Effects of Iron-Calcium and Organic Matter Matrix on Cadmium Detection in Soil by Energy Dispersive X-Ray Fluorescence Spectroscopy
-
摘要:
镉(Cd)是一种有毒有害重金属,能量色散X射线荧光光谱(EDXRF)技术被广泛应用于检测污染土壤中Cd含量。然而,土壤中的共存元素和有机质等基体组分可能通过X射线的吸收增强、谱线重叠或散射效应干扰Cd检测结果,当前土壤不同组分对检测结果的影响尚未得到充分研究,对仪器的检测精度和准确性构成挑战。本文以硅藻土为基质,分别添加不同浓度的铁(Fe)、钙(Ca)和腐植酸,评估这些成分对Cd荧光信号的干扰情况,并探讨仪器本身的重叠干扰扣除和校正方法在不同元素含量条件下对Cd荧光强度的影响。结果表明,土壤基质中Fe、Ca的大量存在(>5%)会通过元素间吸收效应导致Cd的EDXRF测定值被低估,而腐植酸的大量存在(>10%)则会抬高光谱图中的低能散射背景,增加了低浓度Cd的测定误差。基于正交试验设计,引入Fe、Ca及腐植酸作为校正因子,建立了一种多元线性回归的校正模型,通过该模型显著提高了EDXRF测定土壤样品Cd含量的精度,Cd含量测定值与标准值的平均相对误差在未校正情况下的20.67%降至校正后的7.64%。本研究通过合理的校正措施能够显著提升EDXRF技术在不同类型土壤中的应用潜力,为环境监测提供了一种高效、便捷、准确的检测手段。
Abstract:Cadmium (Cd) is a toxic and harmful heavy metal, and energy dispersive X-ray fluorescence spectroscopy (EDXRF) technology is widely used to detect Cd content in contaminated soil. However, matrix components such as coexisting elements and organic matter in soil may interfere with Cd detection results through X-ray absorption enhancement, spectral line overlap or scattering effect, and the influence of different soil components on the detection results has not been fully studied, which poses a challenge to the detection precision and accuracy of the instrument. Different concentrations of iron (Fe), calcium (Ca) and humic acid were added to diatomite as the matrix to evaluate the interference of these components on the Cd fluorescence signal, and the effects of overlapping interference deduction and correction methods on the Cd fluorescence intensity under different element content conditions were discussed. The results showed that the presence of Fe and Ca in the soil matrix (>5%) could lead to the underestimation of the EDXRF measurement of Cd through the inter-element absorption effect, while the presence of humic acid (>10%) could raise the low-energy scattering background in the spectral pattern and increase the determination error of low-concentration Cd. Based on the orthogonal experimental design, Fe, Ca and humic acid were introduced as correction factors, and a multiple linear regression correction model was established, which significantly improved the accuracy of EDXRF in determining Cd content in soil samples. The average relative error between the measured value of Cd content and the standard value decreased from 20.67% without correction to 7.64% after correction. This study demonstrates that the application potential of EDXRF technology in different types of soil through reasonable correction measures can be significantly improved, and an efficient, convenient and accurate detection method for environmental monitoring can be established.
