中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

巯基改性蒙脱石对中国北方中碱性农田土壤镉钝化效果研究

朱利文, 任超, 李竞天, 田沛宜, 肖建辉, 李萍. 巯基改性蒙脱石对中国北方中碱性农田土壤镉钝化效果研究[J]. 岩矿测试, 2024, 43(1): 124-136. doi: 10.15898/j.ykcs.202309010147
引用本文: 朱利文, 任超, 李竞天, 田沛宜, 肖建辉, 李萍. 巯基改性蒙脱石对中国北方中碱性农田土壤镉钝化效果研究[J]. 岩矿测试, 2024, 43(1): 124-136. doi: 10.15898/j.ykcs.202309010147
ZHU Liwen, REN Chao, LI Jingtian, TIAN Peiyi, XIAO Jianhui, LI Ping. Passivation Effect of Thiol-Modified Montmorillonite on Cadmium in Medium-Alkaline Farmland Soil in Northern China[J]. Rock and Mineral Analysis, 2024, 43(1): 124-136. doi: 10.15898/j.ykcs.202309010147
Citation: ZHU Liwen, REN Chao, LI Jingtian, TIAN Peiyi, XIAO Jianhui, LI Ping. Passivation Effect of Thiol-Modified Montmorillonite on Cadmium in Medium-Alkaline Farmland Soil in Northern China[J]. Rock and Mineral Analysis, 2024, 43(1): 124-136. doi: 10.15898/j.ykcs.202309010147

巯基改性蒙脱石对中国北方中碱性农田土壤镉钝化效果研究

  • 基金项目: 河南省自然资源厅科技攻关项目(豫财招标采购-2021-178-7)
详细信息
    作者简介: 朱利文,硕士,工程师,主要从事水土污染防治研究。E-mail:zhuliwenwen@126.com
  • 中图分类号: P579;X53

Passivation Effect of Thiol-Modified Montmorillonite on Cadmium in Medium-Alkaline Farmland Soil in Northern China

  • 农田土壤重金属污染是影响中国农产品环境质量安全的主要因素。钝化材料是修复农田重金属污染土壤的关键材料,研究开发出高效土壤重金属钝化材料,对于修复重金属污染农田和保障农产品食用安全非常重要。本文以蒙脱石为原材料,将巯基基团负载在其表面或层间制备巯基改性蒙脱石,借助X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和傅里叶红外光谱(FTIR)等技术表征巯基改性蒙脱石的特性,并开展室内土培试验,采用二乙三胺五乙酸浸提-火焰原子吸收分光光度法分析土壤镉的有效态,通过Tessier修正顺序七步提取法分析土壤镉的赋存形态。结果表明:蒙脱石经巯基改性后不仅新增了C−H、S−H共价键,而且增强了−OH和C=O化学键的活性,能与Cd2+发生巯基及羟基配位吸附。供试土壤添加巯基改性蒙脱石后,由于巯基配位吸附作用使土壤离子交换态镉转化为铁锰氧化物结合态,而增强的羟基配位吸附作用使其转化为碳酸盐结合态,结果使土壤中镉的赋存形态发生显著改变,离子交换态大幅减少,作物根系可吸收的土壤有效镉显著降低。添加1%、3%、5%巯基改性蒙脱石后,土壤有效镉分别降低21.92%、69.11%、82.90%;而作为对照组添加1%、3%、5%蒙脱石仅分别降低3.37%、1.80%、6.71%。蒙脱石经巯基改性后对土壤镉的钝化效果得到显著提升,土壤有效镉的降低幅度有随巯基改性蒙脱石添加量增加而提高的趋势。巯基改性蒙脱石对中国北方中碱性农田土壤镉的钝化效果显著,具有一定的参考应用价值。

  • 加载中
  • 图 1  蒙脱石和巯基改性蒙脱石的X射线衍射图谱

    Figure 1. 

    图 2  蒙脱石和巯基改性蒙脱石的SEM图像

    Figure 2. 

    图 3  蒙脱石和巯基改性蒙脱石的TEM图

    Figure 3. 

    图 4  蒙脱石和巯基改性蒙脱石的红外光谱图

    Figure 4. 

    图 5  钝化材料1%、3%、5%添加量下土壤有效态镉含量的变化

    Figure 5. 

