中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

工艺矿物学参数自动分析系统在铜矿浮选尾矿银赋存特征研究中的应用

温利刚, 贾木欣, 赵建军, 王清, 付强. 工艺矿物学参数自动分析系统在铜矿浮选尾矿银赋存特征研究中的应用[J]. 岩矿测试, 2024, 43(3): 417-431. doi: 10.15898/j.ykcs.202310250165
引用本文: 温利刚, 贾木欣, 赵建军, 王清, 付强. 工艺矿物学参数自动分析系统在铜矿浮选尾矿银赋存特征研究中的应用[J]. 岩矿测试, 2024, 43(3): 417-431. doi: 10.15898/j.ykcs.202310250165
WEN Ligang, JIA Muxin, ZHAO Jianjun, WANG Qing, FU Qiang. Application of a SEM-EDS-Based Automated Process Mineralogy Analyzing System on the Occurrence State of Silver in Copper Ore Flotation Tailings[J]. Rock and Mineral Analysis, 2024, 43(3): 417-431. doi: 10.15898/j.ykcs.202310250165
Citation: WEN Ligang, JIA Muxin, ZHAO Jianjun, WANG Qing, FU Qiang. Application of a SEM-EDS-Based Automated Process Mineralogy Analyzing System on the Occurrence State of Silver in Copper Ore Flotation Tailings[J]. Rock and Mineral Analysis, 2024, 43(3): 417-431. doi: 10.15898/j.ykcs.202310250165

工艺矿物学参数自动分析系统在铜矿浮选尾矿银赋存特征研究中的应用

  • 基金项目: 国家重点研发计划项目(2021YFC2903101);国家自然科学基金项目(51734005);矿冶科技集团有限公司科研基金项目(JTKY02-2217)
详细信息
    作者简介: 温利刚,博士研究生,工程师,主要从事工艺矿物学参数自动分析技术研究。E-mail: yunwenligang@163.com
    通讯作者: 赵建军,硕士,正高级工程师,主要从事矿冶过程智能检测与分析技术研究。E-mail: zhao_jj@bgrimm.com
  • 中图分类号: TD912;P575

Application of a SEM-EDS-Based Automated Process Mineralogy Analyzing System on the Occurrence State of Silver in Copper Ore Flotation Tailings

More Information
  • 元素赋存状态及工艺矿物学特征是决定其选矿工艺及回收指标的关键因素,对指导矿产资源高效综合回收利用有重要意义。由于银矿物种类繁多且含量低、粒度细小不易识别,传统人为鉴别目标矿物并统计工艺矿物学参数的方法在银的赋存特征研究方面存在局限性,制约了资源高效综合利用。本文利用基于扫描电子显微镜(SEM)和X射线能谱仪(EDS)的工艺矿物学参数自动分析系统(BPMA)对某铜矿浮选尾矿样品(Ag 41.96µg/g,Cu 0.44%)进行矿物学分析,展示其在尾矿样品中铜和银的赋存状态及工艺矿物学特征研究中的具体应用。结果表明:样品中铜矿物主要为辉铜矿和斑铜矿;铜硫化物及其集合体的嵌布粒度细微且解离程度低,是影响铜回收的主要矿物学因素。样品中银主要以独立矿物的形式存在,(含)银矿物有自然银、辉银矿/螺状硫银矿、硒银矿、硒铜银矿、硫铜银矿和含银辉铜矿,银在各(含)银矿物中的分布率分别为95.62%、2.07%、1.33%、0.15%、0.80%和0.03%;银矿物嵌布粒度不均匀,粗粒(>74µm)、中粒(74~37µm)、细粒(37~10µm)、微粒(<10µm)银矿物的占有率分别为32.25%、30.35%、21.44%和15.95%;银矿物的解离程度较高,单体含量高达88.28%,可采用浮选法与铜硫化物一起回收。该研究为提高资源的选矿回收率提供了矿物学依据,同时采用的BPMA & SEM-EDS分析方法为矿物种类复杂、含量低、粒度细小的稀贵金属元素赋存状态及工艺矿物学研究提供了一种技术借鉴。

  • 加载中
  • 图 1  尾矿试样的BSE图像和BPMA矿物组成伪彩色图

    Figure 1. 