-
-
表 1 正交设计Fe、Ca及腐植酸添加试验
Table 1. Orthogonal design of Fe, Ca and humic acid addition tests
样品编号 Fe添加量
(%)Ca添加量
(%)腐植酸添加量
(%)Cd添加量
(mg/kg)ZJ-1 3 3 1 0.3 ZJ-2 3 5 2.5 0.6 ZJ-3 3 7 5 1.5 ZJ-4 3 9 10 3 ZJ-5 3 11 20 6 ZJ-6 5 3 2.5 1.5 ZJ-7 5 5 5 3 ZJ-8 5 7 10 6 ZJ-9 5 11 1 0.6 ZJ-10 5 9 20 0.3 ZJ-11 7 3 5 6 ZJ-12 7 5 10 0.3 ZJ-13 7 7 20 0.6 ZJ-14 7 9 1 1.5 ZJ-15 7 11 2.5 3 ZJ-16 10 3 10 0.6 ZJ-17 10 5 20 1.5 ZJ-18 10 7 1 3 ZJ-19 10 9 2.5 6 ZJ-20 10 11 5 0.3 ZJ-21 13 3 20 3 ZJ-22 13 5 1 6 ZJ-23 13 7 2.5 0.3 ZJ-24 13 9 5 0.6 ZJ-25 13 11 10 1.5 表 2 Fe添加组样品均匀性验证结果
Table 2. Verification of the uniformity in the Fe addition group
Fe含量
(%)RSD(%) Cd浓度
0.3mg/kgCd浓度
0.6mg/kgCd浓度
1.5mg/kgCd浓度
3.0mg/kgCd浓度
6.0mg/kg3 5.24 8.13 6.82 3.75 6.70 5 8.95 2.23 2.45 3.44 1.77 7 1.37 3.34 1.48 1.74 2.50 9 4.15 7.39 6.05 0.68 1.69 11 2.79 0.66 2.64 1.27 0.39 13 8.12 4.03 0.63 1.34 2.36 注:Ca、腐植酸添加组及正交添加组检测结果的RSD均小于10%。 表 3 正交试验组样品中镉的添加值和EDXRF测定值
Table 3. Cadmium addition and measured values by EDXRF in the orthogonal test group
样品编号 Cd添加值
(mg/kg)Cd测定值
(mg/kg)相对误差
(%)样品编号 Cd添加值
(mg/kg)Cd测定值
(mg/kg)相对误差
(%)ZJ-1 0.30 0.25 17.3 ZJ-14 1.50 1.40 6.7 ZJ-2 0.60 0.55 8.4 ZJ-15 3.00 2.86 4.8 ZJ-3 1.50 1.44 4.0 ZJ-16 0.60 0.45 24.7 ZJ-4 3.00 2.93 2.3 ZJ-17 1.50 1.33 11.1 ZJ-5 6.00 5.92 1.3 ZJ-18 3.00 2.89 3.8 ZJ-6 1.50 1.50 0.3 ZJ-19 6.00 5.87 2.2 ZJ-7 3.00 3.08 2.8 ZJ-20 0.30 0.22 28.1 ZJ-8 6.00 5.83 2.8 ZJ-21 3.00 2.80 6.6 ZJ-9 0.60 0.54 9.8 ZJ-22 6.00 5.94 1.0 ZJ-10 0.30 0.20 32.1 ZJ-23 0.30 0.15 50.5 ZJ-11 6.00 5.87 2.2 ZJ-24 0.60 0.44 26.8 ZJ-12 0.30 0.24 21.7 ZJ-25 1.50 1.25 23.4 ZJ-13 0.60 0.44 26.2 表 4 样品信息及Cd含量校正前后的准确度对比
Table 4. Sample information and comparison of accuracy before and after Cd content calibration
土壤标准物质
和实际样品Cd含量
(mg/kg)Fe含量
(%)Ca含量
(%)SOM
(%)直接测试结果 模型校正结果 Cd含量
(mg/kg)相对误差
(%)Cd含量
(mg/kg)相对误差
(%)GBW07401 4.3±0.4 4.62 1.23 3.17 4.40 2.33 4.43 2.97 GBW07404 0.35±0.06 7.52 0.19 1.09 0.28 20.0 0.32 7.43 GBW07405 0.45±0.06 8.86 0.07 0.56 0.35 22.2 0.41 9.26 GBW07311 2.3±0.2 3.39 0.47 / 2.42 5.22 2.41 4.75 GBW07312 4.0±0.3 4.34 1.16 / 4.14 3.50 4.15 3.73 砖红壤 0.16 13.5 0.09 2.35 0.02 87.5 0.15 6.25 紫色土 3.07 10.9 1.78 3.42 2.91 8.30 3.02 1.34 灰钙土 0.84 3.17 7.29 1.43 0.72 14.2 0.77 8.51 暗棕壤 0.35 4.13 0.97 13.4 0.26 25.7 0.32 7.94 棕壤 0.25 3.13 0.72 2.22 0.18 28.0 0.17 30.6 注:采用酸消解结合ICP-MS法测定非国标样品中Cd、Fe、Ca全量,采用重铬酸钾外加热氧化滴定法测定非国标样品中有机质含量。 -
[1] 李冰, 周剑雄, 詹秀春. 无机多元素现代仪器分析技术[J]. 地质学报, 2011, 85(11): 1878−1916.
