中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

海南琼中岩-土体系重金属迁移特征及表土环境质量评价

赵红坤, 唐世新, 付燕刚, 兰瑞烜, 赵克强, 李晓东, 马生明. 海南琼中岩-土体系重金属迁移特征及表土环境质量评价[J]. 岩矿测试, 2024, 43(1): 137-151. doi: 10.15898/j.ykcs.202308040122
引用本文: 赵红坤, 唐世新, 付燕刚, 兰瑞烜, 赵克强, 李晓东, 马生明. 海南琼中岩-土体系重金属迁移特征及表土环境质量评价[J]. 岩矿测试, 2024, 43(1): 137-151. doi: 10.15898/j.ykcs.202308040122
ZHAO Hongkun, TANG Shixin, FU Yangang, LAN Ruixuan, ZHAO Keqiang, LI Xiaodong, MA Shengming. Migration Characteristics and Environmental Quality Assessment of Heavy Metal Elements in the Rock-Soil System in Qiongzhong, Hainan Island[J]. Rock and Mineral Analysis, 2024, 43(1): 137-151. doi: 10.15898/j.ykcs.202308040122
Citation: ZHAO Hongkun, TANG Shixin, FU Yangang, LAN Ruixuan, ZHAO Keqiang, LI Xiaodong, MA Shengming. Migration Characteristics and Environmental Quality Assessment of Heavy Metal Elements in the Rock-Soil System in Qiongzhong, Hainan Island[J]. Rock and Mineral Analysis, 2024, 43(1): 137-151. doi: 10.15898/j.ykcs.202308040122

海南琼中岩-土体系重金属迁移特征及表土环境质量评价

  • 基金项目: 国家科技基础资源调查专项(2022FY101800);中国地质调查局地质调查项目(DD20190305,DD20230309)
详细信息
    作者简介: 赵红坤,博士研究生,主要从事地球化学研究。E-mail:zhaohongkun@email.cugb.edu.cn
    通讯作者: 马生明,博士,研究员,主要从事生态地质调查与研究。E-mail:msmigge@163.com
  • 中图分类号: P69;X53;X825

Migration Characteristics and Environmental Quality Assessment of Heavy Metal Elements in the Rock-Soil System in Qiongzhong, Hainan Island

More Information
  • 地球关键带和土壤重金属污染是当今研究的前沿与热点,岩-土体系是地球关键带的重要组成部分。目前海南岛针对不同成壤母质岩-土体系的详细研究较少,并且重金属亟需基于新标准进行评价。为了查清岩-土体系中重金属元素迁移特征及污染状况,本文以海南岛琼中3个土壤垂向剖面及7115件表层土壤样品为研究对象,采用电感耦合等离子体质谱/发射光谱法(ICP-MS/OES)和原子荧光光谱法(AFS)等分析方法,测定岩石和土壤中Cu、Pb、Zn、Cr、Ni、Cd、As和Hg共8种重金属元素含量,利用土壤环境质量农用地土壤污染风险管控标准、内梅罗指数法和潜在生态危害指数法定量评价了表层土壤样品重金属污染状况及生态风险。结果表明,①海南岛琼中二长花岗岩岩-土体系中,不同重金属元素表现出明显的分异特征,Cu、Pb、Zn、Cr、Ni、Cd元素以亏损为主,As元素以富集为主,Hg元素则表现出不同的富集或亏损特征,As、Hg元素尤其富集在表层。②琼中绝大多数表层土壤中重金属元素含量低于土壤环境质量农用地土壤污染风险筛选值,土壤污染风险低。③以琼中和海南岛背景值为评价标准时,应关注Cr、Ni和As污染以及Hg、As和Cd的生态危害。以土壤环境质量为评价标准时,研究区表层土壤的环境质量总体清洁,生态风险较弱。

  • 加载中
  • 图 1  琼中研究区地质、土壤垂向剖面及表层土壤采样点示意图

    Figure 1. 

    图 2  琼中岩-土体系重金属元素含量变化

    Figure 2. 

    图 3  琼中岩-土体系重金属元素迁移系数

    Figure 3. 

