-
摘要:
锂是绿色能源和轻质合金的理想原料,作为一种重要的战略性资源而备受各国重视。热泉水中富含锂,储量可观,然而热泉水主要分布在西藏、云南等偏远地区,样品运输与实验室测试成本高、效率低,锂资源勘查急需现场分析技术的支持。热泉水一般含有较高浓度的钠、钾等元素,基体效应显著。本文利用自主研发的便携式锂钾分析仪,搭配负性滤光片,选择锂的分析谱线波长670.78nm,通过优化测量条件,建立了标准曲线法与标准加入法现场测定热泉水中锂元素的分析方法。实验结果表明,当电解质是体积分数为1.5%的盐酸,工作电流为70mA,进样流速为3.0mL/min时,锂检出限为4.07μg/L,相对标准偏差(RSD)为1.03%。对热泉水样品进行加标测试,加标回收率为81.6%~115.9%。当热泉水样品基体组成较简单时,直接采用标准曲线法即可获得较准确的分析结果;当样品基体组成较复杂或者基体浓度高时,采用标准加入法可有效地减小基体效应,获得的分析结果相对更准确。本方法适用于不同类型基体的热泉水中锂含量的分析测试。
Abstract:Lithium is an ideal material for green energy and lightweight alloys, and has been valued by many countries as an important strategic resource. Many hot springs, are rich in Li. However, hot springs are mainly distributed in remote areas such as Xizang and Yunnan, where the cost of sample transportation and laboratory testing is high and the efficiency is low, so the exploration of lithium resources urgently needs the support of on-site analysis technology. Hot spring water generally contains high concentrations of sodium, potassium and other elements, and the matrix effect is significant. In this study, the wavelength of the characteristic Li spectral line was set at 670.78nm. The analytical method for on-site determination of Li in hot spring water samples was established by a self-developed portable Li-K analyzer with a negative filter using the standard curve and standard addition methods. The experimental results show that when the electrolyte is 1.5% hydrochloric acid, the working current is 70mA and the sample flow rate is 3.0mL/min, the detection limit of Li is 4.07μg/L, and the measured precision (RSD) is better than 2%. The hot spring water samples were tested by standard addition, and the spiked recoveries were 81.6% to 115.9%. When the matrix composition of hot spring water samples is simple, accurate analysis results can be obtained by directly using the standard curve method. When the matrix composition of the sample is complex or the matrix concentration is high, the matrix effect can be effectively reduced by the standard addition method, and the analysis results obtained are relatively more accurate, which is suitable for the analysis of lithium content in hot spring water with different matrix types.
-
Key words:
- portable /
- Li-K analyzer /
- hot spring water /
- field analysis /
- lithium /
- electrolyte acidity /
- working current /
- sample flow rate
-
-
表 1 热泉水样品Li元素加标回收率测试结果
Table 1. Spiked recovery of Li in hot spring water
样品编号 Li含量测定值*
(mg/L)加标量
(mg/L)加标后Li含量
测定值(mg/L)加标回收率
(%)W1 0.40 0.50 0.90 101.0 W2 0.32 0.30 0.61 98.1 W3 0.07 0.10 0.15 81.6 W4 0.90 1.00 1.96 106.6 W5 1.85 1.50 3.59 115.9 W6 1.51 1.00 2.60 109.0 W7 0.18 0.20 0.39 102.6 W8 1.38 1.00 2.48 110.1 W9 0.32 0.30 0.61 97.6 W10 0.43 0.50 0.95 102.4 注:“*”表示结果为样品溶液中的Li含量测定值,没有乘以稀释倍数。 表 2 热泉水样品中Li含量的锂钾分析仪测定值与ICP-OES测定值对比
Table 2. Comparison of analytical results of Li content in hot spring samples by Li-K analyzer and ICP-OES
