中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

基于Geodetector模型的土壤有机质空间格局及影响因子分析——以辽阳—鞍山地区为例

艾晓军, 于小健, 陈占生, 侯红星, 陈雪, 龚仓, 李子奇, 霍东, 刘玖芬. 基于Geodetector模型的土壤有机质空间格局及影响因子分析——以辽阳—鞍山地区为例[J]. 岩矿测试, 2025, 44(3): 420-435. doi: 10.15898/j.ykcs.202412050251
引用本文: 艾晓军, 于小健, 陈占生, 侯红星, 陈雪, 龚仓, 李子奇, 霍东, 刘玖芬. 基于Geodetector模型的土壤有机质空间格局及影响因子分析——以辽阳—鞍山地区为例[J]. 岩矿测试, 2025, 44(3): 420-435. doi: 10.15898/j.ykcs.202412050251
AI Xiaojun, YU Xiaojian, CHEN Zhansheng, HOU Hongxing, CHEN Xue, GONG Cang, LI Ziqi, HUO Dong, LIU Jiufen. Spatial Pattern and Influence Factor Analysis of Soil Organic Matter Based on the GeoDetector Model: Taking Liaoyang—Anshan Area as an Example[J]. Rock and Mineral Analysis, 2025, 44(3): 420-435. doi: 10.15898/j.ykcs.202412050251
Citation: AI Xiaojun, YU Xiaojian, CHEN Zhansheng, HOU Hongxing, CHEN Xue, GONG Cang, LI Ziqi, HUO Dong, LIU Jiufen. Spatial Pattern and Influence Factor Analysis of Soil Organic Matter Based on the GeoDetector Model: Taking Liaoyang—Anshan Area as an Example[J]. Rock and Mineral Analysis, 2025, 44(3): 420-435. doi: 10.15898/j.ykcs.202412050251

基于Geodetector模型的土壤有机质空间格局及影响因子分析——以辽阳—鞍山地区为例

  • 基金项目: 国家重点研发计划项目“黑土区土壤演变时空格局与分类分区保护利用技术的精准配置”(2023YFD1500100);自然资源综合调查指挥中心科技创新基金项目(KC20220001);中国地质调查局地质调查项目“辽阳—丹东黑土地地表基质调查项目”(ZD20220116);中国地质调查局地质调查项目“鲁中丘陵区1∶25万地表基质调查”(DD20243192)
详细信息
    作者简介: 艾晓军,硕士,高级工程师,主要从事地球化学和水工环调查研究。E-mail:179263760@qq.com
    通讯作者: 刘玖芬,硕士,正高级工程师,主要从事地球化学和分析测试研究。E-mail:13863858360@163.com
  • 中图分类号: S151.93

Spatial Pattern and Influence Factor Analysis of Soil Organic Matter Based on the GeoDetector Model: Taking Liaoyang—Anshan Area as an Example

More Information
  • 土壤有机质是表征土壤肥力的关键指标,研究有机质分布空间格局及其影响因子,可为国土空间规划和土地合理利用提供决策依据。对于辽阳—鞍山地区,以往的研究大多集中在土壤表层,且研究单因子影响居多,为了系统研究土壤表层和剖面有机质分布内在规律及影响因素,本文在辽阳—鞍山地区采集土壤表层和剖面样品,采用重铬酸钾容量法、电感耦合等离子体发射光谱法和凯氏蒸馏-容量法测定土壤理化指标含量,基于地统计学、相关性分析和地理探测器模型等方法探讨土壤有机质含量特征、空间格局及其影响因素。研究表明:①研究区土壤表层有机质含量范围为1.72~48.4g/kg,平均值为19.9g/kg,变异系数为41.9%,属中等程度变异,整体上呈东南向西北逐渐降低的空间格局,剖面有机质随深度增大而降低,剖面有机质降低与土壤含氧量、根系生物量和微生物活性降低有关;②土壤表层和剖面有机质与全氮、全磷、黏粒和粉粒含量呈正相关,与砂粒含量和容重呈负相关(p<0.01),这由有机质与氮、磷协同变化的生物地球化学机制和成土母质与质地的级联效应决定的;③任意两个因子交互作用大于单个因子,全氮与其他16个因子的交互作用解释力在0.80以上,土壤表层有机质空间分异,全氮、降雨量、容重和全磷是空间变异主导因子,同时受多种因素复杂影响。

  • 加载中
  • 图 1  研究区地貌及采样位置

    Figure 1. 

    图 2  土壤有机质(a)和容重(b)剖面分布图

    Figure 2. 

    图 3  土壤有机质分级图

    Figure 3. 

    图 4  表层土壤有机质含量与砂粒、粉粒和黏粒含量关系

    Figure 4. 

    图 5  单因子对表层土壤有机质的影响探测结果

    Figure 5. 