    图 4  琼中表层土壤生态风险指数空间分布(评价标准为琼中土壤背景值)

    Figure 4. 

    表 1  样品分析方法及准确度、精密度、检出限

    Table 1.  Analysis method, accuracy, precision and detection limits of the samples

    样品类型 重金属
    元素
    分析方法 准确度
    (△lgC)
    RSD
    (%)
    检出限
    (mg/kg)
    土壤 Cu ICP-MS 0~0.013 4.64~6.55 1
    Pb ICP-MS 0~0.021 2.76~7.09 1.5
    Zn ICP-OES 0.001~0.014 4.17~6.22 2
    Cr ICP-OES 0.001~0.011 3.59~5.05 3
    Ni ICP-MS 0.001~0.012 3.56~6.85 1
    Cd ICP-MS 0~0.018 4.29~7.92 0.02
    As AFS 0.001~0.017 4.41~6.59 0.5
    Hg AFS 0~0.016 4.73~7.33 0.0005
    Ti ICP-OES 0~0.012 3.02~5.00 10
    岩石 Cu ICP-MS 0~0.011 2.49~5.26 1
    Pb ICP-MS 0.001~0.016 4.21~6.60 1.5
    Zn ICP-OES 0~0.017 3.60~6.88 2
    Cr ICP-OES 0.002~0.017 2.99~6.03 3
    Ni ICP-MS 0.001~0.009 3.51~5.73 1
    Cd ICP-MS 0.001~0.011 3.08~7.83 0.02
    As AFS 0~0.013 3.51~6.40 0.5
    Hg AFS 0.001~0.011 4.14~7.56 0.0005
    Ti ICP-OES 0.001~0.015 4.28~5.77 1
    下载: 导出CSV

    表 2  琼中表层土壤重金属含量统计(n=7115)

    Table 2.  Summary statistical of heavy metal elements contents in the topsoil samples of Qiongzhong, Hainan Island (n=7115)

    项目 Cu Pb Zn Cr Ni Cd As Hg pH
    最小值 1.0 2.0 4.0 3.9 1.0 0.02 0.5 0.002 3.98
    中位值 6.4 29.7 50 23.7 6.94 0.04 1.7 0.032 5.4
    平均值 8.8 31.7 53 36 10.2 0.056 3.7 0.035 5.44
    最大值 104 463 500 2110 488 15.2 654 0.395 7.52
    标准差 7.4 16.8 25 59 13.0 0.19 13.1 0.02 0.45
    变异系数 84 53 48 163 127 329 350 48 8
    琼中背景值31 7.09 30.49 52.19 24.12 6.28 0.06 1.03 0.03
    海南岛背景值31 4.95 22.34 35.11 15.24 4.12 0.05 1.14 0.03
    中国土壤背景值32 22.6 26.0 74.2 61.0 26.9 0.097 11.2 0.065
    注:重金属含量单位为mg/kg,pH无量纲,变异系数单位为%,“−”表示未提供此项数据。
    下载: 导出CSV

    表 3  琼中表层土壤重金属含量土壤污染风险统计结果(n=7115)

    Table 3.  Statistical results of heavy metal element contents and soil pollution risks in the topsoil samples of Qiongzhong, Hainan Island (n=7115)

    重金属元素 污染风险指标 表层土壤重金属含量超标样品件数 合计 重金属含量超标样品占
    样品总数的比例
    (%)
    pH≤5.5 5.5<pH≤6.5 6.5<pH≤7.5 pH>7.5
    (n=4254) (n=2694) (n=165) (n=2)
    Cu 大于风险筛选值 9 10 0 0 19 0.27
    大于风险管控值
    Pb 大于风险筛选值 73 9 0 0 82 1.15
    大于风险管控值 0 0 0 0 0 0
    Zn 大于风险筛选值 1 2 0 0 3 0.04
    大于风险管控值
    Cr 大于风险筛选值 58 82 0 0 140 1.97
    大于风险管控值 0 5 0 0 5 0.07
    Ni 大于风险筛选值 16 21 0 0 37 0.52
    大于风险管控值
    Cd 大于风险筛选值 8 14 1 0 23 0.32
    大于风险管控值 0 1 0 1 0.01
    As 大于风险筛选值 45 13 0 0 58 0.82
    大于风险管控值 3 0 0 0 3 0.04
    Hg 大于风险筛选值 0 0 0 0 0 0
    大于风险管控值 0 0 0 0 0 0
    注:“−”表示无此数据。
    下载: 导出CSV