    图 6  巯基改性蒙脱石与镉的反应示意图

    Figure 6. 

    图 7  添加钝化材料培养70天后土壤镉赋存形态变化

    Figure 7. 

    表 1  样品的检测分析方法及依据

    Table 1.  Detection and analysis methods and their basis of samples

    检测项目检测指标检测方法方法依据(标准方法)
    土壤理化性质

    pH玻璃电极法NY/T 1121.2—2006
    CEC1mol/L乙酸铵交换法LY/T 1243—1999
    有机质重铬酸钾氧化-外加热法LY/T 1237—1999
    土壤元素全量
    N半微量凯氏法NY/T 53—1987
    P碱熔法NY/T 88—1988
    K碱熔法NY/T 87—1988
    Cd王水提取-电感耦合等离子体质谱法HJ 803—2016
    土壤元素有效性碱解氮碱解-扩散法LY/T 1228—2015
    有效磷0.5mol/L碳酸氢钠浸提法NY/T 1121.7—2014
    速效钾1mol/L乙酸铵浸提-火焰光度法LY/T 1236—1999
    有效态Cd二乙三胺五乙酸浸提-火焰原子吸收分光光度法GB/T 23739—2009
    Cd各赋存形态Tessier修正顺序七步提取法DZ/T 0289—2015
    钝化材料
    元素全量
    pH玻璃电极法NY/T 1121.2—2006
    CEC1mol/L乙酸铵交换法NY/T 295—1995
    Cd、Pb、Cr、Cu、Ni、Zn电感耦合等离子体质谱法HJ 766—2015
    Hg原子荧光光谱法GB/T 22105.1—2008
    As原子荧光光谱法GB/T 22105.2—2008
    钝化材料
    表征分析
    比表面积气体吸附法(BET)GB/T 19587—2017
    物相组成多晶体X射线衍射(XRD)JY/T 0587—2020
    微观形貌、微区成分和结构分析扫描电子显微镜(SEM)JY/T 0584—2020
    超微结构、晶体学信息透射电子显微镜(TEM)JY/T 0581—2020
    官能团信息红外光谱分析法(FTIR)GB/T 6040—2019
    下载: 导出CSV

    表 2  不同钝化处理对土壤pH值的影响(70天)

    Table 2.  Effects of different passivation treatments on soil pH (70d)

    钝化剂处理处理代号土壤pH
    空白对照CK8.22±0.05e
    1%蒙脱石M18.34±0.03d
    3%蒙脱石M38.66±0.03b
    5%蒙脱石M59.00±0.03a
    1%巯基改性蒙脱石GM18.52±0.07c
    3%巯基改性蒙脱石GM38.72±0.03b
    5%巯基改性蒙脱石GM59.07±0.05a
    注:不同小写字母a、b、c、d表示各处理间差异显著(p<0.05)。
    下载: 导出CSV
  • [1]

    綦峥, 齐越, 杨红, 等. 土壤重金属镉污染现状、危害及治理措施[J]. 食品安全质量检测学报, 2020, 11(7): 2286−2294. doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.07.048

    Qi Z, Qi Y, Yang H, et al. Status, harm and treatment measures of heavy metal cadmium pollution in soil[J]. Journal of Food Safety and Quality, 2020, 11(7): 2286−2294. doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.07.048

    [2]

    Liu L W, Li W, Song W P, et al. Remediation techniques for heavy metal-contaminated soils: Principles and applicability[J]. Science of the Total Environment, 2018, 633: 206−219. doi: 10.1016/j.scitotenv.2018.03.161

    [3]

    Lin H, Wang Z W, Liu C J, et al. Technologies for removing heavy metal from contaminated soils on farmland: A review[J]. Chemosphere, 2022, 305: 135457. doi: 10.1016/j.chemosphere.2022.135457

    [4]

    Gong S T, Wang H, Lou F, et al. Calcareous materials effectively reduce the accumulation of Cd in potatoes in acidic cadmium-contaminated farmland soils in mining areas[J]. International Journal of Environmental Research and Public Health, 2022, 19(18): 11736. doi: 10.3390/ijerph191811736

    [5]

    Li Y P, Li X, Kang X R, et al. Effects of a novel Cd passivation approach on soil Cd availability, plant uptake, and microbial activity in weakly alkaline soils[J]. Ecotoxicology and Environmental Safety, 2023, 253: 114631. doi: 10.1016/j.ecoenv.2023.114631

