Genetic Types and Ecological Potential of Selenium-Enriched Land in the Northern Margin of the Qinghai—Xizang Plateau
-
摘要:
青藏高原土壤硒(Se)在全国处于中-低水平,对其局部发现的富硒土地开展成因类型研究,可为构建青藏高原硒资源研究与开发利用体系提供科学依据,同时对改善青藏高原低Se摄入风险具有现实意义。本文在中国主要天然富硒土地特征及成因类型基础上,对青藏高原北缘通过土壤、岩石等多介质协同监测,分析Se及相关元素分布特征,总结了该地区主要存在干旱咸水湖沉积型、硫化物矿化型和有机质吸附型三种富硒土地类型。①干旱咸水湖沉积型富硒土地Se含量处于0.30~1.16mg/kg,重金属低于风险管控筛选值,空间上与Sr、Mg、Fe、Ca、Mo等有益元素叠加富集,硒来源于西宁群红色泥岩风化物,具有Se源沉积稳定、总量Se适中、重金属低、多种有益元素复合等优势,是青藏高原北缘乃至整个西北地区生态潜力较大的硒类型。②硫化物矿化型富硒土地Se含量处于0.30~2.22mg/kg;Ni、Cd、Cr和As存在0.2%~2.4%的点位超筛选值,As存在0.1%的点位超管控值,重金属呈高背景,具有潜在生态风险及气候高寒冷凉适宜产出作物有限等劣势,可在监测下发展林下经济和野生中草药产业。③有机质吸附型富硒土地Se含量处于0.30~0.59mg/kg;Ni、Cd、Cr和As不超标,Se具有增加草料营养、抵御重金属吸收等双重作用,可通过进一步探寻有机质在吸附-释放硒过程中的平衡条件,来调控Se发挥最大生态效应。
Abstract:The study of the genesis type of selenium (Se)-enriched land found in the Qinghai—Xizang Plateau can provide a scientific basis for the construction of the research, development and utilization system of Se resources on the Qinghai—Xizang Plateau and has practical significance for improving the risk of low Se intake on the Qinghai—Xizang Plateau. On the basis of summarizing the characteristics and genesis types of the main natural Se-enriched lands in China, the distribution characteristics of Se and related elements are analyzed through the coordinated monitoring of soil and rock, and the conclusion is that there are three types of Se-enriched lands in the northern margin of the Qinghai—Xizang Plateau, namely, arid saline lake sedimentary type, sulfide mineralization type and organic matter adsorption type. (1) In the sedimentary Se-enriched land of the arid saline lake, the Se content ranges from 0.30 to 1.16mg/kg, and the contents of heavy metals are below the risk control screening values. Spatially, Se overlaps and co-enriches with beneficial elements such as Sr, Mg, Fe, Ca, and Mo. Se is derived from the red mudstone weathering of the Xining Group, which has the advantages of stable Se source sedimentation, moderate total amount of Se, low heavy metals, and composite of a variety of beneficial elements. It is a type of Se with greater ecological potential in the northern margin of the Qinghai—Xizang Plateau and even the entire northwest region. (2) In sulfide mineralized Se-enriched land, Se content ranges from 0.30 to 2.22mg/kg; Ni, Cd, Cr and As exceed screening values in 0.2%−2.4% of the samples; As exceeds control values in 0.1% of the samples. The land has high natural heavy metal backgrounds, posing ecological risks and limitations of high-altitude and cold climate, which can be used to develop the forest-based economy and wild Chinese herbal medicine industry under monitoring. (3) In the organic matter adsorption type Se-enriched land, Se content ranges from 0.30 to 0.59mg/kg, and Ni, Cd, Cr and As do not exceed the standard. Se has the dual effects of increasing forage nutrition and resisting heavy metal absorption, so the maximum ecological effect of Se can be regulated by further exploring the equilibrium conditions of organic matter in the process of adsorption-release of Se.