    表 4  琼中表层土壤重金属元素单因子污染指数统计结果(n=7115)

    Table 4.  Statistical results of single factor pollution indices of heavy metal elements in the topsoil samples of Qiongzhong, Hainan Island (n=7115)

    评价标准 重金属
    元素
    单因子污染指数Pi 污染程度Pi占比(%)
    最小值 中位值 均值 最大值 标准差 变异系数 ≤1
    (未污染)
    1~2
    (轻度污染)
    2~3
    (中度污染)
    >3
    (重度污染)
    琼中背景值 Cu 0.14 0.91 1.24 14.67 1.04 84 54.74 28.33 10.98 5.95
    Pb 0.07 0.97 1.04 15.19 0.55 53 53.61 43.5 2.40 0.49
    Zn 0.08 0.95 1.02 9.58 0.49 48 54.14 42.26 3.33 0.27
    Cr 0.16 0.98 1.49 87.48 2.43 163 50.81 27.24 11.58 10.37
    Ni 0.16 1.11 1.62 77.71 2.07 127 46.0 28.87 12.8 12.33
    Cd 0.33 0.70 0.94 253.33 3.09 329 70.57 24.67 3.15 1.61
    As 0.49 1.66 3.63 634.95 12.72 350 15.92 45.14 15.02 23.92
    Hg 0.070 1.070 1.162 13.167 0.555 48 43.2 52.14 3.74 0.92
    海南背景值 Cu 0.20 1.30 1.78 21.01 1.49 84 37.05 31.3 16.37 15.28
    Pb 0.09 1.33 1.42 20.73 0.75 53 20.63 68.11 9.36 1.9
    Zn 0.11 1.41 1.52 14.24 0.72 48 24.33 54.11 18.1 3.46
    Cr 0.26 1.56 2.37 138.45 3.85 163 35.11 25.03 16.16 23.7
    Ni 0.24 1.68 2.48 118.45 3.15 127 29.4 27.56 17.41 25.63
    Cd 0.39 0.84 1.12 304.00 3.70 329 60.72 31.29 5.51 2.48
    As 0.44 1.50 3.28 573.68 11.49 350 22.3 43.57 12.69 21.44
    Hg 0.070 1.070 1.162 13.167 0.555 48 43.2 52.15 3.74 0.91
    筛选值 Cu 0.01 0.13 0.17 2.08 0.15 85 99.73 0.26 0.01 0
    Pb 0.02 0.38 0.41 5.14 0.22 55 98.85 0.94 0.07 0.14
    Zn 0.02 0.25 0.27 2.50 0.13 48 99.96 0.03 0.01 0
    Cr 0.02 0.16 0.24 14.07 0.39 163 98.03 1.53 0.3 0.14
    Ni 0.01 0.11 0.16 6.97 0.19 123 99.48 0.45 0.01 0.06
    Cd 0.07 0.14 0.19 50.67 0.62 329 99.69 0.24 0.04 0.03
    As 0.01 0.04 0.09 16.35 0.33 348 99.2 0.65 0.07 0.08
    Hg 0.001 0.022 0.024 0.219 0.012 51 100 0 0 0
    下载: 导出CSV

    表 5  琼中表层土壤重金属元素内梅罗综合污染指数统计结果(n=7115)

    Table 5.  Statistical results of Nemerow pollution indices of heavy metal elements in the topsoil samples of Qiongzhong, Hainan Island (n=7115)