    图 2  尾矿中银矿物嵌布特征(BSE图像)

    Figure 2. 

    表 1  尾矿试样粒度筛析结果

    Table 1.  Particle size sieving analysis results of the tailing samples

    粒级
    (mm)
    质量
    (g)
    产率
    (%)
    元素品位 分布率
    Cu(%) Ag(µg/g) Cu(%) Ag(%)
    +0.074 30.5 31.57 0.41 29.4 29.26 22.12
    −0.074至+0.038 20.8 21.53 0.22 69.2 10.71 35.51
    −0.038至+0.023 13.0 13.46 0.21 24.3 6.39 7.79
    −0.023 32.3 33.44 0.71 43.4 53.65 34.58
    合计 96.6 100.00 0.44 41.96 100.00 100.00
    下载: 导出CSV

    表 2  BPMA系统预设测量参数

    Table 2.  Operation conditions of the BPMA system

    仪器工作参数 设定条件
    全颗粒测量 选择颗粒测量
    加速电压 20keV 20keV
    工作距离 15mm 15mm
    束流强度 3nA 3nA
    放大倍率 400 1000
    视场宽度 692.02µm 276.77µm
    图像分辨率 1024×768pixel 1024×768pixel
    像素尺寸 0.67µm 0.27µm
    最大可测量帧数 1320 8426
    背底阈值 30 100
    最小颗粒面积 50pixel 1pixel
    最大颗粒面积
    亮相灰度 100 100
    亮相最小打点相面积 4pixel 1pixel
    暗相最小打点相面积 4pixel 1pixel
    分相精度 3 5
    能谱采谱时间 60ms 60ms
    测量终止条件 颗粒数: 105000 帧数: 8426
    指定目标灰度 / 100~255
    指定目标元素 / Ag
    下载: 导出CSV

    表 3  尾矿试样的矿物组成分析结果

    Table 3.  Analytical results of mineral composition for the tailing samples

    序号 矿物名称 分子式 矿物
    颗粒数
    矿物含量
    (wt.%)
    序号 矿物名称 分子式 矿物
    颗粒数
    矿物含量
    (wt.%)
    1 自然银 Ag 50 0.004 17 方解石 Ca[CO3] 5498 5.55
    2 辉银矿/螺状硫银矿 Ag2S 21 0.0001 18 白云石 CaMg[CO3]2 4596 4.77
    3 硒银矿 Ag2Se 55 <0.0001 19 绢云母 K{Al2[AlSi3O10](OH,F)2} 10001 4.74
    4 硒铜银矿 CuAgSe 13 Trace 20 斜长石 (Na,Ca)[(Si,Al)4O8] 7100 1.66
    5 硫铜银矿 AgCuS 13 Trace 21 辉石 (Ca,Mg,Fe,Fe,Al)(Si,Al)2O6 4373 1.51
    6 辉铜矿 Cu2S 454 0.45 22 黑云母 K{Mg,Fe)3[AlSi3O10](OH)2 4893 1.23
    7 斑铜矿 Cu5FeS4 182 0.09 23 绿泥石 {(Mg,Fe,Al)3[(Si,Al)4O10](OH)2}·(Mg,Fe,Al)3(OH)6 844 0.38
    8 黄铜矿 CuFeS2 10 <0.01 24 金红石 TiO2 397 0.26
    9 黄铁矿 FeS2 16 <0.01 25 重晶石 Ba[SO4] 255 0.20
    10 方铅矿 PbS 20 <0.01 26 磷灰石 Ca5[(PO4)3]F 263 0.20
    11 闪锌矿 ZnS 8 <0.01 27 高岭石 Al4[Si4O10](OH)8 276 0.09
    12 磁铁矿 FeFe2O4 560 0.59 28 锆石 Zr[SiO4] 68 0.03
    13 钛铁矿 FeTiO3 104 0.01 29 独居石 Ce[PO4] 22 0.03
    14 石英 SiO2 28976 54.21 30 其他 / 961 0.21
    15 钾长石 K[AlSi3O8] 23726 13.10 合计 / 105386 100.00
    16 钠长石 Na[AlSi3O8] 11627 10.66
    下载: 导出CSV