-
-
表 1 分析方法质量监控
Table 1. Quality control of analysis methods
指标 项目 GBW07401 GBW07402 GBW07403 GBW07404 GBW07405 GBW07406 GBW07407 GBW07408 Se ΔlgC −0.006 0.021 −0.019 0.019 0.006 0.009 0.026 0.009 RSD 4.46 4.63 4.53 4.81 2.46 4.43 4.95 4.55 As ΔlgC 0.008 −0.006 −0.024 0.013 0.007 −0.014 −0.028 0.01 RSD 2.9 4.24 3.4 3.38 2.13 4.12 4.8 3.22 Hg ΔlgC 0.026 0.028 −0.022 0.009 −0.012 0.006 −0.029 −0.026 RSD 4.48 4.78 4.85 2.68 3.49 2.51 4.9 4.28 Cr ΔlgC 0.035 0.031 0.029 0.016 0.007 0.034 0.025 −0.035 RSD 4.07 4 4.01 0.99 0.91 3.1 0.53 4.89 Cu ΔlgC 0.026 0.018 0.022 0.026 −0.035 0.029 −0.035 −0.011 RSD 1.69 4.35 3.38 1.35 0.45 1.66 0.72 2.59 Pb ΔlgC −0.017 0.006 0.01 −0.005 0.001 −0.01 −0.016 −0.008 RSD 1.35 4.57 2.3 2.48 0.28 0.51 4.23 3.83 Zn ΔlgC −0.018 0.013 0.021 0.001 −0.015 0.004 0.015 −0.003 RSD 0.55 1.4 1.85 0.35 1.09 3.05 0.45 1.4 Fe ΔlgC −0.013 −0.009 −0.002 0.01 0.014 0.01 −0.004 −0.018 RSD 0.57 0.57 0.4 0.42 0.43 0.41 0.18 0.82 Mn ΔlgC −0.01 0.003 0 0.026 −0.001 0.016 −0.018 −0.007 RSD 0.65 0.49 1.17 0.56 0.43 0.39 1.36 1.23 S ΔlgC −0.014 −0.021 −0.028 0.008 −0.005 0.025 −0.019 0.012 RSD 2.67 1.25 3.06 0.99 0.83 1.45 0.94 3.24 Mg ΔlgC −0.017 0.02 0.015 0 0.014 0.013 −0.017 0.013 RSD 0.95 0.71 2.02 0.69 0.89 0.89 1.26 1.58 Ca ΔlgC 0.01 0.018 −0.01 0 0.022 0.019 0 0.007 RSD 0.42 0.42 0.59 0.45 0.86 1.59 2.49 1.83 Mo ΔlgC 0.018 −0.009 −0.015 −0.024 0.015 −0.024 −0.018 0.025 RSD 4.14 4.13 4.6 3.92 4.23 4.2 3.79 4.6 Cd ΔlgC −0.026 0.006 −0.038 −0.042 −0.023 −0.038 −0.034 −0.035 RSD 3.26 4.6 4.51 4.5 4.91 4.19 4.99 3.04 Corg ΔlgC −0.02 −0.018 −0.026 0.014 0.013 0.005 0.007 0.014 RSD 3 4.31 2.72 4.63 4.92 1.47 4.06 3.92 pH 项目 GBW07412 GBW07413 GBW07414 GBW07415 GBW07416 GBW07417 — — pH平均 6.06 8.18 8.20 5.63 5.37 5.36 — — RE最大 0.08 −0.06 0.06 0.08 −0.07 −0.08 — — 注:RSD和RE单位为%;其他无量纲。 表 2 西宁盆地富硒区元素含量特征统计
Table 2. Statistics of element content characteristics in Se-enriched area of Xining Basin
元素 含量 (mg/kg) K 相关
系数*元素 含量 (mg/kg) K 相关
系数*元素 含量 (mg/kg) K 相关
系数*平均值 背景值[16] 平均值 背景值[16] 平均值 风险值 Se 0.54 0.26 2.1 1.00 Cu 27 25 1.1 0.10** As 16 25 0.6 0.29** S 6145 353 17.4 0.05 Zn 72 71 1.0 0.07** Cd 0.2 0.6 0.3 −0.01 Sr 367 154 2.4 0.20** Mn 641 580 1.1 0.01 Cr 81 250 0.3 0.06 Mg 31200 14800 2.1 0.25** Mo 1.22 0.86 1.4 0.31** Hg 0.034 3.4 0.01 −0.07** Ca 85400 28500 3.0 −0.22** Fe 46700 44900 1.0 0.23** Pb 24 170 0.1 0.07** 注:“*”表示Se与该元素的相关系数;“**”表示在99%的置信区间呈显著相关;K=均值/背景值(风险值);风险值参照《土壤环境质量农用地土壤污染风险管控标准(试行)》(GB 15618—2018)。
表 3 拉脊山主要岩性及风化物Se含量统计
Table 3. Statistics of Se content of main lithology and weathered materials in Laji Mountain
介质 Se含量(mg/kg) 玄武岩
(n=25)安山岩
(n=4)凝灰岩
(n=6)角砾岩
(n=2)灰岩
(n=7)砂岩
(n=3)破碎带
(n=1)褐铁矿化角砾岩
(n=1)岩石 0.12 0.09 0.08 0.08 0.06 0.24 1.08 1.25 残积物 0.24 0.12 0.12 0.21 0.20 0.44 1.19 0.61 土壤 0.30 0.24 0.22 0.23 0.30 0.37 0.84 0.47 表 4 土壤Se与相关元素相关性分析