    评价标准 综合污染指数P 污染等级占比(%)
    最小值 中位值 平均值 最大值 标准差 变异系数 清洁 警戒线 轻度污染 中度污染 重度污染
    (P≤0.7) (0.7<P≤1.0) (1.0<P≤2.0) (2.0<P≤3.0) (P>3.0)
    风险筛选值 0.05 0.33 0.39 36.19 0.554 142 94.9 3.4 1.3 0.2 0.2
    琼中背景值 0.38 1.92 3.37 453 9.369 278 0.5 6.0 46.5 20.3 26.8
    海南岛背景值 0.36 2.36 3.78 409 8.858 234 0.2 2.9 36.5 24.2 36.3
    下载: 导出CSV

    表 6  潜在生态风险水平分级划分标准

    Table 6.  Classification division standards of potential ecological risks

    参评重金属元素 潜在生态
    风险指标
    潜在生态风险水平
    较轻 中度 很强 极强
    8种元素
    (Cu、Pb、Zn、Cr、Ni、Cd、As、Hg)
    $ E_{\mathrm{r}}^i $ <40 40~80 80~160 160~320 >320
    RI <110 110~220 220~440 >440
    5种元素
    (Pb、Cr、Cd、As、Hg)
    $ E_{\mathrm{r}}^i $ <40 40~80 80~160 160~320 >320
    RI <100 100~200 200~400 >400
    注:“−”表示无此数据。
    下载: 导出CSV

    表 7  琼中表层土壤重金属潜在生态危害指数统计(n=7115)

    Table 7.  Statistics of potential ecological harm indices of heavy metal elements in topsoil samples of Qiongzhong, Hainan Island (n=7115)

    评价标准 重金属元素 评价指标样品数(个)
    $ E_{\mathrm{r}}^i $ RI
    较轻 中度 很强 极强 轻度 中度 很强
    琼中背景值 Cu 7098 17 0 0 0 3348 3254 424 89
    Pb 7108 7 0 0 0
    Zn 7115 0 0 0 0
    Cr 7107 3 4 1 0
    Ni 7040 64 7 3 1
    Cd 5918 1025 153 14 5
    As 5868 680 336 151 80
    Hg 3035 3742 315 19 4
    海南岛背景值 Cu 7069 42 4 0 0 2458 3984 582 91
    Pb 7102 11 2 0 0
    Zn 7115 0 0 0 0
    Cr 7084 24 2 5 0
    Ni 6878 202 30 2 3
    Cd 5356 1510 208 35 6
    As 5997 611 314 126 67
    Hg 3035 3742 315 19 4
    筛选值 Cu 7115 0 0 0 0 7113 1 1 0
    Pb 7115 0 0 0 0
    Zn 7115 0 0 0 0
    Cr 7110 5 0 0 0
    Ni 7115 0 0 0 0
    Cd 7114 0 0 1 0
    As 7113 0 2 0 0
    Hg 7115 0 0 0 0
    管控值 Pb 7115 0 0 0 0 7114 0 1 0
    Cr 7115 0 0 0 0
    Cd 7114 0 0 1 0
    As 7115 0 0 0 0
    Hg 7115 0 0 0 0
    下载: 导出CSV
  • [1]

    杨顺华, 宋效东, 吴华勇, 等. 地球关键带研究评述: 现状与展望[J/OL]. 土壤学报,2023. https://kns.cnki.net/kcms/detail/32.1119.P.20230411.1337.012.html.

    Yang S H, Song X D, Wu H Y, et al. A review and discussion on the Earth’s critical zone research: Status quo and prospect[J/OL]. Acta Pedologica Sinica, 2023.https://kns.cnki.net/kcms/detail/32.1119.P.20230411.1337.012.html.

    [2]

    朱永官, 李刚, 张甘霖, 等. 土壤安全: 从地球关键带到生态系统服务[J]. 地理学报, 2015, 70(12): 1859−1869.

    Zhu Y G, Li G, Zhang G L, et al. Soil security: From Earth’s critical zone to ecosystem services[J]. Acta Geographica Sinica, 2015, 70(12): 1859−1869.

    [3]

    Guan D, Sun F, Yu G, et al. Total and available metal concentrations in soils from six long-term fertilization sites across China[J]. Environmental Science and Pollution Research, 2018, 25(31): 31666−31678. doi: 10.1007/s11356-018-3143-3

    [4]

    2022年中国生态环境状况公报(摘录)[J]. 环境保护, 2023, 51 (Z2): 64-81.