    [6]

    宿俊杰, 刘永兵, 王鹤立, 等. 面向碱性农地镉污染土壤钝化的凹凸棒改性特征及效果研究[J]. 岩矿测试, 2022, 41(6): 1029−1039. doi: 10.15898/j.cnki.11-2131/td.202203160053

    Su J J, Liu Y B, Wang H L, et al. Characteristics and effects of modified attapulgite for stabilization of cadmium contaminated alkaline soils[J]. Rock and Mineral Analysis, 2022, 41(6): 1029−1039. doi: 10.15898/j.cnki.11-2131/td.202203160053

    [7]

    张力浩, 白姣杰, 田瑞云, 等. 中国北方碱性农田土壤镉污染修复: 现状与挑战[J/OL]. 土壤学报, 2024. DOI: 10.11766/trxb202209110503.

    Zhang L H, Bai J J, Tian R Y, et al. Cadmium remediation strategies in alkaline arable soils in Northern China: Current status and challenges[J/OL]. Acta Pedologica Sinica, 2024. DOI: 10.11766/trxb202209110503.

    [8]

    韩天富, 柳开楼, 黄晶, 等. 近30年中国主要农田土壤pH时空演变及其驱动因素[J]. 植物营养与肥料学报, 2020, 26(12): 2137−2149. doi: 10.11674/zwyf.20399

    Han T F, Liu K L, Huang J, et al. Spatio-temporal evolution of soil pH and its driving factors in the main Chinese farmland during past 30 years[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(12): 2137−2149. doi: 10.11674/zwyf.20399

    [9]

    解晓露, 袁毳, 朱晓龙, 等. 中碱性镉污染农田原位钝化修复材料研究进展[J]. 土壤通报, 2018, 49(5): 1254−1260. doi: 10.19336/j.cnki.trtb.2018.05.37

    Xie X L, Yuan C, Zhu X L, et al. In-situ passivation remediation material in cadmium contaminated alkaline agricultural soil: A review[J]. Chinese Journal of Soil Science, 2018, 49(5): 1254−1260. doi: 10.19336/j.cnki.trtb.2018.05.37

    [10]

    Anjos V E d, Rohwedder J R, Cadore S, et al. Montmorillonite and vermiculite as solid phases for the preconcentration of trace elements in natural waters: Adsorption and desorption studies of As, Ba, Cu, Cd, Co, Cr, Mn, Ni, Pb, Sr, V, and Zn[J]. Applied Clay Science, 2014, 99: 289−296. doi: 10.1016/j.clay.2014.07.013

    [11]

    Du J, Wang Q H, Chen J. Understanding Cd2+ adsorption mechanism on montmorillonite surfaces by combining DFT and MD[J]. Processes, 2022, 10(7): 1381. doi: 10.3390/pr10071381

    [12]

    卿艳红, 苏小丽, 王钺博, 等. 蒙脱石黏土矿物环境材料构建的研究进展[J]. 材料导报, 2020, 34(10): 19018−19026. doi: 10.11896/cldb.19100243

    Qing Y H, Su X L, Wang Y B, et al. Research progress in construction of montmorillonite environmental mineral materials[J]. Materials Reports, 2020, 34(10): 19018−19026. doi: 10.11896/cldb.19100243

    [13]

    朱维, 刘代欢, 陈建清, 等. 黏土矿物在土壤重金属污染中的应用研究进展[J]. 土壤通报, 2018, 49(2): 499−504. doi: 10.19336/j.cnki.trtb.2018.02.34

    Zhu W, Liu D H, Chen J Q, et al. Research progress on the application of clay minerals in the remediation of cadmium polluted farmland[J]. Chinese Journal of Soil Science, 2018, 49(2): 499−504. doi: 10.19336/j.cnki.trtb.2018.02.34

    [14]

    任超, 朱利文, 李竞天, 等. 不同钝化剂对弱酸性镉污染土壤的钝化效果[J]. 生态与农村环境学报, 2022, 38(3): 383−390. doi: 10.19741/j.issn.1673-4831.2021.0098