样品编号 Li含量
ICP-OES
测定值
(mg/L)锂钾分析仪(标准曲线法) 锂钾分析仪(标准加入法) Li含量测定值
(mg/L)与ICP-OES测定值
相对偏差(%)Li含量测定值
(mg/L)与ICP-OES测定值
相对偏差(%)W1 2.00 2.00 −0.20 1.96 −2.12 W2 1.64 1.59 −3.21 1.55 −5.41 W3 0.38 0.36 −4.04 0.35 −9.13 W4 4.45 4.48 0.78 4.42 −0.66 W5 8.40 9.26 10.3 9.16 9.03 W6 6.97 7.55 8.38 7.47 7.15 W7 0.94 0.92 −2.18 0.89 −5.01 W8 6.62 6.89 4.08 6.81 2.93 W9 1.56 1.60 2.78 1.57 0.54 W10 2.24 2.18 −2.78 2.14 −4.61 注:相对偏差=(锂钾分析仪测定值−ICP-OES测定值)/ICP-OES测定值×100%。 -
[1] 李建康, 刘喜方, 王登红. 中国锂矿成矿规律概要[J]. 地质学报, 2014, 88(12): 2269−2283. doi: 10.19762/j.cnki.dizhixuebao.2014.12.009
Li J K, Liu X F, Wang D H. The metallogenetic regularity of lithium deposit in China[J]. Acta Geologica Sinica, 2014, 88(12): 2269−2283. doi: 10.19762/j.cnki.dizhixuebao.2014.12.009
[2] 刘舒飞, 陈德稳, 李会谦. 中国锂资源产业现状及对策建议[J]. 资源与产业, 2016, 18(2): 12−15. doi: 10.13776/j.cnki.resourcesindustries.20160315.006
Liu S F, Chen D W, Li H Q. Situation and suggestions of China’s lithium resources industry[J]. Resources & Industries, 2016, 18(2): 12−15. doi: 10.13776/j.cnki.resourcesindustries.20160315.006
[3] 宋彭生, 项仁杰. 盐湖锂资源开发利用及对中国锂产业发展的建议[J]. 矿床地质, 2014, 33(5): 977−992. doi: 10.16111/j.0258-7106.2014.05.007
Song P S, Xiang R J. Utilization and exploitation of lithium resources in salt lakes and some suggestions concerning development of Li industries in China[J]. Mineral Deposits, 2014, 33(5): 977−992. doi: 10.16111/j.0258-7106.2014.05.007
[4] 王秋舒, 元春华, 许虹. 全球锂矿资源分布与潜力分析[J]. 中国矿业, 2015, 24(2): 10−17. doi: 10.3969/j.issn.1004-4051.2015.02.005
Wang Q S, Yuan C H, Xu H. Analysis of the global lithium resource distribution and potential[J]. China Mining Magazine, 2015, 24(2): 10−17. doi: 10.3969/j.issn.1004-4051.2015.02.005
[5] 蔡艳龙, 李建武. 全球锂资源开发利用形势分析及启示[J]. 地球学报, 2017, 38(1): 25−29. doi: 10.3975/cagsb.2017.01.05
Cai Y L, Li J W. The analysis and enlightenment of exploitation situation of global lithium resources[J]. Acta Geoscientica Sinica, 2017, 38(1): 25−29. doi: 10.3975/cagsb.2017.01.05
[6] 王贵玲, 张薇, 梁继运, 等. 中国地热资源潜力评价[J]. 地球学报, 2017, 38(4): 449−459. doi: 10.3975/cagsb.2017.04.02
Wang G L, Zhang W, Liang J Y, et al. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica, 2017, 38(4): 449−459. doi: 10.3975/cagsb.2017.04.02
[7] 郭唯明, 马圣钞, 孙艳, 等. 云南腾冲热泉中稀有金属矿化特征及其意义[J]. 地质学报, 2019, 93(6): 1321−1330. doi: 10.19762/j.cnki.dizhixuebao.2019088
Guo W M, Ma S C, Sun Y, et al. Characteristics and significance of rare metal mineralization in hot-springs of Tengchong area, Yunnan[J]. Acta Geologica Sinica, 2019, 93(6): 1321−1330. doi: 10.19762/j.cnki.dizhixuebao.2019088
[8] 李文, 孔祥军, 袁利娟, 等. 中国地热资源概况及开发利用建议[J]. 中国矿业, 2020, 29(S1): 22−26. doi: 10.12075/j.issn.1004-4051.2020.S1.038
Li W, Kong X J, Yuan L J, et al. General situation and suggestions of development and utilization of geothermal resources in China[J]. China Mining Magazine, 2020, 29(S1): 22−26. doi: 10.12075/j.issn.1004-4051.2020.S1.038