    Communique on the State of China’s Ecological Environment in 2022 (Excerpt) [J]. Environmental Protection, 2023, 51(Z2): 64-81.

    [5]

    Gong C, Ma L, Cheng H, et al. Characterization of the particle size fraction associated heavy metals in tropical arable soils from Hainan Island, China[J]. Journal of Geochemical Exploration, 2014, 139: 109−114. doi: 10.1016/j.gexplo.2013.01.002

    [6]

    Zang Z, Li Y, Liu S, et al. Assessment of the heavy metal pollution and health risks of rice cultivated in Hainan Island, China[J]. Environmental Forensics, 2021, 22(1-2): 63−74 doi: 10.1080/15275922.2020.1836081

    [7]

    周江明. 中国耕地重金属污染现状及其人为污染源浅析[J]. 中国土壤与肥料, 2020(2): 83−92.

    Zhou J M. The present status of heavy metal (loid)s pollution in farmland soils and analysis of polluting sources in China[J]. Soil and Fertilizer in China, 2020(2): 83−92.

    [8]

    Wang A, Wang Q, Li J, et al. Geo-statistical and multivariate analyses of potentially toxic elements’ distribution in the soil of Hainan Island (China): A comparison between the topsoil and subsoil at a regional scale[J]. Journal of Geochemical Exploration, 2019, 197: 48−59. doi: 10.1016/j.gexplo.2018.11.008

    [9]

    Zhao Z, Zhao Z, Fu B, et al. Distribution and fractionation of potentially toxic metals under different land-use patterns in suburban areas[J]. Polish Journal of Environmental Studies, 2022, 31(1): 475−483.

    [10]

    高健翁, 龚晶晶, 杨剑洲, 等. 海南岛琼中黎母山—湾岭地区土壤重金属元素分布特征及生态风险评价[J]. 地质通报, 2021, 40(5): 807−816.

    Gao J W, Gong J J, Yang J Z, et al. Spatial distribution and ecological risk assessment of heavy metal pollution in the soil of Limu Mountain—Wanling Town, Qiongzhong, Hainan Province[J]. Geological Bulletin of China, 2021, 40(5): 807−816.

    [11]

    段璇瑜, 龚文峰, 孙雨欣, 等. 海南岛海岸带土地利用变化及其对碳储量时空演变的影响[J]. 水土保持通报, 2022, 42(5): 301−311.

    Duan X Y, Gong W F, Sun Y X, et al. Land use change and its impact on temporal and spatial evolution of carbon storage in coastal zone of Hainan Island[J]. Bulletin of Soil and Water Conservation, 2022, 42(5): 301−311.

    [12]

    Mao C, Song Y, Chen L, et al. Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice[J]. Catena, 2019, 175: 339−348. doi: 10.1016/j.catena.2018.12.029

    [13]

    王军广, 赵志忠, 王鹏, 等. 不同土地利用方式土壤重金属赋存与有机碳关联性分析[J]. 南方农业学报, 2021, 52(9): 2417−2425.

    Wang J G, Zhao Z Z, Wang P, et al. Correlation analysis between concentrations of soil heavy metal species and organic carbon in different land use types[J]. Journal of Southern Agriculture, 2021, 52(9): 2417−2425.

    [14]

    Gao J W, Gong J J, Yang J Z, et al. Spatial distribution and ecological risk assessment of soil heavy metals in a typical volcanic area: Influence of parent materials[J]. Heliyon, 2023, 9(1): e12993. doi: 10.1016/j.heliyon.2023.e12993

    [15]

    Yang J Z, Sun Y L, Wang Z L, et al. Heavy metal pollution in agricultural soils of a typical volcanic area: Risk assessment and source appointment[J]. Chemosphere, 2022, 304: 135340. doi: 10.1016/j.chemosphere.2022.135340

    [16]

    杨剑洲, 王振亮, 高健翁, 等. 海南省集约化种植园中谷物、蔬菜和水果中重金属累积程度及健康风险[J]. 环境科学, 2021, 42(10): 4916−4924.