    图 6  土壤有机质的交互探测分析结果

    Figure 6. 

    表 1  数据正态分布检验结果

    Table 1.  Test results of normal distribution of data

    统计参数有机质含量TN含量TP含量pH容重
    计数(个)364365362368367
    平均值(g/kg)19.91.170.7056.381.41
    标准差(g/kg)8.340.4660.2900.9290.207
    渐近显著性p(双尾)0.0070.0410.0010.0010.005
    下载: 导出CSV

    表 2  分析方法质量监控

    Table 2.  Quality control of analysis methods

    分析项目 分析方法 检出限
    (mg/kg)
    准确度
    (∆lgC)
    RSD
    (%)
    报出率
    (%)
    TP含量 ICP-OES 5 0.002~0.016 4.78~6.28 100
    TN含量 VOL 20 0.001~0.016 3.77~4.61 100
    有机碳含量 VOL 0.10* 0.002~0.011 3.03~6.62 100
    pH ISE 0.10** 0.002~0.016 0.59~6.00 100
    注:“*”表示计量单位为10−2,“**”表示无量纲。
    下载: 导出CSV

    表 3  交互作用的类型及判别依据

    Table 3.  The types of interaction and the basis of discrimination

    判断依据 交互作用
    $ q\left(X1\cap X2\right) < \mathrm{M}\mathrm{i}\mathrm{n}\left(q\left(X1\right),q\left(X2\right)\right) $q(X1) 非线性减弱
    $ \mathrm{M}\mathrm{i}\mathrm{n}\left(q\left(X1\right),q\left(X2\right)\right) < q\left(X1\cap X2\right) < $
    $\mathrm{M}\mathrm{a}\mathrm{x}\left(q\left(X1\right)\right), q\left(X2\right)) $
    单因子非线
    性减弱
    $ \left(X1\cap X2\right) > \mathrm{M}\mathrm{a}\mathrm{x}\left(q\left(X1\right),q\left(X2\right)\right) $ 双因子增强
    $ q\left(X1\cap X2\right)=q\left(X1\right)+q\left(X2\right) $ 独立
    $ q\left(X1\cap X2\right) > q\left(X1\right)+q\left(X2\right) $ 非线性增强
    下载: 导出CSV

    表 4  研究区土壤表层的分析测试结果

    Table 4.  Analytical results of surface soil in the study area

    分析项目 最大值 最小值 平均值 标准差 变异系数
    (%)
    pH 8.50 3.87 6.38 0.929 14.6
    TN含量(g/kg) 2.80 0.121 1.17 0.466 39.9
    TP含量(g/kg) 1.75 0.188 0.705 0.290 41.2
    有机质含量(g/kg) 48.4 1.72 19.9 8.34 41.9
    容重(g/cm3) 1.93 0.780 1.41 0.207 14.7
    黏粒含量(%) 7.10 0.0353 3.59 1.25 34.8
    粉粒含量(%) 91.8 27.5 72.7 14.8 20.3
    砂粒含量(%) 71.9 2.39 23.7 15.8 67.0
    注:土壤有机质与有机碳换算公式:土壤有机质(g/kg)=土壤有机碳(g/kg)×1.724。
    下载: 导出CSV

    表 5  研究区土壤有机质分等标准及划分结果

    Table 5.  Soil organic matter content in different grades and area proportions

    土壤有机质等级 有机质含量范围
    (g/kg)
    面积
    (km2)
    面积占比
    (%)
    土壤有机质等级 有机质含量范围
    (g/kg)
    面积
    (km2)
    面积占比
    (%)
    >40 18.3 0.24 10~20 3626 47.5
    30~40 206 2.71 6~10 547 7.18
    20~30 3070 40.3 <6 161 2.11
    下载: 导出CSV

    表 6  不同利用类型区土壤有机质含量统计参数

    Table 6.  Statistical table of organic matter content data of different utilization types

    土地利用类型 样品数量
    (件)
    有机质含量变化范围
    (g/kg)
    有机质含量平均值
    (g/kg)
    标准差
    (g/kg)
    变异系数
    (%)
    旱地 173 1.72~47.2 19.5b 7.75 39.7
    水浇地 21 7.07~34.6 21.0b 7.94 37.8
    水田 44 5.86~45.5 22.7b 9.00 39.6
    林地 44 1.90~46.9 19.5b 9.62 49.3
    草地 2 24.6~48.4 36.5a 16.8 46.0
    园地 13 5.69~37.1 18.7b 9.82 52.4
    住宅用地(含工矿、商业用地等) 67 4.48~40.3 18.6b 7.46 40.1
    注:a、b不同字母表示差异显著(p<0.05)。
    下载: 导出CSV

