中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

青藏高原北缘富硒土地成因类型与生态潜力

张亚峰, 施泽明, 苗国文, 许光, 姬丙艳, 马瑛, 姚振. 青藏高原北缘富硒土地成因类型与生态潜力[J]. 岩矿测试, 2025, 44(3): 436-446. doi: 10.15898/j.ykcs.202307030087
引用本文: 张亚峰, 施泽明, 苗国文, 许光, 姬丙艳, 马瑛, 姚振. 青藏高原北缘富硒土地成因类型与生态潜力[J]. 岩矿测试, 2025, 44(3): 436-446. doi: 10.15898/j.ykcs.202307030087
ZHANG Yafeng, SHI Zeming, MIAO Guowen, XU Guang, JI Bingyan, MA Ying, YAO Zhen. Genetic Types and Ecological Potential of Selenium-Enriched Land in the Northern Margin of the Qinghai—Xizang Plateau[J]. Rock and Mineral Analysis, 2025, 44(3): 436-446. doi: 10.15898/j.ykcs.202307030087
Citation: ZHANG Yafeng, SHI Zeming, MIAO Guowen, XU Guang, JI Bingyan, MA Ying, YAO Zhen. Genetic Types and Ecological Potential of Selenium-Enriched Land in the Northern Margin of the Qinghai—Xizang Plateau[J]. Rock and Mineral Analysis, 2025, 44(3): 436-446. doi: 10.15898/j.ykcs.202307030087

青藏高原北缘富硒土地成因类型与生态潜力

  • 基金项目: 青海省地质勘查基金项目“青海省西宁—乐都富硒区生态地球化学评价”(QHDKJJ10)
详细信息
    作者简介: 张亚峰,博士研究生,高级工程师,主要从事生态地球化学研究。E-mail:371221815@qq.com
    通讯作者: 施泽明,博士,教授,主要从事环境地球化学研究。E-mail:shizm@cdut.edu.cn。;  苗国文,硕士,正高级工程师,主要从事环境地球化学研究。E-mail:27861538@qq.com
  • 中图分类号: P66

Genetic Types and Ecological Potential of Selenium-Enriched Land in the Northern Margin of the Qinghai—Xizang Plateau

More Information
  • 青藏高原土壤硒(Se)在全国处于中-低水平,对其局部发现的富硒土地开展成因类型研究,可为构建青藏高原硒资源研究与开发利用体系提供科学依据,同时对改善青藏高原低Se摄入风险具有现实意义。本文在中国主要天然富硒土地特征及成因类型基础上,对青藏高原北缘通过土壤、岩石等多介质协同监测,分析Se及相关元素分布特征,总结了该地区主要存在干旱咸水湖沉积型、硫化物矿化型和有机质吸附型三种富硒土地类型。①干旱咸水湖沉积型富硒土地Se含量处于0.30~1.16mg/kg,重金属低于风险管控筛选值,空间上与Sr、Mg、Fe、Ca、Mo等有益元素叠加富集,硒来源于西宁群红色泥岩风化物,具有Se源沉积稳定、总量Se适中、重金属低、多种有益元素复合等优势,是青藏高原北缘乃至整个西北地区生态潜力较大的硒类型。②硫化物矿化型富硒土地Se含量处于0.30~2.22mg/kg;Ni、Cd、Cr和As存在0.2%~2.4%的点位超筛选值,As存在0.1%的点位超管控值,重金属呈高背景,具有潜在生态风险及气候高寒冷凉适宜产出作物有限等劣势,可在监测下发展林下经济和野生中草药产业。③有机质吸附型富硒土地Se含量处于0.30~0.59mg/kg;Ni、Cd、Cr和As不超标,Se具有增加草料营养、抵御重金属吸收等双重作用,可通过进一步探寻有机质在吸附-释放硒过程中的平衡条件,来调控Se发挥最大生态效应。

  • 加载中
  • 图 1  研究区土壤类型及采样点位示意图

    Figure 1. 

    图 2  青藏高原北缘富硒土壤分区

    Figure 2. 

    图 3  西宁盆地富硒区与古咸水湖、盆地间的空间制约示意图

    Figure 3. 

    图 4  达坂山区土壤Se、Cu和S元素含量变化图

    Figure 4. 