    表 4  尾矿中主要铜矿物嵌布粒度分布

    Table 4.  Grain size distribution of main copper minerals in tailing samples

    粒级(mm) 辉铜矿 斑铜矿 铜硫化物集合体
    含量(%) 累积(%) 含量(%) 累积(%) 含量(%) 累积(%)
    +0.038
    −0.038至+0.020 7.81 7.81 8.55 8.55
    −0.020至+0.015 9.04 16.85 12.45 21.00
    −0.015至+0.010 23.65 40.50 23.54 23.54 18.94 39.94
    −0.010至+0.005 31.25 71.75 33.16 56.70 32.64 72.58
    −0.005 28.25 100.00 43.31 100.01 27.42 100.00
    注:铜硫化物集合体是将样品中辉铜矿、斑铜矿、黄铜矿等铜硫化物作为一个整体进行统计计算,下同。
    下载: 导出CSV

    表 5  尾矿中主要铜矿物解离度分析结果

    Table 5.  Mineral liberation degree analysis results of main copper minerals in tailing samples

    矿物名称 目标矿物占比(%) 合计
    (%)
    0<x≤25 25<x≤50 50<x≤75 75<x<100 100
    辉铜矿 70.12 8.25 4.52 1.56 15.55 100.00
    斑铜矿 67.28 7.82 4.06 1.63 19.22 100.00
    铜硫化物集合体 64.60 12.94 3.36 1.67 17.43 100.00
    注:“x”为复合颗粒中目标矿物的质量百分比。
    下载: 导出CSV

    表 6  尾矿中主要铜矿物连生关系分析结果

    Table 6.  The interlocking relationships of main copper minerals in tailing samples

    矿物名称 矿物单体含量
    (%)
    连生体含量(%) 合计
    (%)
    与其他铜硫化物连生 与石英连生 与长石连生 与方解石、白云石连生 与云母连生 与其他矿物连生
    辉铜矿 15.55 6.73 40.90 21.77 7.50 5.56 1.99 100.00
    斑铜矿 19.22 17.60 21.16 15.92 12.61 4.18 9.31 100.00
    铜硫化物集合体 17.43 / 38.17 24.05 9.57 5.39 5.39 100.00
    下载: 导出CSV

    表 7  尾矿中银矿物的种类及相对含量

    Table 7.  Mineral composition and relative content of silver-bearing minerals in tailing samples

    银矿物种类 银矿物含量 矿物中银元素的
    平均含量(%)
    银的分布率
    (%)
    银矿物颗粒数 相对质量百分比(%)
    自然银(Ag) 50 93.55 99.09 95.62
    辉银矿/螺状硫银矿(Ag2S) 21 2.30 87.11 2.07
    硒银矿(Ag2Se) 55 1.84 70.33 1.33
    硒铜银矿(CuAgSe) 13 0.41 35.43 0.15
    硫铜银矿(AgCuS) 13 1.51 51.15 0.80
    含银辉铜矿[(Ag,Cu)2S] 4 0.39 6.88 0.03
    合计 156 100.00 / 100.00
    下载: 导出CSV

    表 8  尾矿中银矿物的嵌布特征及占有率统计结果

    Table 8.  Occurrence characteristics and distribution ratio of silver-bearing minerals in tailing samples