    表 7  表层和剖面土壤有机质与影响因子的斯皮尔曼相关系数

    Table 7.  Spearman correlation coefficients between topsoil and soil profile organic matter and impact factors

    测试指标 表层土壤有机质含量
    (n=368)
    剖面土壤有机质含量
    (n=52)
    TN含量 0.898** 0.945**
    TP含量 0.560** 0.873**
    pH 0.030 −0.307*
    容重 −0.284** −0.305*
    黏粒含量 0.406** 0.751**
    粉粒含量 0.410** 0.726**
    砂粒含量 −0.416** −0.726**
    与公路距离 0.004
    与河流距离 −0.089
    与居民距离 0.019
    海拔 −0.007
    降雨量 0.174**
    气温 0.030

    注:“**” 代表在0.01级别(双尾),相关性显著;“*” 代表在0.05级别(双尾),相关性显著,“−”代表没有统计意义。

    下载: 导出CSV
  • [1]

    黎钰鑫, 赵小敏, 郭熙, 等. 南昌市近郊耕层土壤有机质空间格局及其影响因素分析[J]. 江西农业大学学报, 2023, 45(3): 749−758. doi: 10.13836/j.jjau.2023070

    Li Y X, Zhao X M, Guo X, et al. Spatial pattern of soil organic matter in the suburbs of Nanchang City and its influencing factors[J]. Acta Agriculturae Universitatis Jiangxiensis, 2023, 45(3): 749−758. doi: 10.13836/j.jjau.2023070

    [2]

    贾鲁净, 杨联安, 冀泳帆, 等. 卫星遥感反演土壤有机质研究进展[J]. 遥感信息, 2023, 38(2): 1−9. doi: 10.20091/j.cnki.1000-3177.2023.02.001

    Jia L J, Yang L A, Ji Y F, et al. Review on inversion of soil organic matter using satellite remote sensing[J]. Remote Sensing Information, 2023, 38(2): 1−9. doi: 10.20091/j.cnki.1000-3177.2023.02.001

    [3]

    Almaraz M, Simmonds M, Boudinot F G, et al. Soil carbon sequestration in global working lands as a gateway for negative emission technologies[J]. Global Change Biology, 2023, 29(21): 5988−5998. doi: 10.1111/gcb.16884

    [4]

    Zhao H J, Luo C, Kong D, et al. Spatial and temporal variations in soil organic matter and their influencing factors in the Songnen and Sanjiang Plains of China (1984—2021)[J]. Land, 2024, 9: 1447. doi: 10.3390/land13091447

    [5]

    Kong D, Chu N, Luo C, et al. Analyzing spatial distribution and influencing factors of soil organic matter in cultivated land of Northeast China: Implications for black soil protection[J]. Land, 2024, 13(7): 1028. doi: 10.3390/land13071028

    [6]

    Galluzzi G, Plaza C, Priori S, et al. Soil organic matter dynamics and stability: Climate vs. time[J]. Science of the Total Environment, 2024, 929: 172441. doi: 10.1016/j.scitotenv.2024.172441

    [7]

    Zun F L, Hao C L, Hai Y S, et al. Analysis of soil organic matter influencing factors in the Huangshui River Basin by using the optimal parameter-based geographical detector model[J]. Geocarto International, 2023, 38(1): 2246935. doi: 10.1080/10106049.2023.2246935

    [8]

    蒯雁, 苏欣悦, 王晋峰, 等. 大理典型烟区土壤有机质与全氮时空演变特征[J]. 中国农业科技导报, 2023, 25(12): 177−185. doi: 10.13304/j.nykjdb.2023.0054

    Kuai Y, Su X Y, Wang J F, et al. Temporal and spatial evolution of soil organic matter and total nitrogen in typical tobacco—planting areas of Dali[J]. Journal of Agricultural Science and Technology, 2023, 25(12): 177−185. doi: 10.13304/j.nykjdb.2023.0054

    [9]

    黄会前, 张慧, 胡震, 等. 贵州山区耕地土壤有机质及pH的空间分布与影响因素研究[J]. 西南农业学报, 2023, 36(11): 2473−2479. doi: 10.16213/j.cnki.scjas.2023.11.019

    Huang H Q, Zhang H, Hu Z, et al. Spatial distribution and influencing between organic matter and pH of arable soil in mountainous areas of Guizhou[J]. Southwest China Journal of Agricultural Sciences, 2023, 36(11): 2473−2479. doi: 10.16213/j.cnki.scjas.2023.11.019

    [10]

    孙欣琪, 张蚌蚌, 柴朝卿, 等. 沙地整治下榆林土地利用及土壤有机质时空分异特征[J]. 农业工程学报, 2022, 38(24): 207−217. doi: 10.11975/j.issn.1002-6819.2022.24.023

    Sun X Q, Zhang B B, Chai C Q, et al. Spatial-temporal characteristics of land use and soil organic matter in Yulin under sandy land remediation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(24): 207−217. doi: 10.11975/j.issn.1002-6819.2022.24.023

    [11]

    刘尊方, 雷浩川, 雷蕾. 湟水流域土壤有机质和速效磷空间布局分析[J]. 科学技术与工程, 2022, 22(34): 15095−15102.