Table 4. Correlation analysis of Se in soil with related elements
元素 Se S Cu Corg Se 1 S 0.88** 1 Cu 0.98** 0.79** 1 Corg 0.01 0.12 0.05 1 注:“**”表示0.01水平(双侧)上显著相关。 表 5 不同地区不同介质中Se含量统计
Table 5. Statistics of Se content in different media of different regions
介质 青海湖北部 拉脊山 西宁盆地 样品数量
(件)Se含量
(mg/kg)样品数量
(件)Se含量
(mg/kg)样品数量
(件)Se含量
(mg/kg)岩石 18 0.07 51 0.15 24 0.67 水系沉积物 14 0.20 51 0.25(残积物) 24 0.61 土壤 22 0.34 51 0.29 24 0.47 -
[1] 唐志敏, 湛龙, 张晓东, 等. 基于生态位理论与AHP-TOPSIS模型的福建长汀县富硒土地资源综合评价[J]. 岩矿测试, 2024, 43(4): 592−602. doi: 10.15898/j.ykcs.202310070155
Tang Z M, Zhan L, Zhang X D, et al. Comprehensive evaluation of selenium-enriched land resources in Changting County, Fujian Province based on niche theory and AHP-TOPSIS model[J]. Rock and Mineral Analysis, 2024, 43(4): 592−602. doi: 10.15898/j.ykcs.202310070155
[2] Hilal T, Killam B Y, Grozdanovic M, et al. Structure of the mammalian ribosome as it decodes the selenocysteine UGA codon[J]. Science, 2022, 376(6599): 1338−1343. doi: 10.1126/science.abg3875
[3] Dalia A M, Loh T C, Sazili A Q, et al. Influence of bacterial organic selenium on blood parameters, immune response, selenium retention and intestinal morphology of broiler chickens[J]. BMC Veterinary Research, 2020, 16(1): 365. doi: 10.1186/s12917-020-02587-x
[4] Zhang W X, Li Y, Deng H Y, et al. Effects of organic selenium on growth properties, selenium absorption and utilization, antioxidant activity and immunity in weaning piglets[J]. Food and Nutrition Sciences, 2020, 11(5): 385−395. doi: 10.4236/fns.2020.115028
[5] 王凌霄, 余涛, 李凤嫣, 等. 土壤中硒的生物有效性表征方法及影响因素研究进展[J]. 岩矿测试, 2023, 42(2): 239−253. doi: 10.15898/j.cnki.11-2131/td.202207240140
Wang L X, Yu T, Li F Y, et al. A summary of research progress on bioavailability assessment method of selenium in soil and its influencing factors[J]. Rock and Mineral Analysis, 2023, 42(2): 239−253. doi: 10.15898/j.cnki.11-2131/td.202207240140
[6] 成晓梦, 吴超, 孙彬彬, 等. 浙江中部典型黑色岩系分布区土壤-作物富硒特征与重金属风险评价[J]. 现代地质, 2021, 35(2): 425−433. doi: 10.19657/j.geoscience.1000-8527.2021.02.12
Cheng X M, Wu C, Sun B B, et al. Selenium-rich characteristics and risk assessment of heavy metals in soil and crop in a typical black shale area of the central part of Zhejiang Province, China[J]. Geoscience, 2021, 35(2): 425−433. doi: 10.19657/j.geoscience.1000-8527.2021.02.12
[7] 张建东, 王丽, 雒昆利, 等. 安康南部大巴山区硒过剩土壤分布及来源研究[J]. 土壤, 2022, 54(4): 847−855. doi: 10.13758/j.cnki.tr.2022.04.025
Zhang J D, Wang L, Luo K L, et al. Distribution and source of selenium excess soils in Daba mountain area of southern Ankang[J]. Soils, 2022, 54(4): 847−855. doi: 10.13758/j.cnki.tr.2022.04.025
[8] 王玮, 王政, 孔祥意, 等. 基于INLA-SPDE模型的区域土壤硒元素空间预测及富硒区优选[J/OL]. 环境科学 (2024-08-20) [2025-03-07]. https://doi.org/10.13227/j.hjkx.202405093.
