    Yang L L, Li F, Chen Y, et al. Optimization and improvement of spectrophotometry method to determine cation exchange capacity in soil[J]. Chinese Agricultural Science Bulletin, 2020, 36(35): 119−122.

    [19]

    侯玉兰, 吴银菊, 胡芳, 等. 全自动淋洗-凯氏定氮法快速测定土壤阳离子交换量[J]. 理化检验(化学分册), 2022, 58(8): 966−969.

    Hou Y L, Wu Y J, Hu F, et al. Rapid determination of soil cation exchange capacity by automatic leaching—Kjeldahl nitrogen determination method[J]. Physical Testing and Chemical Analysis: Part B (Chemical Analysis), 2022, 58(8): 966−969.

    [20]

    拉毛吉, 王玉功, 张榕. 乙酸铵离心交换法和乙酸钙离心交换法测定土壤阳离子交换量[J]. 中国无机分析化学, 2017, 7(3): 38−41.

    La M J, Wang Y G, Zhang R. Determination of cation exchange capacity of soil by centrifugal exchange of ammonium and calcium acetates[J]. Chinese Journal of Inorganic Analytical Chemistry, 2017, 7(3): 38−41.

    [21]

    陈桂华, 范芳, 林芷君. 三氯化六氨合钴浸提-分光光度法测定土壤阳离子交换量[J]. 理化检验(化学分册), 2019, 55(12): 1448−1451.

    Chen G H, Fan F, Lin Z J. Determination of soil cation exchange capacity by cobalt hexamine trichloride extraction-spectrophotometry[J]. Physical Testing and Chemical Analysis: Part B (Chemical Analysis), 2019, 55(12): 1448−1451.

    [22]

    Purnamasari L, Rostaman T, Widowati L R, et al. Comparison of appropriate cation exchange capacity (CEC) extraction methods for soils from several regions of Indonesia[J]. IOP Conference Series: Earth and Environmental Science, 2021, 648: 012209. doi: 10.1088/1755-1315/648/1/012209

    [23]

    林清火, 刘海林, 王莉, 等. 碳基土壤调理剂对橡胶园土壤pH和阳离子交换量的影响[J]. 热带农业科学, 2018, 38(12): 1−9.

    Lin Q H, Liu H L, Wang L, et al. Effect of biochar-based soil conditioner on the soil pH and CEC in rubber plantations[J]. Chinese Journal of Tropical Agriculture, 2018, 38(12): 1−9.

    [24]

    岳中慧, 岳启建, 龙寿坤, 等. 三氯化六氨合钴法浸提-分光光度法测定土壤中阳离子交换量[J]. 化学分析计量, 2022, 31(4): 55−59.

    Yue Z H, Yue Q J, Long S K, et al. Determination of cation exchange capacity in soil by spectrophotometry after extraction of hexammonium cobalt trichloride[J]. Chemical Analysis and Meterage, 2022, 31(4): 55−59.

    [25]

    Kazak E S, Kazak A V. Experimental features of cation exchange capacity determination in organic-rich mudstones[J]. Journal of Natural Gas Science and Engineering, 2020(83): 103456.

    [26]

    Aran D, Maul A, Masfaraud J F. A spectrophotometric measurement of soil cation exchange capacity based on cobaltihexamine chloride absorbance[J]. C. R. Geoscience, 2008(340): 865−871.

    [27]

    王丽敏, 吴慧, 申立, 等. 分光光度法测定土壤阳离子交换量的方法优化[J]. 环境监控与预警, 2022, 14(2): 49−52, 69.

    Wang L M, Wu H, Shen L, et al. Method optimization of spectrophotometric determination of cation exchange capacity in soil[J]. Environmental Monitoring and Forewarning, 2022, 14(2): 49−52, 69.

    [28]

    王俊杰, 辛文涛, 王巧环. 超声浸提-分光光度法测定土壤阳离子交换量[J]. 中国无机分析化学, 2023, 13(6): 562−567.

    Wang J J, Xin W T, Wang Q H. Determination of soil cation exchange capacity by ultrasonic extraction-spectrophotometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(6): 562−567.

    [29]

    刘蓉, 邓茂, 李莹莹, 等. 不同酸碱度土壤阳离子交换量的测定研究[J]. 中国环境监测, 2019, 35(1): 125−130.

    Liu R, Deng M, Li Y Y, et al. Optimization for the determination of cation exchange capacity in soils with different acidity and alkalinity[J]. Environmental Monitoring in China, 2019, 35(1): 125−130.

    [30]

    段小燕, 施玉格. 三氯化六氨合钴浸提-分光光度法测定新疆土壤中阳离子交换量[J]. 干旱环境监测, 2019, 33(3): 113−116.

    Duan X Y, Shi Y G. Determination of the cation exchange capacity in Xinjiang soils using a hexamminecobalt trichloride solution by spectrophotography[J]. Arid Environmental Monitoring, 2019, 33(3): 113−116.

    [31]

    李媛, 段小燕, 施玉格, 等. 振荡提取-荧光分光光度法分析土壤样品中石油类物质[J]. 岩矿测试, 2023, 42(6): 1240−1247.

    Li Y, Duan X Y, Shi Y G, et al. Determination of the petroleum oil in soil by fluorescence spectrophotometry with oscillatory extraction[J]. Rock and Mineral Analysis, 2023, 42(6): 1240−1247.

  • 加载中

(1)

(4)

计量
  • 文章访问数:  61
  • PDF下载数:  0
  • 施引文献:  0
出版历程
收稿日期:  2023-04-24
修回日期:  2024-01-03
录用日期:  2024-03-09
刊出日期:  2024-05-31

目录