    Liu Z F, Lei H C, Lei L. Analysis on spatial distribution of soil organic matter and available phosphorus in Huangshui River Basin[J]. Science Technology and Engineering, 2022, 22(34): 15095−15102.

    [12]

    石光辉, 毛伟, 曾洪玉, 等. 扬州市江都区耕地土壤有机质35年变化特征及其影响因素分析[J]. 扬州大学学报(农业与生命科学版), 2022, 43(6): 44−50. doi: 10.16872/j.cnki.1671-4652.2022.06.006

    Shi G H, Mao W, Zeng H Y, et al. Variation characteristics of soil organic matter and its influencing factors in 35 years in Jiangdu district of Yangzhou City[J]. Journal of Yangzhou University (Agriculture and Life Science Edition), 2022, 43(6): 44−50. doi: 10.16872/j.cnki.1671-4652.2022.06.006

    [13]

    申楷慧, 魏识广, 李林, 等. 漓江流域喀斯特森林土壤有机碳空间分布格局及其驱动因子[J]. 环境科学, 2024, 45(1): 323−334. doi: 10.13227/j.hjkx.202211142

    Shen K H, Wei S G, Li L, et al. Spatial distribution patterns of soil organic carbon in karst forests in Lijiang River Basin and its driving factors[J]. Environmental Science, 2024, 45(1): 323−334. doi: 10.13227/j.hjkx.202211142

    [14]

    张欣, 李梦佳, 刘洪斌, 等. 丘陵区耕地土壤剖面有机质含量分布特征及其影响因素分析[J]. 长江流域资源与环境, 2019, 29(12): 2696−2708. doi: 10.11870/cjlyzyyhj202012013

    Zhang X, Li M J, Liu H B, et al. Distribution characteristics and influencing factors of organic matter content in cultivated soil in different horizons in hilly areas[J]. Resources and Environment in the Yangtze Basin, 2019, 29(12): 2696−2708. doi: 10.11870/cjlyzyyhj202012013

    [15]

    廖宇波, 温良友, 孔祥斌, 等. 近40年大兴区耕地土壤有机质时空变异特征及其影响因素[J]. 土壤通报, 2020, 51(1): 40−49. doi: 10.19336/j.cnki.trtb.2020.01.06

    Liao Y B, Wen L Y, Kong X B, et al. Spatio-temporal variability and influencing factors of soil organic matter in cultivated land of Daxing district in recent 40 years[J]. Chinese Journal of Soil Science, 2020, 51(1): 40−49. doi: 10.19336/j.cnki.trtb.2020.01.06

    [16]

    Wu X T, Jiang N, Li A Q, et al. Spatial distribution pattern of soil organic matter in the wind erosion region of northeastern China based on the cokriging method[J]. CATENA, 2025, 248: 108575. doi: 10.1016/j.catena.2024.108575

    [17]

    王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116−134. doi: 10.11821/dlxb201701010

    Wang J F, Xu C D. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116−134. doi: 10.11821/dlxb201701010

    [18]

    朱兴林, 司建华, 王军德, 等. 基于地理探测器的洮河流域生态环境质量时空演变及驱动力分析[J]. 水利水电技术, 2025, 56(1): 74−84. doi: 10.13928/j.cnki.wrahe.2025.01.007

    Zhu X L, Si J H, Wang J D, et al. Analysis of spatial and temporal evolution of ecological environment quality and driving force in Taohe River Basin[J]. Water Resources and Hydropower Engineering, 2025, 56(1): 74−84. doi: 10.13928/j.cnki.wrahe.2025.01.007

    [19]

    齐杏杏, 高秉博, 潘瑜春, 等. 基于地理探测器的土壤重金属污染影响因素分析[J]. 农业环境科学学报, 2019, 38(11): 2476−2486. doi: 10.11654/jaes.2019-0537

    Qi X X, Gao B B, Pan Y C, et al. Influence factor analysis of heavy metal pollution in large-scale soil based on the geographical detector[J]. Journal of Agro-Environment Science, 2019, 38(11): 2476−2486. doi: 10.11654/jaes.2019-0537

    [20]

    袁菊红, 陈拉, 胡绵好. “中四角”绿色水资源利用效率时空分异及其影响因素——基于非期望产出SBM-DEA和地理探测器模型[J]. 生态经济, 2019, 39(9): 138−147.