    Yang J Z, Wang Z L, Gao J W, et al. Accumlation and health risk of heavy metals in cereals, vegetables, and fruits of intensive plantations in Hainan Province[J]. China Environmental Science, 2021, 42(10): 4916−4924.

    [17]

    张黎明, 魏志远, 漆智平. 近30年海南不同地区降雨量和蒸发量分布特征研究[J]. 中国农学通报, 2006, 22(4): 403−407.

    Zhang L M, Wei Z Y, Qi Z P. Characteristics of rainfall and evaporation of different region in recent 30 years in Hainan Province[J]. Chinese Agricultural Science Bulletin, 2006, 22(4): 403−407.

    [18]

    王海荣, 侯青叶, 杨忠芳, 等. 广东省典型花岗岩成土剖面元素垂向分布特征[J]. 中国地质, 2013, 40(2): 619−628.

    Wang H R, Hou Q Y, Yang Z F, et al. Vertical distribution of some elements in typical weathering-soil profiles of granite in Guangdong Province[J]. Geology in China, 2013, 40(2): 619−628.

    [19]

    曹勤英, 黄志宏. 污染土壤重金属形态分析及其影响因素研究进展[J]. 生态科学, 2017, 36(6): 222−232.

    Cao Q Y, Huang Z H. Review on speciation analysis of heavy metals in polluted soils and its influencing factors[J]. Ecological Science, 2017, 36(6): 222−232.

    [20]

    Alnaimy M A, Elrys A S, Zelenakova M, et al. The vital roles of parent material in driving soil substrates and heavy metals availability in arid alkaline regions: A case study from Egypt[J]. Water, 2023, 15: 2481. doi: 10.3390/w15132481

    [21]

    郑顺安. 我国典型农田土壤中重金属的转化与迁移特征研究[D] . 杭州: 浙江大学, 2010.

    Zheng S A. Studies on the transformation and transport of heavy metals in typical Chinese agricultural soils[D]. Hangzhou: Zhejiang University, 2010.

    [22]

    赵泽阳. 海南岛东部不同土地利用方式土壤重金属元素富集特征及其影响因素[D]. 海口: 海南师范大学, 2020.

    Zhao Z Y. Enrichment characteristics and influencing factors of heavy metals in different agricultural land use types in Eastern Hainan Island[D]. Haikou: Hainan Normal University, 2020.

    [23]

    马生明, 朱立新, 汤丽玲, 等. 城镇周边土壤Hg异常成因机理研究[J]. 地质学报, 2007, 81(4): 570−576.

    Ma S M, Zhu L X, Tang L L, et al. Mechanism of Hg anomalies in soil of city ang town areas and their surroundings[J]. Acta Geologica Sinica, 2007, 81(4): 570−576.

    [24]

    徐磊, 赵萌生, 徐杰, 等. 滇中富碱斑岩风化剖面中重金属元素地球化学特征和环境风险评价[J]. 岩矿测试, 2023, 42(3): 616−631.

    Xu L, Zhao M S, Xu J, et al. Geochemical characteristics and environmental risk assessment of heavy metals in weathering profiles of Alkali-enriched porphyry in Central Yunnan[J]. Rock and Mineral Analysis, 2023, 42(3): 616−631.

    [25]

    Chadwick O A, Brimhall G H, Hendricks D M. From a black to a gray box—A mass balance interpretation of pedogenesis[J]. Geomorphology, 1990, 3(3): 369−390.

    [26]

    Jiang K, Qi H W, Hu R Z. Element mobilization and redistribution under extreme tropical weathering of basalts from the Hainan Island, South China[J]. Journal of Asian Earth Sciences, 2018, 158: 80−102. doi: 10.1016/j.jseaes.2018.02.008

    [27]

    Kurtz C, Derry L, Chadwick O, et al. Refractory element mobility in volcanic soils[J]. Geology, 2000, 28: 683−686.