Li B, Zhou J X, Zhan X C. Modern instrumental analysis techniques for inorganic multi-element[J]. Acta Geologica Sinica, 2011, 85(11): 1878−1916.
[2] 袁静, 刘建坤, 郑荣华, 等. 高能偏振能量色散X射线荧光光谱仪特性研究及地质样品中主微量元素分析[J]. 岩矿测试, 2020, 39(6): 816−827. doi: 10.15898/j.cnki.11-2131/td.202001070007
Yuan J, Liu J K, Zheng R H, et al. Characteristics of high-energy polarization energy dispersive X-ray fluorescence spectrometer and analysis of major and trace elements in geological samples[J]. Rock and Mineral Analysis, 2020, 39(6): 816−827. doi: 10.15898/j.cnki.11-2131/td.202001070007
[3] Ulmanu M, Anger I, Gamen E, et al. Rapid determination of some heavy metals in soil using an X-ray fluorescence portable instrument[J]. Research Journal of Agricultural Science, 2011, 43(3): 235−241.
[4] Peralta E, Pérez G, Ojeda G, et al. Heavy metal availability assessment using portable X-ray fluorescence and single extraction procedures on former vineyard polluted soils[J]. Science of the Total Environment, 2020, 726: 138670. doi: 10.1016/j.scitotenv.2020.138670
[5] dos Anjos M J, Lopes R T, de Jesus E F O, et al. Quantitative analysis of metals in soil using X-ray fluorescence[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2000, 55(7): 1189−1194. doi: 10.1016/S0584-8547(00)00165-8
[6] Kirichkov M V, Polyakov V A, Shende S S, et al. Application of X-ray based modern instrumental techniques to determine the heavy metals in soils, minerals and organic media[J]. Chemosphere, 2024, 349: 140782. doi: 10.1016/j.chemosphere.2023.140782
[7] 彭洪柳, 杨周生, 赵婕, 等. 高精度便携式X射线荧光光谱仪在污染农田土壤重金属速测中的应用研究[J]. 农业环境科学学报, 2018, 37(7): 1386−1395. doi: 10.11654/jaes.2018-0568
Peng H L, Yang Z S, Zhao J, et al. Application of high-precision portable X-ray fluorescence spectrometer in the rapid detection of heavy metals in polluted farmland soil[J]. Journal of Agro-Environment Science, 2018, 37(7): 1386−1395. doi: 10.11654/jaes.2018-0568
[8] Boydaş E, Boydaş M G, Alim B. Examination of absorption effects at the Compton to coherent scattering intensities X-rays using Fe-Ca and Fe-Ti binary compounds with WDXRF[C]//Ⅱ.International Conference on Advances in Natural and Applied Sciences. Turkey: Antalya, 2017: 020088.