    Ren C, Zhu L W, Li J T, et al. Study on the passivation effect of different treatments on weakly acidic cadmium polluted soil[J]. Journal of Ecology and Rural Environment, 2022, 38(3): 383−390. doi: 10.19741/j.issn.1673-4831.2021.0098

    [15]

    任超, 李竞天, 朱利文, 等. 不同钝化剂对碱性镉污染土壤钝化效果研究[J]. 环境科学与技术, 2021, 44(3): 71−78. doi: 10.19672/j.cnki.1003-6504.2021.03.010

    Ren C, Li J T, Zhu L W, et al. Study on the passivation effect of different passivators on alkaline cadmium contaminated soil[J]. Environmental Science & Technology, 2021, 44(3): 71−78. doi: 10.19672/j.cnki.1003-6504.2021.03.010

    [16]

    Jiang M, Wang K, Li G, et al. Stabilization of arsenic, antimony, and lead in contaminated soil with montmorillonite modified by ferrihydrite: Efficiency and mechanism[J]. Chemical Engineering Journal, 2023, 457: 141182. doi: 10.1016/j.cej.2022.141182

    [17]

    Meng Z Y, Li J, Zou Y X, et al. Advanced montmorillonite modification by using corrosive microorganisms as an alternative filler to reinforce natural rubber[J]. Applied Clay Science, 2022, 225: 106534. doi: 10.1016/j.clay.2022.106534

    [18]

    Song C H, Zhao Y, Pan D L, et al. Heavy metals passivation driven by the interaction of organic fractions and functional bacteria during biochar/montmorillonite-amended composting[J]. Bioresource Technology, 2021, 329: 124923. doi: 10.1016/j.biortech.2021.124923

    [19]

    李正龙, 周咏春, 李海波, 等. 巯基改性生物炭对镉污染土壤的稳定化效果[J]. 环境工程, 2022, 40(9): 143−149. doi: 10.13205/j.hjgc.202209019

    Li Z L, Zhou Y C, Li H B, et al. Stabilization of cadmium-contaminated soil by sulfhydryl modified biochar[J]. Environmental Engineering, 2022, 40(9): 143−149. doi: 10.13205/j.hjgc.202209019

    [20]

    王亚玲, 李述贤, 杨合. 有机改性蒙脱石负载巯基修复汞污染土壤[J]. 环境工程学报, 2018, 12(12): 3433−3439. doi: 10.12030/j.cjee.201807106

    Wang Y L, Li S X, Yang H. Mercury contaminated soils remediation by using organic modified montmorillonite with sulfhydryl group loading[J]. Chinese Journal of Environmental Engineering, 2018, 12(12): 3433−3439. doi: 10.12030/j.cjee.201807106

    [21]

    庞婷雯, 杨志军, 黄逸聪, 等. 巯基化、钠化和酸化膨润土对Cu2+, Pb2+和Zn2+的吸附性能研究[J]. 光谱学与光谱分析, 2018, 38(4): 1203−1208. doi: 10.3964/j.issn.1000-0593(2018)04-1203-06

    Pang T W, Yang Z J, Huang Y C, et al. Adsorption properties of thiol-modified, sodium-modified and acidified bentonite for Cu2+, Pb2+ and Zn2+[J]. Spectroscopy and Spectral Analysis, 2018, 38(4): 1203−1208. doi: 10.3964/j.issn.1000-0593(2018)04-1203-06

    [22]

    朱霞萍, 刘慧, 谭俊, 等. 巯基改性蒙脱石对Cd(Ⅱ)的吸附机理研究[J]. 岩矿测试, 2013, 32(4): 613−620. doi: 10.15898/j.cnki.11-2131/td.2013.04.014

    Zhu X P, Liu H, Tan J, et al. Mechanism study of cadmium(Ⅱ) adsorption on thiol-modified montmorillonite[J]. Rock and Mineral Analysis, 2013, 32(4): 613−620. doi: 10.15898/j.cnki.11-2131/td.2013.04.014

    [23]

    朱凰榕, 赵秋香, 倪卫东, 等. 巯基-蒙脱石复合材料对不同程度Cd污染农田土壤修复研究[J]. 生态环境学报, 2018, 27(1): 174−181. doi: 10.16258/j.cnki.1674-5906.2018.01.024