    表 1  分析方法质量监控

    Table 1.  Quality control of analysis methods

    指标 项目 GBW07401 GBW07402 GBW07403 GBW07404 GBW07405 GBW07406 GBW07407 GBW07408
    Se ΔlgC −0.006 0.021 −0.019 0.019 0.006 0.009 0.026 0.009
    RSD 4.46 4.63 4.53 4.81 2.46 4.43 4.95 4.55
    As ΔlgC 0.008 −0.006 −0.024 0.013 0.007 −0.014 −0.028 0.01
    RSD 2.9 4.24 3.4 3.38 2.13 4.12 4.8 3.22
    Hg ΔlgC 0.026 0.028 −0.022 0.009 −0.012 0.006 −0.029 −0.026
    RSD 4.48 4.78 4.85 2.68 3.49 2.51 4.9 4.28
    Cr ΔlgC 0.035 0.031 0.029 0.016 0.007 0.034 0.025 −0.035
    RSD 4.07 4 4.01 0.99 0.91 3.1 0.53 4.89
    Cu ΔlgC 0.026 0.018 0.022 0.026 −0.035 0.029 −0.035 −0.011
    RSD 1.69 4.35 3.38 1.35 0.45 1.66 0.72 2.59
    Pb ΔlgC −0.017 0.006 0.01 −0.005 0.001 −0.01 −0.016 −0.008
    RSD 1.35 4.57 2.3 2.48 0.28 0.51 4.23 3.83
    Zn ΔlgC −0.018 0.013 0.021 0.001 −0.015 0.004 0.015 −0.003
    RSD 0.55 1.4 1.85 0.35 1.09 3.05 0.45 1.4
    Fe ΔlgC −0.013 −0.009 −0.002 0.01 0.014 0.01 −0.004 −0.018
    RSD 0.57 0.57 0.4 0.42 0.43 0.41 0.18 0.82
    Mn ΔlgC −0.01 0.003 0 0.026 −0.001 0.016 −0.018 −0.007
    RSD 0.65 0.49 1.17 0.56 0.43 0.39 1.36 1.23
    S ΔlgC −0.014 −0.021 −0.028 0.008 −0.005 0.025 −0.019 0.012
    RSD 2.67 1.25 3.06 0.99 0.83 1.45 0.94 3.24
    Mg ΔlgC −0.017 0.02 0.015 0 0.014 0.013 −0.017 0.013
    RSD 0.95 0.71 2.02 0.69 0.89 0.89 1.26 1.58
    Ca ΔlgC 0.01 0.018 −0.01 0 0.022 0.019 0 0.007
    RSD 0.42 0.42 0.59 0.45 0.86 1.59 2.49 1.83
    Mo ΔlgC 0.018 −0.009 −0.015 −0.024 0.015 −0.024 −0.018 0.025
    RSD 4.14 4.13 4.6 3.92 4.23 4.2 3.79 4.6
    Cd ΔlgC −0.026 0.006 −0.038 −0.042 −0.023 −0.038 −0.034 −0.035
    RSD 3.26 4.6 4.51 4.5 4.91 4.19 4.99 3.04
    Corg ΔlgC −0.02 −0.018 −0.026 0.014 0.013 0.005 0.007 0.014
    RSD 3 4.31 2.72 4.63 4.92 1.47 4.06 3.92
    pH 项目 GBW07412 GBW07413 GBW07414 GBW07415 GBW07416 GBW07417
    pH平均 6.06 8.18 8.20 5.63 5.37 5.36
    RE最大 0.08 −0.06 0.06 0.08 −0.07 −0.08
    注:RSD和RE单位为%;其他无量纲。
    下载: 导出CSV

    表 2  西宁盆地富硒区元素含量特征统计

    Table 2.  Statistics of element content characteristics in Se-enriched area of Xining Basin

    元素 含量 (mg/kg) K 相关
    系数*
    元素 含量 (mg/kg) K 相关
    系数*
    元素 含量 (mg/kg) K 相关
    系数*
    平均值 背景值16 平均值 背景值16 平均值 风险值
    Se 0.54 0.26 2.1 1.00 Cu 27 25 1.1 0.10** As 16 25 0.6 0.29**
    S 6145 353 17.4 0.05 Zn 72 71 1.0 0.07** Cd 0.2 0.6 0.3 −0.01
    Sr 367 154 2.4 0.20** Mn 641 580 1.1 0.01 Cr 81 250 0.3 0.06
    Mg 31200 14800 2.1 0.25** Mo 1.22 0.86 1.4 0.31** Hg 0.034 3.4 0.01 −0.07**
    Ca 85400 28500 3.0 −0.22** Fe 46700 44900 1.0 0.23** Pb 24 170 0.1 0.07**