Wang W, Wang Z, Kong X Y, et al. Spatial prediction of selenium in soils by using INLA-SPDE approach and the delimitation of selenium-enriched land with low heavy metals pollution risk[J/OL]. Environmental Science (2024-08-20) [2025-03-07]. https://doi.org/10.13227/j.hjkx.202405093.
[9] 于龙龙, 吴磊, 张志敏, 等. 富硒区土壤养分质量评价: 以陕西省紫阳县闹热村为例[J]. 现代地质, 2021, 35(4): 923−930. doi: 10.19657/j.geoscience.1000-8527.2021.04.03
Yu L L, Wu L, Zhang Z M, et al. Evaluation of soil nutrient quality in selenium-rich area: A case study of Naore Village, Ziyang County, Shannxi Province[J]. Geoscience, 2021, 35(4): 923−930. doi: 10.19657/j.geoscience.1000-8527.2021.04.03
[10] 陈继平, 任蕊, 王晖, 等. 关中塿土地区土壤pH变化对硒形态及有效性的影响[J]. 西北地质, 2020, 53(1): 254−260. doi: 10.19751/j.cnki.61-1149/p.2020.01.024
Chen J P, Ren R, Wang H, et al. Effect of Lou soil pH change on selenium forms and availability[J]. Northwestern Geology, 2020, 53(1): 254−260. doi: 10.19751/j.cnki.61-1149/p.2020.01.024
[11] 邹山进洪. 闽侯县表层土壤及农产品硒含量特征[J]. 物探与化探, 2023, 47(1): 247−256. doi: 10.11720/wtyht.2023.2683
Zou S J H. Selenium contents in surface soil and agricultural products in Minhou County[J]. Geophysical and Geochemical Exploration, 2023, 47(1): 247−256. doi: 10.11720/wtyht.2023.2683
[12] 张亚峰, 姬丙艳, 沈骁, 等. 西宁盆地咸水湖相沉积型富硒土壤的形成机理及意义[J]. 物探与化探, 2023, 47(2): 470−476. doi: 10.11720/wtyht.2023.1325
Zhang Y F, Ji B Y, Shen X, et al. Formation mechanisms and significance of saline-lacustrine Se-rich soils in the Xining Basin[J]. Geophysical and Geochemical Exploration, 2023, 47(2): 470−476. doi: 10.11720/wtyht.2023.1325
[13] 刘熙会, 张小平, 李倩倩, 等. 青藏高原地区大骨节病的流行特征及致病因素探究[J]. 环境化学, 2022, 41(4): 1137−1147. doi: 10.7524/j.issn.0254-6108.2021101302
Liu X H, Zhang X P, Li Q Q, et al. Epidemiological trend and pathogenic factors of KBD in Qinghai—Xizang Plateau region[J]. Environmental Chemistry, 2022, 41(4): 1137−1147. doi: 10.7524/j.issn.0254-6108.2021101302
[14] 王婧, 李海蓉, 杨林生. 青藏高原大骨节病流行区环境、食物及人群硒水平研究[J]. 地理科学进展, 2020, 39(10): 1677−1686. doi: 10.18306/dlkxjz.2020.10.007
Wang J, Li H R, Yang L S. Selenium levels in the environment, food, and human hair in Kashin-Beck Disease endemic areas of the Qinghai—Xizang Plateau[J]. Progress Neography, 2020, 39(10): 1677−1686. doi: 10.18306/dlkxjz.2020.10.007