    银矿物种类银矿物赋存形式嵌布特征颗粒数相对质量百分比
    (%)
    合计
    (%)
    自然银单体单体解离3984.1384.13
    连生与石英连生47.408.92
    与方解石连生21.38
    与钠长石连生20.14
    包裹被石英包裹20.470.49
    被方解石包裹10.02
    辉银矿/螺状硫银矿单体单体解离172.012.01
    连生与钠长石连生10.070.07
    包裹被石英包裹30.220.22
    硒银矿单体单体解离40.420.42
    连生与方解石连生60.540.57
    与钠长石连生20.03
    裂隙嵌布于方解石裂隙中160.250.34
    嵌布于石英裂隙中30.09
    包裹被方解石包裹230.480.50
    被石英包裹10.02
    硒铜银矿单体单体解离10.160.16
    裂隙嵌布于方解石裂隙中120.260.26
    硫铜银矿单体单体解离91.241.24
    连生与白云石连生10.150.19
    与石英连生10.03
    包裹被石英包裹20.090.09
    含银辉铜矿单体单体解离30.320.32
    连生与钾长石连生10.070.07
    合计156100.00100.00
    注: “连生”是指银矿物与其他矿物共伴生但其表面裸露的嵌布形式,下同。
    下载: 导出CSV

    表 9  尾矿中银矿物粒度分布

    Table 9.  Size distribution of silver-bearing minerals in tailing samples

    粒级
    (µm)
    银矿物* 自然银 辉银矿/螺状硫银矿 硒银矿
    颗粒数 质量百分比
    (%)
    累积
    (%)
    颗粒数 质量百分比
    (%)
    累积
    (%)
    颗粒数 质量百分比
    (%)
    累积
    (%)
    颗粒数 质量百分比
    (%)
    累积
    (%)
    +74 1 32.25 32.25 1 34.47 34.47
    −74+37 1 30.35 62.60 1 32.44 66.91
    −37+20 2 14.99 77.59 2 16.03 82.94
    −20+10 4 6.45 84.04 4 6.90 89.84
    −10+5 20 8.69 92.73 13 6.77 96.61 3 50.75 50.75 1 15.29 15.29
    −5+4 14 2.39 95.12 4 1.02 97.63 2 11.33 62.09 3 26.43 41.71
    −4+3 23 2.61 97.73 12 1.79 99.42 5 21.08 83.17 3 13.20 54.91
    −3+2 30 1.49 99.22 5 0.34 99.77 7 13.22 96.38 8 22.58 77.49
    −2+1 29 0.65 99.88 8 0.23 100.00 3 3.49 99.87 16 17.56 95.05
    −1 32 0.12 100.00 0 0.00 100.00 1 0.13 100.00 24 4.95 100.00
    注: “银矿物粒度”是指将试样中自然银、辉银矿/螺状硫银矿、硒银矿、硒铜银矿、硫铜银矿等所有的银矿物作为整体统计其粒度。
    下载: 导出CSV
  • [1]

    李磊, 郜伟, 王明燕, 等. 银的赋存特征及其对选矿的影响[J]. 有色金属(选矿部分), 2018(5): 6−9, 48. doi: 10.3969/j.issn.1671-9492.2018.05.002

    Li L, Gao W, Wang M Y, et al. Occurrence characteristics of silver and its influence on mineral processing[J]. Nonferrous Metals (Mineral Processing Section), 2018(5): 6−9, 48. doi: 10.3969/j.issn.1671-9492.2018.05.002

    [2]

    黄晓梅, 李国斌, 胡亮, 等. 银的提取研究进展及前景展望[J]. 稀有金属, 2015, 39(3): 268−275. doi: 10.13373/j.cnki.cjrm.2015.03.011

    Huang X M, Li G B, Hu L, et al. Research progress and prospect of extracting silver[J]. Chinese Journal of Rare Metals, 2015, 39(3): 268−275. doi: 10.13373/j.cnki.cjrm.2015.03.011

    [3]

    杨睿娜, 纵瑞, 杨东潮. 豫西董家埝银矿床银的赋存状态研究[J]. 矿床地质, 2020, 39(3): 486−500. doi: 10.16111/j.0258-7106.2020.03.006