    注:“*”表示Se与该元素的相关系数;“**”表示在99%的置信区间呈显著相关;K=均值/背景值(风险值);风险值参照《土壤环境质量农用地土壤污染风险管控标准(试行)》(GB 15618—2018)。

    下载: 导出CSV

    表 3  拉脊山主要岩性及风化物Se含量统计

    Table 3.  Statistics of Se content of main lithology and weathered materials in Laji Mountain

    介质 Se含量(mg/kg)
    玄武岩
    (n=25)
    安山岩
    (n=4)
    凝灰岩
    (n=6)
    角砾岩
    (n=2)
    灰岩
    (n=7)
    砂岩
    (n=3)
    破碎带
    (n=1)
    褐铁矿化角砾岩
    (n=1)
    岩石 0.12 0.09 0.08 0.08 0.06 0.24 1.08 1.25
    残积物 0.24 0.12 0.12 0.21 0.20 0.44 1.19 0.61
    土壤 0.30 0.24 0.22 0.23 0.30 0.37 0.84 0.47
    下载: 导出CSV

    表 4  土壤Se与相关元素相关性分析

    Table 4.  Correlation analysis of Se in soil with related elements

    元素 Se S Cu Corg
    Se 1
    S 0.88** 1
    Cu 0.98** 0.79** 1
    Corg 0.01 0.12 0.05 1
    注:“**”表示0.01水平(双侧)上显著相关。
    下载: 导出CSV

    表 5  不同地区不同介质中Se含量统计

    Table 5.  Statistics of Se content in different media of different regions

    介质 青海湖北部 拉脊山 西宁盆地
    样品数量
    (件)
    Se含量
    (mg/kg)
    样品数量
    (件)
    Se含量
    (mg/kg)
    样品数量
    (件)
    Se含量
    (mg/kg)
    岩石 18 0.07 51 0.15 24 0.67
    水系沉积物 14 0.20 51 0.25(残积物) 24 0.61
    土壤 22 0.34 51 0.29 24 0.47
    下载: 导出CSV
  • [1]

    唐志敏, 湛龙, 张晓东, 等. 基于生态位理论与AHP-TOPSIS模型的福建长汀县富硒土地资源综合评价[J]. 岩矿测试, 2024, 43(4): 592−602. doi: 10.15898/j.ykcs.202310070155

    Tang Z M, Zhan L, Zhang X D, et al. Comprehensive evaluation of selenium-enriched land resources in Changting County, Fujian Province based on niche theory and AHP-TOPSIS model[J]. Rock and Mineral Analysis, 2024, 43(4): 592−602. doi: 10.15898/j.ykcs.202310070155

    [2]

    Hilal T, Killam B Y, Grozdanovic M, et al. Structure of the mammalian ribosome as it decodes the selenocysteine UGA codon[J]. Science, 2022, 376(6599): 1338−1343. doi: 10.1126/science.abg3875

    [3]

    Dalia A M, Loh T C, Sazili A Q, et al. Influence of bacterial organic selenium on blood parameters, immune response, selenium retention and intestinal morphology of broiler chickens[J]. BMC Veterinary Research, 2020, 16(1): 365. doi: 10.1186/s12917-020-02587-x

    [4]

    Zhang W X, Li Y, Deng H Y, et al. Effects of organic selenium on growth properties, selenium absorption and utilization, antioxidant activity and immunity in weaning piglets[J]. Food and Nutrition Sciences, 2020, 11(5): 385−395. doi: 10.4236/fns.2020.115028

    [5]

    王凌霄, 余涛, 李凤嫣, 等. 土壤中硒的生物有效性表征方法及影响因素研究进展[J]. 岩矿测试, 2023, 42(2): 239−253. doi: 10.15898/j.cnki.11-2131/td.202207240140

    Wang L X, Yu T, Li F Y, et al. A summary of research progress on bioavailability assessment method of selenium in soil and its influencing factors[J]. Rock and Mineral Analysis, 2023, 42(2): 239−253. doi: 10.15898/j.cnki.11-2131/td.202207240140

    [6]

    成晓梦, 吴超, 孙彬彬, 等. 浙江中部典型黑色岩系分布区土壤-作物富硒特征与重金属风险评价[J]. 现代地质, 2021, 35(2): 425−433. doi: 10.19657/j.geoscience.1000-8527.2021.02.12

    Cheng X M, Wu C, Sun B B, et al. Selenium-rich characteristics and risk assessment of heavy metals in soil and crop in a typical black shale area of the central part of Zhejiang Province, China[J]. Geoscience, 2021, 35(2): 425−433. doi: 10.19657/j.geoscience.1000-8527.2021.02.12