    [28]

    Campodonico V A, Pasquini A I, Lecomte K L, et al. Chemical weathering in subtropical basalt-derived laterites: A mass balance interpretation (Misiones, NE Argentina)[J]. Catena, 2019, 173: 352−366. doi: 10.1016/j.catena.2018.10.027

    [29]

    Nesbitt H W. Mobility and fractionation of rare earth elements during weathering of a granodiorite[J]. Nature, 1979, 279(5710): 206−210. doi: 10.1038/279206a0

    [30]

    宋波, 刘畅, 陈同斌. 广西土壤和沉积物砷含量及污染分布特征[J]. 自然资源学报, 2017, 32(4): 654−668.

    Song B, Liu C, Chen T B. Contents and pollution distribution characteristics of arsenic in soils and sediments in Guangxi Zhuang Autonomous Region[J]. Journal of Natural Resources, 2017, 32(4): 654−668.

    [31]

    傅杨荣. 海南岛土壤地球化学与优质农业研究[D]. 北京: 中国地质大学(北京), 2014.

    Fu Y R. Studies on soil geochemistry and high-quality agriculture in Hainan Island[D]. Beijing: China University of Geosciences (Beijing), 2014.

    [32]

    国家环境保护局, 中国环境监测总站. 中国土壤元素背景值 [M]. 北京: 中国环境科学出版社, 1990.

    National Environmental Protection Administration, China Environmental Monitoring Station. Background values of soil environment in China [M]. Beijing: China Environmental Science Press, 1990.

    [33]

    Al-Kahtany K, Nour H E, Giacobbe S, et al. Heavy metal pollution in surface sediments and human health assessment in Southern Al-Khobar coast, Saudi Arabia[J]. Marine Pollution Bulletin, 2023, 187: 114508. doi: 10.1016/j.marpolbul.2022.114508

    [34]

    Hakanson L. An ecological risk index for aquatic pollution control—A sedimentological approach[J]. Water Research, 1980, 14(8): 975−1001. doi: 10.1016/0043-1354(80)90143-8

    [35]

    马建华, 韩昌序, 姜玉玲. 潜在生态风险指数法应用中的一些问题[J]. 地理研究, 2020, 39(6): 1233−1241.

    Ma J H, Han C X, Jiang Y L. Some problems in the application of potential ecological risk index[J]. Geographical Research, 2020, 39(6): 1233−1241.

    [36]

    余斐, 叶彩红, 许窕孜, 等. 韶关市花岗岩地区森林土壤重金属污染评价[J]. 生态环境学报, 2022, 31(2): 354−362.

    Yu F, Ye C H, Xu T Z, et al. Evaluation of heavy metal pollution in woodland soil of granite area in Shaoguan City[J]. Ecology and Environmental Sciences, 2022, 31(2): 354−362.

    [37]

    陈文轩, 李茜, 王珍, 等. 中国农田土壤重金属空间分布特征及污染评价[J]. 环境科学, 2020, 4(6): 2822−2833.

    Chen W X, Li Q, Wang Z, et al. Spatial distribution characteristics and pollution evaluation of heavy metals in arable land soil of China[J]. Environmental Science, 2020, 4(6): 2822−2833.

    [38]

    马生明, 朱立新, 汤丽玲, 等. 城镇周边和江河沿岸土壤中Hg和Cd存在形式解析与生态风险评估[J]. 岩矿测试, 2020, 39(2): 225−234.

    Ma S M, Zhu L X, Tang L L, et al. The occurrences of Hg and Cd in soils around cities and rivers and their ecological risk assessment[J]. Rock and Mineral Analysis, 2020, 39(2): 225−234.

    [39]

    唐世琪, 刘秀金, 杨柯, 等. 典型碳酸盐岩区耕地土壤剖面重金属形态迁移转化特征及生态风险评价[J]. 环境科学, 2021, 42(8): 3913−3923.

    Tang S Q, Liu X J, Yang K, et al. Migration, transformation characteristics, and ecological risk evaluation of heavy metal fractions in cultivated soil profiles in a typical carbonate-covered area[J]. Environmental Science, 2021, 42(8): 3913−3923.

  • 加载中

(4)

(7)

计量
  • 文章访问数:  966
  • PDF下载数:  96
  • 施引文献:  0
出版历程
收稿日期:  2023-08-04
修回日期:  2023-12-21
录用日期:  2024-01-16
刊出日期:  2024-02-29

目录