[15] 周殷竹, 刘义, 王彪, 等. 青海省囊谦县农耕区土壤硒的富集因素[J]. 地质通报, 2020, 39(12): 1952−1959. doi: 10.12097/j.issn.1671-2552.2020.12.009
Zhou Y Z, Liu Y, Wang B, et al. Soil selenium enrichment factors in agricultural area of Nangqian County, Qinghai Province[J]. Geological Bulletin of China, 2020, 39(12): 1952−1959. doi: 10.12097/j.issn.1671-2552.2020.12.009
[16] 奚小环, 侯青叶, 杨忠芳, 等. 基于大数据的中国土壤背景值与基准值及其变化特征研究——写在《中国土壤地球化学参数》出版之际[J]. 物探与化探, 2021, 45(5): 1095−1108. doi: 10.11720/wtyht.2021.0302
Xi X H, Hou Q Y, Yang Z F, et al. Big data based studies of the variation features of Chinese soil’s background value versus reference value: A paper written on the occasion of soil geochemical parameters of China’s publication[J]. Geophysical Prospecting and Geochemical Prospecting, 2021, 45(5): 1095−1108. doi: 10.11720/wtyht.2021.0302
[17] 郑长远, 雷宏武, 崔银祥, 等. 西宁盆地南部天然CO2泄漏和浅部含水层响应[J]. 地质科技通报, 2023, 42(6): 223−232. doi: 10.19509/j.cnki.dzkq.tb20220529
Zheng C Y, Lei H W, Cui Y X, et al. Natural CO2 leakage and responses of shallow aquifers in the southern Xining Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 223−232. doi: 10.19509/j.cnki.dzkq.tb20220529
[18] 胥彪. 晚中新世西宁盆地沉积演化及环境变化[D]. 北京: 中国地质大学(北京), 2017.
Xu B. Late Miocene sedimentary evolution and environmental changes in Xining Basin[D]. Beijing: China University of Geosciences (Beijing), 2017.
[19] 马强, 苗国文, 朱明霞, 等. 干旱咸水湖沉积型富硒土地的划定及开发利用探讨——以青海省洪水泉为例[J/OL]. 物探与化探(2024-02-14) [2025-03-07]. https://link.cnki.net/urlid/11.1906.P.20250214.1041.002.
Ma Q, Miao G W, Zhu M X, et al. Discussion on delineation and exploitation of selenium-rich sedimentary land in arid saline lake——Take the case of Hongshuiquan in Qinghai Province [J]. Geophysical Prospecting and Geochemical Prospecting (2024-02-14) [2025-03-07]. https://link.cnki.net/urlid/11.1906.P.20250214.1041.002.
[20] 康弋, 夏炎, 杜倩倩, 等. 洛阳市农田土壤中硒时空变化规律及其生态效应研究[J/OL]. 中国地质(2024-01-20) [2025-03-07]. https://link.cnki.net/urlid/11.1167.p.20250117.1708.016.
Kang G, Xia Y, Du Q Q, et al. Spatial and temporal variation of selenium in farmland soil and its ecological effect in Luoyang City [J]. Geology in China (2024-01-20) [2025-03-07]. https://link.cnki.net/urlid/11.1167.p.20250117.1708.016.