    Zhu H R, Zhao Q X, Ni W D, et al. Immobilization of cadmium by thiol-functionalized montmorillonite in soils contaminated by cadmium in various degrees[J]. Ecology and Environmental Sciences, 2018, 27(1): 174−181. doi: 10.16258/j.cnki.1674-5906.2018.01.024

    [24]

    曾燕君, 周志军, 赵秋香. 蒙脱石-OR-SH复合体材料对土壤镉的钝化及机制[J]. 环境科学, 2015, 36(6): 2314−2319. doi: 10.13227/j.hjkx.2015.06.053

    Zeng Y J, Zhou Z J, Zhao Q X. Mechanism study of the smectite-OR-SH compound for reducing cadmium uptake by plants in contaminated soils[J]. Environmental Science, 2015, 36(6): 2314−2319. doi: 10.13227/j.hjkx.2015.06.053

    [25]

    Marković J, Jović M, Smičiklas I, et al. Cadmium retention and distribution in contaminated soil: Effects andinteractions of soil properties, contamination level, aging time and in situimmobilization agents[J]. Ecotoxicology and Environmental Safety, 2019, 174: 305−314. doi: 10.1016/j.ecoenv.2019.03.001

    [26]

    代亚平, 吴平霄. 3-氨丙基三乙氧基硅烷改性蒙脱石的表征及其对Sr(Ⅱ)的吸附研究[J]. 环境科学学报, 2012, 32(10): 2402−2407. doi: 10.13671/j.hjkxxb.2012.10.015

    Dai Y P, Wu P X. Characterization of APTES-modified montmorillonite and adsorption of Sr(Ⅱ)[J]. Acta Scientiae Circumstantiae, 2012, 32(10): 2402−2407. doi: 10.13671/j.hjkxxb.2012.10.015

    [27]

    刘雪梅, 屈凌霄. 土壤重金属污染钝化修复技术研究进展[J]. 应用化工, 2022, 51(6): 1799−1803. doi: 10.16581/j.cnki.issn1671-3206.20220429.006

    Liu X M, Qu L X. Research progress of passivation remediation technology for soil heavy metal pollution[J]. Applied Chemical Industry, 2022, 51(6): 1799−1803. doi: 10.16581/j.cnki.issn1671-3206.20220429.006

    [28]

    王泓博, 苟文贤, 吴玉清, 等. 重金属污染土壤修复研究进展: 原理与技术[J]. 生态学杂志, 2021, 40(8): 2277−2288. doi: 10.13292/j.1000-4890.202108.037

    Wang H B, Gou W X, Wu Y Q, et al. Progress in remediation technologies of heavy metals contaminated soil: Principles and technologies[J]. Chinese Journal of Ecology, 2021, 40(8): 2277−2288. doi: 10.13292/j.1000-4890.202108.037

    [29]

    周春海, 张振强, 黄志红, 等. 不同钝化剂对酸性土壤中重金属的钝化修复研究进展[J]. 中国农学通报, 2020, 36(33): 71−79. doi: 10.11924/j.issn.1000-6850.casb20191200928

    Zhou C H, Zhang Z Q, Huang Z H, et al. Passivation and remediation of heavy metals in acid soil with different passivators: A research progress[J]. Chinese Agricultural Science Bulletin, 2020, 36(33): 71−79. doi: 10.11924/j.issn.1000-6850.casb20191200928

    [30]

    陶玲, 仝云龙, 杨万辉, 等. 碱改性凹凸棒石对土壤中镉化学形态及环境风险的影响[J]. 岩矿测试, 2022, 41(1): 109−119. doi: 10.15898/j.cnki.11-2131/td.202108270108

    Tao L, Tong Y L, Yang W H, et al. Chemical speciation and environmental risk of Cd in soil stabilized with alkali-modified attapulgite[J]. Rock and Mineral Analysis, 2022, 41(1): 109−119. doi: 10.15898/j.cnki.11-2131/td.202108270108

    [31]

    付成, 雷泞菲, 裴向军, 等. 巯基改性凹凸棒石黏土对土壤有效态镉及油菜吸收镉的影响[J]. 岩石矿物学杂志, 2022, 41(5): 941−949. doi: 10.3969/j.issn.1000-6524.2022.05.007

    Fu C, Lei N F, Pei X J, et al. Effects of sulfhydryl-modified attapulgite on available cadmium in soil and cadmium absorption by rape[J]. Acta Petrologica et Mineralogica, 2022, 41(5): 941−949. doi: 10.3969/j.issn.1000-6524.2022.05.007