    [7]

    张建东, 王丽, 雒昆利, 等. 安康南部大巴山区硒过剩土壤分布及来源研究[J]. 土壤, 2022, 54(4): 847−855. doi: 10.13758/j.cnki.tr.2022.04.025

    Zhang J D, Wang L, Luo K L, et al. Distribution and source of selenium excess soils in Daba mountain area of southern Ankang[J]. Soils, 2022, 54(4): 847−855. doi: 10.13758/j.cnki.tr.2022.04.025

    [8]

    王玮, 王政, 孔祥意, 等. 基于INLA-SPDE模型的区域土壤硒元素空间预测及富硒区优选[J/OL]. 环境科学 (2024-08-20) [2025-03-07]. https://doi.org/10.13227/j.hjkx.202405093.

    Wang W, Wang Z, Kong X Y, et al. Spatial prediction of selenium in soils by using INLA-SPDE approach and the delimitation of selenium-enriched land with low heavy metals pollution risk[J/OL]. Environmental Science (2024-08-20) [2025-03-07]. https://doi.org/10.13227/j.hjkx.202405093.

    [9]

    于龙龙, 吴磊, 张志敏, 等. 富硒区土壤养分质量评价: 以陕西省紫阳县闹热村为例[J]. 现代地质, 2021, 35(4): 923−930. doi: 10.19657/j.geoscience.1000-8527.2021.04.03

    Yu L L, Wu L, Zhang Z M, et al. Evaluation of soil nutrient quality in selenium-rich area: A case study of Naore Village, Ziyang County, Shannxi Province[J]. Geoscience, 2021, 35(4): 923−930. doi: 10.19657/j.geoscience.1000-8527.2021.04.03

    [10]

    陈继平, 任蕊, 王晖, 等. 关中塿土地区土壤pH变化对硒形态及有效性的影响[J]. 西北地质, 2020, 53(1): 254−260. doi: 10.19751/j.cnki.61-1149/p.2020.01.024

    Chen J P, Ren R, Wang H, et al. Effect of Lou soil pH change on selenium forms and availability[J]. Northwestern Geology, 2020, 53(1): 254−260. doi: 10.19751/j.cnki.61-1149/p.2020.01.024

    [11]

    邹山进洪. 闽侯县表层土壤及农产品硒含量特征[J]. 物探与化探, 2023, 47(1): 247−256. doi: 10.11720/wtyht.2023.2683

    Zou S J H. Selenium contents in surface soil and agricultural products in Minhou County[J]. Geophysical and Geochemical Exploration, 2023, 47(1): 247−256. doi: 10.11720/wtyht.2023.2683

    [12]

    张亚峰, 姬丙艳, 沈骁, 等. 西宁盆地咸水湖相沉积型富硒土壤的形成机理及意义[J]. 物探与化探, 2023, 47(2): 470−476. doi: 10.11720/wtyht.2023.1325

    Zhang Y F, Ji B Y, Shen X, et al. Formation mechanisms and significance of saline-lacustrine Se-rich soils in the Xining Basin[J]. Geophysical and Geochemical Exploration, 2023, 47(2): 470−476. doi: 10.11720/wtyht.2023.1325

    [13]

    刘熙会, 张小平, 李倩倩, 等. 青藏高原地区大骨节病的流行特征及致病因素探究[J]. 环境化学, 2022, 41(4): 1137−1147. doi: 10.7524/j.issn.0254-6108.2021101302

    Liu X H, Zhang X P, Li Q Q, et al. Epidemiological trend and pathogenic factors of KBD in Qinghai—Xizang Plateau region[J]. Environmental Chemistry, 2022, 41(4): 1137−1147. doi: 10.7524/j.issn.0254-6108.2021101302

    [14]

    王婧, 李海蓉, 杨林生. 青藏高原大骨节病流行区环境、食物及人群硒水平研究[J]. 地理科学进展, 2020, 39(10): 1677−1686. doi: 10.18306/dlkxjz.2020.10.007

    Wang J, Li H R, Yang L S. Selenium levels in the environment, food, and human hair in Kashin-Beck Disease endemic areas of the Qinghai—Xizang Plateau[J]. Progress Neography, 2020, 39(10): 1677−1686. doi: 10.18306/dlkxjz.2020.10.007

    [15]