[21] 吉恒召, 易志强, 李娇艳等. 豫西南寒武系黑色岩系中富硒岩石地球化学特征及成因[J]. 现代矿业, 2020, 36(6): 13−17, 25. doi: 10.3969/j.issn.1674-6082.2020.06.004
Ji H Z, Yi Z Q, Li J Y, et al. Geochemical characteristics and genesis of selenium-rich rocks in the Cambrian black series in southwest Henan Province[J]. Modern Mining, 2020, 36(6): 13−17, 25. doi: 10.3969/j.issn.1674-6082.2020.06.004
[22] 蒋天宇, 余涛, 侯青叶, 等. 基于DGT技术对土壤硒生物有效性及其影响因素的分析[J]. 现代地质, 2021, 35(3): 637−646. doi: 10.19657/j.geoscience.1000-8527.2021.03.05
Jiang T Y, Yu T, Hou Q Y, et al. Analysis of soil selenium bioavailability and its influencing factors based on DGT technology[J]. Geoscience, 2021, 35(3): 637−646. doi: 10.19657/j.geoscience.1000-8527.2021.03.05
[23] 王美华. 浙西典型石煤矿山周边耕地富硒土壤地球化学特征及影响因素[J]. 现代地质, 2022, 36(3): 941−952. doi: 10.19657/j.geoscience.1000-8527.2021.03.14
Wang M H. Geochemical characteristics and influencing factors of selenium-enriched soils in cultivated land around typical stone coal mines in western Zhejiang[J]. Geoscience, 2022, 36(3): 941−952. doi: 10.19657/j.geoscience.1000-8527.2021.03.14
[24] 曹锦山, 王伟, 李五福, 等. 青海拉脊山东段峡门蛇绿混杂岩带的物质确定及其构造意义[J]. 地质与资源, 2022, 31(6): 716−728. doi: 10.13686/j.cnki.dzyzy.2022.06.002
Cao J S, Wang W, Li W F, et al. Determination of the Xiamen ophiolite melange in the eastern section of Laji Mountain, Qinghai Province: Tectonic implication[J]. Geology and Resources, 2022, 31(6): 716−728. doi: 10.13686/j.cnki.dzyzy.2022.06.002
[25] 张亚峰, 苗国文, 马强, 等. 青海平安富Se土壤区环境及人体Se量调查[J]. 地球与环境, 2019, 47(5): 717−721. doi: 10.14050/j.cnki.1672-9250.2019.47.134
Zhang Y F, Miao Q W, Ma Q, et al. Investigations of the selenium content in human and the environment of Se-enriched soils in the Pingan district, Qinghai[J]. Earth and Environment, 2019, 47(5): 717−721. doi: 10.14050/j.cnki.1672-9250.2019.47.134
[26] 来素涵, 孙阳阳, 李帅, 等. 土壤硒与有机质的作用机制及其对生物有效性的研究进展[J]. 中国无机分析化学, 2025, 15(2): 218−230. doi: 10.20236/j.CJIAC.2025.02.008
Lai S H, Sun Y Y, Li S, et al. Research progress on the mechanism of action of soil selenium and organic matter and its bioavailability[J]. Chinese Journal of Inorganic Analytical Chemistry, 2025, 15(2): 218−230. doi: 10.20236/j.CJIAC.2025.02.008
[27] 钟信林. 寒区黑土有机质组成与演化过程及其富硒机制研究——以东北海伦为例[D]. 武汉: 中国地质大学(武汉), 2022.
Zhong X L. Study on organic matter composition, evolutionary process and its significance of selenium enrichment of black soil in cold regions: A case study of Hailun, northeast China[D]. Wuhan: China University of Geosciences (Wuhan), 2022.
[28] 阳召文, 袁永强, 顾尚义, 等. 贵州黑色岩系和煤系地层发育的富硒黄壤中硒的空间分异特征[J]. 矿物岩石地球化学通报, 2024, 43(4): 809−818. doi: 10.3724/j.issn.1007-2802.20240061
Yang Z W, Yuan Y Q, Gu S Y, et al. Spatial differentiation characteristics of selenium in Se-rich yellow soils developed from black shale and coal bearing formations in Guizhou Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2024, 43(4): 809−818. doi: 10.3724/j.issn.1007-2802.20240061
[29] 肖凯琦, 徐宏根, 李毅, 等. 湖南省龙山县耕地土壤硒含量特征及其影响因素[J]. 环境化学, 2024, 43(2): 464−474. doi: 10.7524/j.issn.0254-6108.2022070402
Xiao K Q, Xu H G, Li Y, et al. Characteristics and influencing factors of soil Se content in cultivated land in Longshan County, Hunan Province[J]. Environmental Chemistry, 2024, 43(2): 464−474. doi: 10.7524/j.issn.0254-6108.2022070402
[30] 周欣, 刘强, 丁小琴, 等. 江苏海安里下河平原地区富硒土地资源评价及开发潜力[J/OL]. 现代地质 (2024-03-09) [2025-03-07]. https://doi.org/10.19657/j.geoscience.1000-8527.2024.023.
Zhou X, Liu Q, Ding X Q. et al. Evaluation and development potential of selenium-rich land resources in Lixiahe Plain of Hai’an City, Jiangsu[J/OL]. Geoscience (2024-03-09) [2025-03-07]. https://doi.org/10.19657/j.geoscience.1000-8527.2024.023.
-