    [32]

    段海芹, 秦秦, 吕卫光, 等. 有机肥长期施用对设施土壤全镉和有效态镉含量的影响[J]. 土壤学报, 2021, 58(6): 1486−1495. doi: 10.11766/trxb202003030088

    Duan H Q, Qin Q, Lyu W G, et al. Effects of long-term application of organic manure on contents of total and available cadmium in greenhouse soil[J]. Acta Pedologica Sinica, 2021, 58(6): 1486−1495. doi: 10.11766/trxb202003030088

    [33]

    化党领, 朱利楠, 赵永芹, 等. 膨润土、褐煤及其混合添加对铅、镉复合污染土壤重金属形态的影响[J]. 土壤通报, 2020, 51(1): 201−206. doi: 10.19336/j.cnki.trtb.2020.01.27

    Hua D L, Zhu L N, Zhao Y Q, et al. Fractions of heavy metals in Cd/Pb contaminated soil amended with bentonite and lignite[J]. Chinese Journal of Soil Science, 2020, 51(1): 201−206. doi: 10.19336/j.cnki.trtb.2020.01.27

    [34]

    任露陆, 蔡宗平, 王固宁, 等. 不同钝化机制矿物对土壤重金属的钝化效果及微生物响应[J]. 农业环境科学学报, 2021, 40(7): 1470−1480. doi: 10.11654/jaes.2020-1436

    Ren L L, Cai Z P, Wang G N, et al. Effects of minerals with different immobilization mechanisms on heavy metals availability and soil microbial response[J]. Journal of Agro-Environment Science, 2021, 40(7): 1470−1480. doi: 10.11654/jaes.2020-1436

    [35]

    Gupta S S, Bhattacharyya K G. Adsorption of heavy metals on kaolinite and montmorillonite: A review[J]. Physical Chemistry Chemical Physics, 2012, 14(19): 6698−6723. doi: 10.1039/c2cp40093f

    [36]

    刘慧, 朱霞萍, 韩梅, 等. 巯基改性蒙脱石对Cd2+的吸附及酸雨解吸[J]. 非金属矿, 2013, 36(3): 69−72. DOI: CNKI:SUN:FJSK.0.2013-03-024.

    Liu H, Zhu X P, Han M, et al. Cd2+ adsorption on thiol-modified montmorillonite and desorption by acid rain[J]. Non-Metallic Mines, 2013, 36(3): 69−72. DOI: CNKI:SUN:FJSK.0.2013-03-024.

    [37]

    刘丹丹, 缪德仁, 刘菲. 不同提取方法对土壤中活性部分重金属提取能力的对比研究[J]. 安徽农业科学, 2009, 37(35): 17613−17615. doi: 10.13989/j.cnki.0517-6611.2009.35.045

    Liu D D, Miu D R, Liu F. Comparison study on the extraction ability of some heavy metals in active parts of soils by different extraction methods[J]. Journal of Anhui Agricultural Sciences, 2009, 37(35): 17613−17615. doi: 10.13989/j.cnki.0517-6611.2009.35.045

    [38]

    安艳, 朱霞萍, 孟兴锐, 等. 巯基膨润土钝化修复镉污染水稻土的研究[J]. 土壤通报, 2021, 52(4): 934−939. doi: 10.19336/j.cnki.trtb.2020091401

    An Y, Zhu X P, Meng X R, et al. Passivation remediation of Cd contaminated paddy soils by mercapto bentonite[J]. Chinese Journal of Soil Science, 2021, 52(4): 934−939. doi: 10.19336/j.cnki.trtb.2020091401

    [39]

    孟兴锐. 巯基膨润土对水稻土中镉形态转化的影响研究[D]. 成都: 成都理工大学, 2019.

    Meng X R. Effect of sulfhydryl-modified bentonite on transformation of cadmium in rice soil[D]. Chengdu: Chengdu University of Technology, 2019.

  • 加载中

(7)

(2)

计量
  • 文章访问数:  961
  • PDF下载数:  72
  • 施引文献:  0
出版历程
收稿日期:  2023-09-01
修回日期:  2024-01-27
录用日期:  2024-02-04
刊出日期:  2024-02-29

目录