    Yuan J H, Chen L, Hu M H. Spatial-temporal differentiation of green water utilization efficiency and its influencing factors in “four-city area in middle China”: Based on SBM-DEA model with undesired outputs and geograpyical geodetector model[J]. Ecological Economy, 2019, 39(9): 138−147.

    [21]

    刘莉, 汪丽娜. 基于地理探测器的广东省水资源利用效率影响因素研究[J]. 水电能源科学, 2021, 39(4): 40−43. doi: 10.20040/j.cnki.1000-7709.2021.04.011

    Liu L, Wang L N. Study on influencing factors of water resources utilization efficiency in Guangdong Province based on geo-detector method[J]. Water Resources and Power, 2021, 39(4): 40−43. doi: 10.20040/j.cnki.1000-7709.2021.04.011

    [22]

    辛培源, 田甜, 张美露, 等. 基于InVEST模型和地理探测器的吉林省生境质量变化及驱动因素评估[J]. 应用生态学报, 2024, 35(10): 2853−2860. doi: 10.13287/j.1001-9332.202410.026

    Xin P Y, Tian T, Zhang M L, et al. Assessment of habitat quality changes and driving factors in Jilin Province based on InVEST model and geodetector[J]. Chinese Journal of Applied Ecology, 2024, 35(10): 2853−2860. doi: 10.13287/j.1001-9332.202410.026

    [23]

    李斯林, 王贺封, 刘佳, 等. 冀南非露天煤矿土壤重金属风险评价与影响因素分析[J]. 岩矿测试, 2024, 43(5): 769−782. doi: 10.15898/j.ykcs.202401180006

    Li S L, Wang H F, Liu J, et al. Risk assessment and influencing factors analysis of heavy metals in soil of non-surface coal mines in southern Hebei Province[J]. Rock and Mineral Analysis, 2024, 43(5): 769−782. doi: 10.15898/j.ykcs.202401180006

    [24]

    龚仓, 王亮, 王顺祥, 等. 四川成都市唐昌镇土壤硒分布特征及影响因素[J]. 岩矿测试, 2022, 41(3): 437−450. doi: 10.15898/j.cnki.11-2131/td.202111180179

    Gong C, Wang L, Wang S X, et al. Distribution characteristics of soil selenium and its influencing factors in Tangchang Town of Chengdu Ctiy, Sichuan Province[J]. Rock and Mineral Analysis, 2022, 41(3): 437−450. doi: 10.15898/j.cnki.11-2131/td.202111180179

    [25]

    王洋, 冯卓亚, 许丽, 等. 塔里木河流域生境质量与土地利用变化响应及驱动力[J]. 干旱区研究, 2024, 41(12): 2132−2142. doi: 10.13866/j.azr.2024.12.14

    Wang Y, Feng Z Y, Xu L, et al. Response and influencing factors of habitat quality and land use change in the Tarim River Basin[J]. Arid Zone Research, 2024, 41(12): 2132−2142. doi: 10.13866/j.azr.2024.12.14

    [26]

    张湘雪, 程昌秀, 徐成东, 等. 基于贝叶斯时空层次模型(BSTHM)和地理探测器法(GeoDetector)对细菌性痢疾的环境风险评估[J]. 环境化学, 2022, 41(7): 2193−2201. doi: 10.7524/j.issn.0254-6108.2021110901

    Zhang X X, Cheng C X, Xu C D, et al. Environmental risk assessment of bacillary dysentery based on BSTHM and GeoDetector[J]. Environmental Chemistry, 2022, 41(7): 2193−2201. doi: 10.7524/j.issn.0254-6108.2021110901

    [27]

    Teixeira F, Basch G, Alaoui A, et al. Manuring effects on visual soil quality indicators and soil organic matter content in different pedoclimatic zones in Europe and China[J]. Soil & Tillage Research, 2021, 212: 105033. doi: 10.1016/J.STILL.2021.105033

    [28]

    汪春鹏, 尤建功, 孙浩, 等. 辽阳市土壤重金属含量特征及潜在风险评价[J]. 地质通报, 2021, 40(10): 1680−1687. doi: 10.12097/j.issn.1671-2552.2021.10.010

    Wang C P, You J G, Sun H, et al. Characteristics and potential risk assessment of heavy metal contents in urban soil, Liaoyang City[J]. Geological Bulletin of China, 2021, 40(10): 1680−1687. doi: 10.12097/j.issn.1671-2552.2021.10.010

    [29]

    孙才志, 李秀明. 基于ArcGIS的下辽河平原地下水功能评价[J]. 地理科学, 2013, 33(2): 174−180. doi: 10.13249/j.cnki.sgs.2013.02.015

    Sun C Z, Li X M. Groundwater function assessment based on ArcGIS in the lower reach of the Liaohe River Plain[J]. Science Geographica Sinica, 2013, 33(2): 174−180. doi: 10.13249/j.cnki.sgs.2013.02.015