[9] 倪子月, 陈吉文, 刘明博, 等. 能量色散X射线荧光光谱法测定土壤中铬和锰的干扰校正[J]. 冶金分析, 2016, 36(10): 10−14. doi: 10.13228/j.boyuan.issn1000-7571.009844
Ni Z Y, Chen J W, Liu M B, et al. Interference correction for determination of chromium and manganese in soil by energy dispersive X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2016, 36(10): 10−14. doi: 10.13228/j.boyuan.issn1000-7571.009844
[10] 齐海君, 王建英, 张雪峰, 等. 白云鄂博矿中铈铁钙EDXRF分析的基体效应研究[J]. 光谱学与光谱分析, 2015, 35(12): 3510−3513. doi: 10.3964/j.issn.1000-0593(2015)12-3510-04
Qi H J, Wang J Y, Zhang X F, et al. Matrix effect of EDXRF analysis of cerium FeC in Baiyun Obo ore[J]. Spectroscopy and Spectral Analysis, 2015, 35(12): 3510−3513. doi: 10.3964/j.issn.1000-0593(2015)12-3510-04
[11] Wang M, Gu Y, Lu H, et al. Matrix effect correction method based on the main spectral parameters for rock samples in an in situ energy dispersive X-ray fluorescence analysis[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2022, 193: 106438. doi: 10.1016/j.sab.2022.106438
[12] Lu J, Guo J, Wei Q, et al. A matrix effect correction method for portable X-ray fluorescence data[J]. Applied Sciences, 2022, 12(2): 568. doi: 10.3390/app12020568
[13] Ravansari R, Wilson S C, Wilson B R, et al. Rapid PXRF soil organic carbon and organic matter assessment using novel modular radiation detector assembly[J]. Geoderma, 2021, 382: 114728. doi: 10.1016/j.geoderma.2020.114728
[14] 袁良经, 贾云海, 程大伟. X射线荧光光谱分析方法的检出限测量方法研究[J]. 光谱学与光谱分析, 2023, 43(2): 412−418. doi: 10.3964/j.issn.1000-0593(2023)02-0412-07
Yuan L J, Jia Y H, Cheng D W. Research on detection limit measurement method of X-ray fluorescence spectroscopy analysis[J]. Spectroscopy and Spectral Analysis, 2023, 43(2): 412−418. doi: 10.3964/j.issn.1000-0593(2023)02-0412-07
[15] 李哲, 庹先国, 穆克亮, 等. 矿样中钛铁EDXRF分析的基体效应和神经网络校正研究[J]. 核技术, 2009, 32(1): 35−40. doi: 10.3321/j.issn:0253-3219.2009.01.009
Li Z, Tuo X G, Mu K L, et al. Matrix effect and ANN correcting technique in EDXRF analysis of Ti and Fe in core samples[J]. Nuclear Techniques, 2009, 32(1): 35−40. doi: 10.3321/j.issn:0253-3219.2009.01.009
[16] Hulett L D, Dunn H W, Tarter J G. Quantitative analysis by X-ray fluorescence using first principles for matrix correction[J]. Journal of Radioanalytical Chemistry, 1978, 43(2): 541−557. doi: 10.1007/BF02519511
[17] Gardner R P, Xu L. Status of the Monte Carlo library least-squares (MCLLS) approach for non-linear radiation analyzer problems[J]. Radiation Physics and Chemistry, 2009, 78(10): 843−851. doi: 10.1016/j.radphyschem.2009.04.023
[18] Zhao F, Wang A. A background subtraction approach based on complex wavelet transforms in EDXRF: Background subtraction approach based on complex wavelet[J]. X-Ray Spectrometry, 2015, 44(2): 41−47. doi: 10.1002/xrs.2576
[19] Bowers C. Matrix effect corrections in X-ray fluorescence spectrometry[J]. Journal of Chemical Education, 2019, 96(11): 2597−2599. doi: 10.1021/acs.jchemed.9b00630
[20] 唐晓勇, 倪晓芳, 商照聪, 等. 土壤中铁对砷的便携式X射线荧光光谱仪分析基体效应研究与校正[J]. 冶金分析, 2021, 41(1): 69−74. doi: 10.13228/j.boyuan.issn1000-7571.011109
Tang X Y, Ni X F, Shang Z C, et al. Study and correction of matrix effect of iron on arsenic in soil by portable X-ray fluorescence spectrometer[J]. Metallurgical Analysis, 2021, 41(1): 69−74. doi: 10.13228/j.boyuan.issn1000-7571.011109