    周殷竹, 刘义, 王彪, 等. 青海省囊谦县农耕区土壤硒的富集因素[J]. 地质通报, 2020, 39(12): 1952−1959. doi: 10.12097/j.issn.1671-2552.2020.12.009

    Zhou Y Z, Liu Y, Wang B, et al. Soil selenium enrichment factors in agricultural area of Nangqian County, Qinghai Province[J]. Geological Bulletin of China, 2020, 39(12): 1952−1959. doi: 10.12097/j.issn.1671-2552.2020.12.009

    [16]

    奚小环, 侯青叶, 杨忠芳, 等. 基于大数据的中国土壤背景值与基准值及其变化特征研究——写在《中国土壤地球化学参数》出版之际[J]. 物探与化探, 2021, 45(5): 1095−1108. doi: 10.11720/wtyht.2021.0302

    Xi X H, Hou Q Y, Yang Z F, et al. Big data based studies of the variation features of Chinese soil’s background value versus reference value: A paper written on the occasion of soil geochemical parameters of China’s publication[J]. Geophysical Prospecting and Geochemical Prospecting, 2021, 45(5): 1095−1108. doi: 10.11720/wtyht.2021.0302

    [17]

    郑长远, 雷宏武, 崔银祥, 等. 西宁盆地南部天然CO2泄漏和浅部含水层响应[J]. 地质科技通报, 2023, 42(6): 223−232. doi: 10.19509/j.cnki.dzkq.tb20220529

    Zheng C Y, Lei H W, Cui Y X, et al. Natural CO2 leakage and responses of shallow aquifers in the southern Xining Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 223−232. doi: 10.19509/j.cnki.dzkq.tb20220529

    [18]

    胥彪. 晚中新世西宁盆地沉积演化及环境变化[D]. 北京: 中国地质大学(北京), 2017.

    Xu B. Late Miocene sedimentary evolution and environmental changes in Xining Basin[D]. Beijing: China University of Geosciences (Beijing), 2017.

    [19]

    马强, 苗国文, 朱明霞, 等. 干旱咸水湖沉积型富硒土地的划定及开发利用探讨——以青海省洪水泉为例[J/OL]. 物探与化探(2024-02-14) [2025-03-07]. https://link.cnki.net/urlid/11.1906.P.20250214.1041.002.

    Ma Q, Miao G W, Zhu M X, et al. Discussion on delineation and exploitation of selenium-rich sedimentary land in arid saline lake——Take the case of Hongshuiquan in Qinghai Province [J]. Geophysical Prospecting and Geochemical Prospecting (2024-02-14) [2025-03-07]. https://link.cnki.net/urlid/11.1906.P.20250214.1041.002.

    [20]

    康弋, 夏炎, 杜倩倩, 等. 洛阳市农田土壤中硒时空变化规律及其生态效应研究[J/OL]. 中国地质(2024-01-20) [2025-03-07]. https://link.cnki.net/urlid/11.1167.p.20250117.1708.016.

    Kang G, Xia Y, Du Q Q, et al. Spatial and temporal variation of selenium in farmland soil and its ecological effect in Luoyang City [J]. Geology in China (2024-01-20) [2025-03-07]. https://link.cnki.net/urlid/11.1167.p.20250117.1708.016.

    [21]

    吉恒召, 易志强, 李娇艳等. 豫西南寒武系黑色岩系中富硒岩石地球化学特征及成因[J]. 现代矿业, 2020, 36(6): 13−17, 25. doi: 10.3969/j.issn.1674-6082.2020.06.004

    Ji H Z, Yi Z Q, Li J Y, et al. Geochemical characteristics and genesis of selenium-rich rocks in the Cambrian black series in southwest Henan Province[J]. Modern Mining, 2020, 36(6): 13−17, 25. doi: 10.3969/j.issn.1674-6082.2020.06.004

    [22]

    蒋天宇, 余涛, 侯青叶, 等. 基于DGT技术对土壤硒生物有效性及其影响因素的分析[J]. 现代地质, 2021, 35(3): 637−646. doi: 10.19657/j.geoscience.1000-8527.2021.03.05

    Jiang T Y, Yu T, Hou Q Y, et al. Analysis of soil selenium bioavailability and its influencing factors based on DGT technology[J]. Geoscience, 2021, 35(3): 637−646. doi: 10.19657/j.geoscience.1000-8527.2021.03.05

    [23]

    王美华. 浙西典型石煤矿山周边耕地富硒土壤地球化学特征及影响因素[J]. 现代地质, 2022, 36(3): 941−952. doi: 10.19657/j.geoscience.1000-8527.2021.03.14