[9] 于沨, 于扬, 王登红, 等. 锂同位素地球化学在地热流体水岩反应中的应用——以川西现代富锂热泉研究为例[J]. 岩石学报, 2022, 38(2): 472−482. doi: 10.18654/1000-0569/2022.02.11
Yu F, Yu Y, Wang D H, et al. Application of Li isotope in geothermal fluid-rock interaction: A case study of modern Li-rich geothermal water in Western Sichuan[J]. Acta Petrologica Sinica, 2022, 38(2): 472−482. doi: 10.18654/1000-0569/2022.02.11
[10] 刘明亮, 曹耀武, 王敏黛, 等. 腾冲热海热泉水化学组分来源及其形成机制探讨[J]. 安全与环境工程, 2014, 21(6): 1−7. doi: 10.13578/j.cnki.issn.1671-1556.2014.06.001
Liu M L, Cao Y W, Wang M D, et al. Source of hydrochemical composition and formation mechanism of Rehai geothermal water in Tengchong[J]. Safety and Environmental Engineering, 2014, 21(6): 1−7. doi: 10.13578/j.cnki.issn.1671-1556.2014.06.001
[11] 刘虹, 张国平, 金志升, 等. 云南腾冲地区地热流体的地球化学特征[J]. 矿物学报, 2009, 29(4): 496−501. doi: 10.16461/j.cnki.1000-4734.2009.04.009
Liu H, Zhang G P, Jin Z S, et al. Geochemical characteristics of geothermal fluid in Tengchong area, Yunnan Province, China[J]. Acta Mineralogica Sinica, 2009, 29(4): 496−501. doi: 10.16461/j.cnki.1000-4734.2009.04.009
[12] 李永林, 冯源强, 周会东, 等. 样品采取和保存对地热水样水化学分析影响[J]. 广州化工, 2022, 50(2): 84−86.
Li Y L, Feng Y Q, Zhou H D, et al. Effects of sampling technique and sample preservation on thermomineral water chemistry parameters[J]. Guangzhou Chemical Industry, 2022, 50(2): 84−86.
[13] 张辰凌, 贾娜, 刘佳, 等. 电感耦合等离子体光谱法研究测定地热水中锂[J]. 光谱学与光谱分析, 2021, 41(12): 3876−3880. doi: 10.3964/j.issn.1000-0593(2021)12-3876-05
Zhang C L, Jia N, Liu J, et al. Investigation of lithium analysis in geothermal water by inductively coupled plasma optical emission spectrometry[J]. Spectroscopy and Spectral Analysis, 2021, 41(12): 3876−3880. doi: 10.3964/j.issn.1000-0593(2021)12-3876-05
[14] 姜贞贞, 刘高令, 王祝, 等. 电感耦合等离子体质谱法测定高海拔地区地热水中的微量元素[J]. 岩矿测试, 2016, 35(5): 475−480. doi: 10.15898/j.cnki.11-2131/td.2016.05.005
Jiang Z Z, Liu G L, Wang Z, et al. Determination of trace elements in thermomineral waters of a high altitude area by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2016, 35(5): 475−480. doi: 10.15898/j.cnki.11-2131/td.2016.05.005
[15] Taddia M, Modesti P, Albertazzi A. Determination of macro-constituents in lithium zirconate for tritium-breeding applications[J]. Journal of Nuclear Materials, 2005, 336: 173−176. doi: 10.1016/j.jnucmat.2004.09.011
[16] Mezei P, Cserfalvi T. Electrolyte cathode atmospheric glow discharges for direct solution analysis[J]. Applied Spectroscopy Reviews, 2007, 42(6): 573−604. doi: 10.1080/05704920701624451
[17] Webb M R, Andrade F J, Hieftje G M. Use of electrolyte cathode glow discharge (ELCAD) for the analysis of complex mixtures[J]. Journal of Analytical Atomic Spectrometry, 2007, 22(7): 766−774. doi: 10.1039/b616989a
[18] Webb M R, Andrade F J, Hieftje G M. Compact glow discharge for the elemental analysis of aqueous samples[J]. Analytical Chemistry, 2007, 79(20): 7899−7905. doi: 10.1021/ac070789x