    [30]

    边振兴, 蒋文浩, 陆璐, 等. 下辽河平原区典型县域非耕作土地对作物干旱减缓效应[J]. 土壤通报, 2019, 51(1): 89−98. doi: 10.19336/j.cnki.trtb.2020.01.12

    Bian Z X, Jiang W H, Lu L, et al. Effects of non-cultivated land on drought mitigation in typical counties of lower Liaohe Plain[J]. Chinese Journal of Soil Science, 2019, 51(1): 89−98. doi: 10.19336/j.cnki.trtb.2020.01.12

    [31]

    艾晓军, 陈占生, 侯红星, 等. 辽阳—丹东地区土壤重金属分布特征与源解析[J]. 岩矿测试, 2024, 43(5): 755−768. doi: 10.15898/j.ykcs.202404070080

    Ai X J, Chen Z S, Hou H X, et al. Distribution characteristics and source analysis of soil heavy metals in the Liaoyang—Dandong region[J]. Rock and Mineral Analysis, 2024, 43(5): 755−768. doi: 10.15898/j.ykcs.202404070080

    [32]

    汪景宽, 徐香茹, 裴久渤, 等. 东北黑土地区耕地质量现状与面临的机遇和挑战[J]. 土壤通报, 2019, 52(3): 695−701. doi: 10.19336/j.cnki.trtb.2021011103

    Wang J K, Xu X R, Pei J B, et al. Current situations of black soil quality and facing opportunities and challenges in Northeast China[J]. Chinese Journal of Soil Science, 2019, 52(3): 695−701. doi: 10.19336/j.cnki.trtb.2021011103

    [33]

    刘玖芬, 赵晓峰, 侯红星, 等. 地表基质调查分层及分层测试指标体系设计与构建[J]. 岩矿测试, 2024, 43(1): 16−29. doi: 10.15898/j.ykcs.202310080157

    Liu J F, Zhao X F, Hou H X, et al. Exploration on the stratification of the ground substrate survey and the design and construction of its testing indicator system[J]. Rock and Mineral Analysis, 2024, 43(1): 16−29. doi: 10.15898/j.ykcs.202310080157

    [34]

    徐吉, 信自成, 兰模, 等. 冶金机理与贝叶斯优化XGBoost融合的VD炉精炼终点钢液温度预测[J]. 工程科学与技术, 2024, 56(6): 63−72. doi: 10.12454/j.jsuese.202400014

    Xu J, Xin Z C, Lan M, et al. Predicting endpoint temperature of molten steel in VD furnace refining process using metallurgical mechanism and Bayesian optimization XGBoost[J]. Advanced Engineering Sciences, 2024, 56(6): 63−72. doi: 10.12454/j.jsuese.202400014

    [35]

    杨宋琪, 高兴亮, 王丽娟, 等. 西北干旱区典型水库浮游植物群落结构特征及驱动因子[J]. 湖泊科学, 2021, 33(2): 377−387. doi: 10.18307/2021.0207

    Yang S Q, Gao X L, Wang L J, et al. Phytoplankton community structure and driving factors in typical reservoirs of arid region of Northwest China[J]. Journal of Lake Sciences, 2021, 33(2): 377−387. doi: 10.18307/2021.0207

    [36]

    陈孟耀, 刘啸歌, 黄达沧, 等. 基于地理探测器模型的福建省耕地土壤有机碳影响因素研究[J]. 福建农业学报, 2024, 33(6): 738−751. doi: 10.19303/j.issn.1008-0384.2024.06.013

    Chen M Y, Liu X G, Huang D C, et al. Factors affecting soil organic carbon on farmland in Fujian analyzed by geodetector model[J]. Fujian Journal of Agriculture Sciences, 2024, 33(6): 738−751. doi: 10.19303/j.issn.1008-0384.2024.06.013

    [37]

    任向宁, 董玉祥. 基于地理探测器的区域土壤耕层有机碳含量多元复合模型构建——以珠三角核心区为例[J]. 热带地理, 2018, 38(4): 546−556. doi: 10.13284/j.cnki.rddl.003063

    Ren X N, Dong Y X. Construction of multivariate composite calculation model of soil organic carbon content in plough horizon based on geodetector[J]. Tropical Geography, 2018, 38(4): 546−556. doi: 10.13284/j.cnki.rddl.003063

    [38]

    杨帆, 徐洋, 崔勇, 等. 近30年中国农田耕层土壤有机质含量变化[J]. 土壤学报, 2017, 54(5): 1047−1056. doi: 10.11766/trxb201703180633

    Yang F, Xu Y, Cui Y, et al. Variation of soil organic matter content in croplands of China over the last three decades[J]. Acta Pedologica Sinica, 2017, 54(5): 1047−1056. doi: 10.11766/trxb201703180633

    [39]

    迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007: 81−83.