    Wang M H. Geochemical characteristics and influencing factors of selenium-enriched soils in cultivated land around typical stone coal mines in western Zhejiang[J]. Geoscience, 2022, 36(3): 941−952. doi: 10.19657/j.geoscience.1000-8527.2021.03.14

    [24]

    曹锦山, 王伟, 李五福, 等. 青海拉脊山东段峡门蛇绿混杂岩带的物质确定及其构造意义[J]. 地质与资源, 2022, 31(6): 716−728. doi: 10.13686/j.cnki.dzyzy.2022.06.002

    Cao J S, Wang W, Li W F, et al. Determination of the Xiamen ophiolite melange in the eastern section of Laji Mountain, Qinghai Province: Tectonic implication[J]. Geology and Resources, 2022, 31(6): 716−728. doi: 10.13686/j.cnki.dzyzy.2022.06.002

    [25]

    张亚峰, 苗国文, 马强, 等. 青海平安富Se土壤区环境及人体Se量调查[J]. 地球与环境, 2019, 47(5): 717−721. doi: 10.14050/j.cnki.1672-9250.2019.47.134

    Zhang Y F, Miao Q W, Ma Q, et al. Investigations of the selenium content in human and the environment of Se-enriched soils in the Pingan district, Qinghai[J]. Earth and Environment, 2019, 47(5): 717−721. doi: 10.14050/j.cnki.1672-9250.2019.47.134

    [26]

    来素涵, 孙阳阳, 李帅, 等. 土壤硒与有机质的作用机制及其对生物有效性的研究进展[J]. 中国无机分析化学, 2025, 15(2): 218−230. doi: 10.20236/j.CJIAC.2025.02.008

    Lai S H, Sun Y Y, Li S, et al. Research progress on the mechanism of action of soil selenium and organic matter and its bioavailability[J]. Chinese Journal of Inorganic Analytical Chemistry, 2025, 15(2): 218−230. doi: 10.20236/j.CJIAC.2025.02.008

    [27]

    钟信林. 寒区黑土有机质组成与演化过程及其富硒机制研究——以东北海伦为例[D]. 武汉: 中国地质大学(武汉), 2022.

    Zhong X L. Study on organic matter composition, evolutionary process and its significance of selenium enrichment of black soil in cold regions: A case study of Hailun, northeast China[D]. Wuhan: China University of Geosciences (Wuhan), 2022.

    [28]

    阳召文, 袁永强, 顾尚义, 等. 贵州黑色岩系和煤系地层发育的富硒黄壤中硒的空间分异特征[J]. 矿物岩石地球化学通报, 2024, 43(4): 809−818. doi: 10.3724/j.issn.1007-2802.20240061

    Yang Z W, Yuan Y Q, Gu S Y, et al. Spatial differentiation characteristics of selenium in Se-rich yellow soils developed from black shale and coal bearing formations in Guizhou Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2024, 43(4): 809−818. doi: 10.3724/j.issn.1007-2802.20240061

    [29]

    肖凯琦, 徐宏根, 李毅, 等. 湖南省龙山县耕地土壤硒含量特征及其影响因素[J]. 环境化学, 2024, 43(2): 464−474. doi: 10.7524/j.issn.0254-6108.2022070402

    Xiao K Q, Xu H G, Li Y, et al. Characteristics and influencing factors of soil Se content in cultivated land in Longshan County, Hunan Province[J]. Environmental Chemistry, 2024, 43(2): 464−474. doi: 10.7524/j.issn.0254-6108.2022070402

    [30]

    周欣, 刘强, 丁小琴, 等. 江苏海安里下河平原地区富硒土地资源评价及开发潜力[J/OL]. 现代地质 (2024-03-09) [2025-03-07]. https://doi.org/10.19657/j.geoscience.1000-8527.2024.023.

    Zhou X, Liu Q, Ding X Q. et al. Evaluation and development potential of selenium-rich land resources in Lixiahe Plain of Hai’an City, Jiangsu[J/OL]. Geoscience (2024-03-09) [2025-03-07]. https://doi.org/10.19657/j.geoscience.1000-8527.2024.023.

  • 加载中

(4)

(5)

计量
  • 文章访问数:  35
  • PDF下载数:  8
  • 施引文献:  0
出版历程
收稿日期:  2023-07-03
修回日期:  2024-09-24
录用日期:  2025-03-08
网络出版日期:  2025-03-12
刊出日期:  2025-05-30

目录