[19] Mottaleb M A, Woo Y A, Kim H J. Evaluation of open-air type electrolyte-as-cathode glow discharge-atomic emission spectrometry for determination of trace heavy metals in liquid samples[J]. Microchemical Journal, 2001, 69(3): 219−230. doi: 10.1016/S0026-265X(01)00087-X
[20] Shekhar R, Karunasagar D, Dash K, et al. Determination of mercury in hepatitis-B vaccine by electrolyte cathode glow discharge atomic emission spectrometry (ELCAD-AES)[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(6): 875−879. doi: 10.1039/b927010h
[21] Zhang Z, Wang Z, Li Q, et al. Determination of trace heavy metals in environmental and biological samples by solution cathode glow discharge-atomic emission spectrometry and addition of ionic surfactants for improved sensitivity[J]. Talanta, 2014, 119: 613−619. doi: 10.1016/j.talanta.2013.11.010
[22] Wang Z, Schwartz A J, Ray S J, et al. Determination of trace sodium, lithium, magnesium, and potassium impurities in colloidal silica by slurry introduction into an atmospheric-pressure solution-cathode glow discharge and atomic emission spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(2): 234−240. doi: 10.1039/c2ja30253e
[23] 郑培超, 王鸿梅, 李建权, 等. 大气压电解液阴极辉光放电发射光谱检测水体中的金属残留[J]. 光谱学与光谱分析, 2010, 30(7): 1948−1951. doi: 10.3964/j.issn.1000-0593(2010)07-1948-04
Zheng P C, Wang H M, Li J Q, et al. Detection of metal residue in aqueous solutions by electrolyte cathode atmospheric glow discharge emission spectroscopy[J]. Spectroscopy and Spectral Analysis, 2010, 30(7): 1948−1951. doi: 10.3964/j.issn.1000-0593(2010)07-1948-04
[24] 刘晓,杨啸涛,詹秀春,等. 基于CCD检测器的便携式液体阴极辉光放电光谱仪快速测定卤水中的锂[J]. 光谱学与光谱分析, 2017, 37(3): 971−977. doi: 10.3964/j.issn.1000-0593(2017)03-0971-07
Liu X, Yang X T, Zhan X C, et al. Rapid determination of lithium in brine by a portable solution cathode glow discharge based on charge coupled device detector[J]. Spectroscopy and Spectral Analysis, 2017, 37(3): 971−977. doi: 10.3964/j.issn.1000-0593(2017)03-0971-07
[25] Zu W C, Yang Y, Wang Y, et al. Rapid determination of indium in water samples using a portable solution cathode glow discharge-atomic emission spectrometer[J]. Microchemical Journal, 2018, 137: 266−271. doi: 10.1016/j.microc.2017.11.001
[26] 刘晓, 袁继海, 孙东阳, 等. 便携式锂钾分析仪在钾盐资源现场勘查中的应用[J]. 地球学报, 2021, 42(4): 573−578. doi: 10.3975/cagsb.2020.103001
Liu X, Yuan J H, Sun D Y, et al. On-site application of portable Li-K analyzer in the exploration of potash resources[J]. Acta Geoscientica Sinica, 2021, 42(4): 573−578. doi: 10.3975/cagsb.2020.103001
[27] 盖荣银, 汪正, 贺岩峰, 等. 液体阴极辉光放电原子发射光谱法分析硅酸钇镥中痕量杂质元素[J]. 分析化学, 2014, 42(11): 1617−1622. doi: 10.11895/j.issn.0253-3820.140636
Gai R Y, Wang Z, He Y F, et al. Determination of trace metals in lutetium-yttrium orthosilicate by solution-cathode glow discharge-atomic emission spectrometry[J]. Chinese Journal of Analytical Chemistry, 2014, 42(11): 1617−1622. doi: 10.11895/j.issn.0253-3820.140636
-