    Chi Q H, Yan M C. Handbook of applied geochemical element abundance data[M]. Beijing: Geological Publishing House, 2007: 81−83.

    [40]

    白树彬, 裴久渤, 李双异, 等. 30年来辽宁省耕地土壤有机质与pH时空动态变化[J]. 土壤通报, 2016, 47(3): 636−644. doi: 10.19336/j.cnki.trtb.2016.03.20

    Bai S B, Pei J B, Li S Y, et al. Temporal and spatial dynamics of soil organic matter and pH in cultivated land of Liaoning Province during the past 30 years[J]. Chinese Journal Soil Science, 2016, 47(3): 636−644. doi: 10.19336/j.cnki.trtb.2016.03.20

    [41]

    蒙雯洋, 饶良懿. 砒砂岩覆土区典型小流域土壤可蚀性K值空间变异特征[J]. 水土保持研究, 2024, 31(3): 10−19. doi: 10.13869/j.cnki.rswc.2024.03.017

    Meng W Y, Rao L Y. Spatial variability of soil erodibility factor K of the typical small watershed in the soil covered area of Pisha sandstone region[J]. Research of Soil and Water Conservation, 2024, 31(3): 10−19. doi: 10.13869/j.cnki.rswc.2024.03.017

    [42]

    Liebmann P, Wordell-Dietrich P, Kalbitz K, et al. Relevance of aboveground litter for soil organic matter formation—A soil profile perspective[J]. Biogeosciences, 2020, 17(12): 3099−3113. doi: 10.5194/bg-17-3099-2020

    [43]

    王国芳, 张吴平, 毕如田, 等. 县域尺度农田深层土壤有机质的估算及空间变异特征[J]. 农业工程学报, 2019, 35(22): 122−131. doi: 10.11975/j.issn.1002-6819.2019.22.014

    Wang G F, Zhang W P, Bi R T, et al. Estimation and spatial variability of organic matter in deep soil of farmland at county scale[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(22): 122−131. doi: 10.11975/j.issn.1002-6819.2019.22.014

    [44]

    张维理, Kolbe H, 张认连. 土壤有机碳作用及转化机制研究进展[J]. 中国农业科学, 2020, 53(2): 317−331. doi: 10.3864/j.issn.0578-1752.2020.02.007

    Zhang W L, Kolbe H, Zhang R L. Research progress of SOC functions and transformation mechanisms[J]. Scientia Agricultura Sinica, 2020, 53(2): 317−331. doi: 10.3864/j.issn.0578-1752.2020.02.007

    [45]

    寇建村, 杨文权, 李尚玮, 等. 我国果园土壤有机质研究进展[J]. 北方园艺, 2016(4): 185−191. doi: 10.11937/bfyy.201604045

    Kou J C, Yang W Q, Li S W, et al. Research advance on soil organic matter of orchard in China[J]. Northern Horticulture, 2016(4): 185−191. doi: 10.11937/bfyy.201604045

    [46]

    徐云鹤, 方斌. 江浙典型茶园土壤有机质空间异质性分析[J]. 地球信息科学学报, 2015, 17(5): 622−630. doi: 10.3724/SP.J.1047.2015.00622

    Xu Y H, Fang B. Study on spatial heterogeneity of the soil organic matter in typical tea gar dens of Jiangsu Province and Zhejiang Province[J]. Journal of Geo-information Science, 2015, 17(5): 622−630. doi: 10.3724/SP.J.1047.2015.00622

    [47]

    商靖敏, 罗维, 吴光红, 等. 洋河流域不同土地利用类型土壤硒(Se)分布及影响因素[J]. 环境科学, 2015, 36(1): 301−308. doi: 10.13227/j.hjkx.2015.01.040

    Shang J M, Luo W, Wu G H, et al. Spatial distribution of se in soils from different land use types and its influencing factors within the Yanghe watershed, China[J]. Environmental Science, 2015, 36(1): 301−308. doi: 10.13227/j.hjkx.2015.01.040

    [48]

    宋恒飞, 吴克宁, 李婷, 等. 寒地黑土典型县域土壤重金属空间分布及影响因素分析——以海伦市为例[J]. 土壤通报, 2018, 49(6): 1480−1486. doi: 10.19336/j.cnki.trtb.2018.06.30

    Song H F, Wu K N, Li T, et al. The spatial distribution and influencing factors of farmland heavy metals in the cold black soil region: A case of Hailun County[J]. Chinese Journal of Soil Science, 2018, 49(6): 1480−1486. doi: 10.19336/j.cnki.trtb.2018.06.30

    [49]

    宫兆宁, 李洪, 阿多, 等. 官厅水库消落带土壤有机质空间分布特征[J]. 生态学报, 2017, 37(24): 8336−8347. doi: 10.5846/stxb201611182344