[21] Lee C, Monteith S, Ferguson R, et al. Energy dispersive X-ray fluorescence spectrometry using a matrix corrected fundamental parameters algorithm vs. acid digestion with ICP-AES: A comparison of two methods for soil elemental analysis[J]. Communications in Soil Science and Plant Analysis, 2025, 56(3): 354−368. doi: 10.1080/00103624.2024.2418956
[22] 谈春明. X射线RoHS荧光分析基体效应吸收校正的MCNP模拟[J]. 原子能科学技术, 2012, 46(11): 1372−1376. doi: 10.7538/yzk.2012.46.11.1372
Tan C M. MCNP simulation for absorption correction of matrix effect for X-ray RoHS fluorescence analysis[J]. Atomic Energy Science and Technology, 2012, 46(11): 1372−1376. doi: 10.7538/yzk.2012.46.11.1372
[23] 唐晓勇, 倪晓芳, 商照聪. 土壤中铁元素对铬元素p-XRF测定准确度的影响与校正[J]. 岩矿测试, 2020, 39(3): 467−474. doi: 10.15898/j.cnki.11-2131/td.201911200161
Tang X Y, Ni X F, Shang Z C. Effect and correction of iron in soil on the accuracy of P-XRF determination of chromium[J]. Rock and Mineral Analysis, 2020, 39(3): 467−474. doi: 10.15898/j.cnki.11-2131/td.201911200161
[24] 吉昂, 卓尚军, 李国会. 能量色散X射线荧光光谱[M]. 北京: 科学出版社, 2011: 35−40.
Ji A, Zhuo S J, Li G H. Energy dispersive X-ray fluorescence spectroscopy[M]. Beijing: Science Press, 2011: 35−40.
[25] Jia L, Gu Y, Zhang Q, et al. The accuracy evaluation method of baseline estimation algorithms in energy dispersive X-ray fluorescence spectrum analysis[J]. X-Ray Spectrometry, 2023, 52(1): 22−27. doi: 10.1002/xrs.3180
[26] Mikhailov I F, Mikhailov A I, Borisova S S, et al. X-ray fluorescent method for the analysis of trace elements in bio-materials with correction of the matrix effect[J]. Review of Scientific Instruments, 2023, 94(12): 124101. doi: 10.1063/5.0168861
[27] 陈曾思澈, 徐亚, 雷国元, 等. PXRF土壤重金属检测的影响因素模式与校正方法[J]. 中国环境科学, 2020, 40(2): 708−715. doi: 10.19674/j.cnki.issn1000-6923.2020.0130
Chen Z S C, Xu Y, Lei G Y. Influencing factors, modes and correction methods for soil heavy metal detection by PXRF[J]. China Environmental Science, 2020, 40(2): 708−715. doi: 10.19674/j.cnki.issn1000-6923.2020.0130
[28] Shand C A, Wendler R. Portable X-ray fluorescence analysis of mineral and organic soils and the influence of organic matter[J]. Journal of Geochemical Exploration, 2014, 143: 31−42. doi: 10.1016/j.gexplo.2014.03.005
[29] 武天云, Jeff J. Schoenau, 李凤民, 等. 土壤有机质概念和分组技术研究进展[J]. 应用生态学报, 2004(4): 717−722. doi: 10.3321/j.issn:1001-9332.2004.04.036
Wu T Y, Schoenau J J, Li F M, et al. Research progress on soil organic matter concept and grouping technology[J]. Chinese Journal of Applied Ecology, 2004(4): 717−722. doi: 10.3321/j.issn:1001-9332.2004.04.036
[30] Bortoleto G G, Pataca L C M. A new application of X-ray scattering using principal component analysis-classification of vegetable oils[J]. Analytica Chimica Acta, 2005, 539: 283−287. doi: 10.1016/j.aca.2005.03.025
[31] 徐少强, 杨菲, 刘爽, 等. 便携式XRF对西南喀斯特地区碳酸盐岩风化壳土壤分析适用性评估[J]. 地球与环境, 2023, 52(1): 1−10. doi: 10.14050/j.cnki.1672-9250.2023.51.013
Xu S Q, Yang F, Liu S, et al. Applicability of portable XRF for carbonate weathered crust soil analysis in southwest karst region[J]. Earth and Environment, 2023, 52(1): 1−10. doi: 10.14050/j.cnki.1672-9250.2023.51.013
-