    Gong Z N, Li H, A D, et al. Spatial distribution characteristics of soil organic matter in the water lever fluctuation zone of Guanting Reservoir[J]. Acta Ecologica Sinica, 2017, 37(24): 8336−8347. doi: 10.5846/stxb201611182344

    [50]

    陈梦, 刘汉文, 马倩, 等. 轻中度盐碱地土壤有机质空间异质性及影响因素分析——以山东省黄河三角洲农业高新技术示范区为例[J]. 山东农业科学, 2019, 56(1): 139−146. doi: 10.14083/j.issn.1001-4942.2024.01.019

    Chen M, Liu H W, Ma Q, et al. Spatial heterogeneity and influencing factors of soil organic matter in light and moderate saline-alkali soil—A case study of the agricultural high-tech industry demonstration area of the Yellow River Delta[J]. Shandong Agricultural Sciences, 2019, 56(1): 139−146. doi: 10.14083/j.issn.1001-4942.2024.01.019

    [51]

    文鑫, 王艺惠, 钟聪, 等. 贵州表层土壤有机质空间变异特征及其影响因素分析[J]. 水土保持学报, 2023, 37(3): 218−224. doi: 10.13870/j.cnki.stbcxb.2023.03.028

    Wen X, Wang Y H, Zhong C, et al. Spatial variation of surface soil organic matter and its influencing factors in Guizhou Province[J]. Journal of Soil and Water Conservation, 2023, 37(3): 218−224. doi: 10.13870/j.cnki.stbcxb.2023.03.028

    [52]

    雷琪, 蒋洪丽, 吴淑芳, 等. 西北地区有机质空间分布及其影响因素研究[J]. 水土保持学报, 2022, 36(3): 274−279, 293. doi: 10.13870/j.cnki.stbcxb.2022.03.039

    Lei Q, Jiang H L, Wu S F, et al. Spatial distribution of organic matter and its influencing factors in Northwest China[J]. Journal of Soil and Water Conservation, 2022, 36(3): 274−279, 293. doi: 10.13870/j.cnki.stbcxb.2022.03.039

    [53]

    Li Y, Zheng S F, Wang L P, et al. Systematic identification of factors influencing the spatial distribution of soil organic matter in croplands within the black soil region of northeastern China across multiple scales[J]. CATENA, 2025, 249: 108633. doi: 10.1016/j.catena.2024.108633

    [54]

    Ni J, Luo D H, Xia J, et al. Vegetation in karst terrain of southwestern China allocates more biomass to roots[J]. Solid Earth, 2015, 6(3): 799−810. doi: 10.5194/se-6-799-2015

    [55]

    徐广平, 李艳琼, 沈育伊, 等. 桂林会仙喀斯特湿地水位梯度下不同植物群落土壤有机碳及其组分特征[J]. 环境科学, 2019, 40(3): 1491−1503. doi: 10.13227/j.hjkx.201806205

    Xu G P, Li Y Q, Shen Y Y, et al. Soil organic carbon distribution and components in different plant communities along a water table gradient in the Huixian karst wetland in Guilin[J]. Environmental Science, 2019, 40(3): 1491−1503. doi: 10.13227/j.hjkx.201806205

    [56]

    黄兴成, 杨叶华, 李渝, 等. 长期施肥对黄壤性水稻土综合肥力和水稻产量的影响[J]. 南方农业学报, 2023, 54(2): 506−515. doi: 10.3969/j.issn.2095-1191.2023.02.019

    Huang X C, Yang Y H, Li Y, et al. Effects of long-term fertilization on integrated fertility and rice yield in yellow paddy soil[J]. Journal of Southern Agricultural, 2023, 54(2): 506−515. doi: 10.3969/j.issn.2095-1191.2023.02.019

    [57]

    葛楠楠, 石芸, 杨宪龙, 等. 黄土高原不同土壤质地农田土壤碳、氮、磷及团聚体分布特征[J]. 应用生态学报, 2017, 28(5): 1626−1632. doi: 10.13287/j.1001-9332.201705.021

    Ge N N, Shi Y, Yang X L, et al. Distribution of soil organic carbon, total nitrogen, total phosphorus and water stable aggregates of cropland with different soil textures on the Loess Plateau, Northwest China[J]. Chinese Journal of Applied Ecology, 2017, 28(5): 1626−1632. doi: 10.13287/j.1001-9332.201705.021

  • 加载中

(6)

(7)

计量
  • 文章访问数:  150
  • PDF下载数:  17
  • 施引文献:  0
出版历程
收稿日期:  2024-12-05
修回日期:  2025-01-26
录用日期:  2025-01-28
网络出版日期:  2025-02-27
刊出日期:  2025-05-30

目录