    Yang R N, Zong R, Yang D C. Research on modes of occurrence of silver in Dongjianian silver deposit, Western Henan Province[J]. Mineral Deposits, 2020, 39(3): 486−500. doi: 10.16111/j.0258-7106.2020.03.006

    [4]

    岳秋雨, 翟德高, 赵刚, 等. 江西牛形坝—柳木坑银金多金属矿床银矿物与银的赋存状态[J]. 矿物学报, 2023, 43(3): 311−324. doi: 10.16461/j.cnki.1000-4734.2023.43.023

    Yue Q Y, Zhai D G, Zhao G, et al. The compositions of silver-bearing minerals and the occurrence of silver in the Niuxingba—Liumukeng silver-gold polymetallic deposit, Jiangxi Province, China[J]. Acta Mineralogica Sinica, 2023, 43(3): 311−324. doi: 10.16461/j.cnki.1000-4734.2023.43.023

    [5]

    吴冠斌, 刘建明, 曾庆栋, 等. 内蒙古双尖子山铅锌银矿床银的赋存状态及其指示意义[J]. 地学前缘, 2014, 21(5): 105−115. doi: 10.13745/j.esf.2014.05.009

    Wu G B, Liu J M, Zeng Q D, et al. Occurrences of silver in the Shuangjianzishan Pb-Zn-Ag deposit and its implications for mineral processing[J]. Earth Science Frontiers, 2014, 21(5): 105−115. doi: 10.13745/j.esf.2014.05.009

    [6]

    康明, 岳长成. 内蒙古西山湾羊场银多金属矿床银的赋存形式及成矿机理[J]. 岩石学报, 2020, 36(11): 3363−3379. doi: 10.18654/1000-0569/2020.11.07

    Kang M, Yue C C. Metallogenic process in Xishanwanyangchang silver polymetallic deposit, Inner Mongolia, China: Constraints from occurrence of silver[J]. Acta Petrologica Sinica, 2020, 36(11): 3363−3379. doi: 10.18654/1000-0569/2020.11.07

    [7]

    王俊萍, 武慧敏, 王玲. MLA在银的赋存状态研究中的应用[J]. 矿冶, 2015, 24(1): 77−80. doi: 10.3969/j.issn.1005-7854.2015.01.019

    Wang J P, Wu H M, Wang L. Application of MLA in the study of silver occurrence status[J]. Mining and Metallurgy, 2015, 24(1): 77−80. doi: 10.3969/j.issn.1005-7854.2015.01.019

    [8]

    王明燕, 祁小军. 影响江西某铜矿中伴生金、银选矿指标的工艺矿物学因素研究[J]. 矿冶, 2015, 24(1): 81−86. doi: 10.3969/j.issn.1005-7854.2015.01.020

    Wang M Y, Qi X J. Process mineralogy factors affecting the beneficiation indexes of associated gold and silver in a copper mine in Jiangxi[J]. Mining and Metallurgy, 2015, 24(1): 81−86. doi: 10.3969/j.issn.1005-7854.2015.01.020

    [9]

    Sutherland D N, Gottlieb P. Application of automated quantitative mineralogy in mineral processing[J]. Minerals Engineering, 1991, 4(7-11): 753−762. doi: 10.1016/0892-6875(91)90063-2

    [10]

    Gottlieb P, Wilkie G, Sutherland D, et al. Using quantitative electron microscopy for process mineralogy applications[J]. Journal of the Minerals, Metals & Materials Society, 2000, 52(4): 24−25. doi: 10.1007/s11837-000-0126-9

    [11]

    Gu Y. Automated scanning electron microscope based mineral liberation analysis: An introduction to JKMRC/FEI mineral liberation analyser[J]. Journal of Minerals and Materials Characterization and Engineering, 2003, 2(1): 33−41. doi: 10.4236/jmmce.2003.21003

    [12]

    Fandrich R, Gu Y, Burrows D, et al. Modern SEM-based mineral liberation analysis[J]. International Journal of Mineral Processing, 2007, 84(1-4): 310−320. doi: 10.1016/j.minpro.2006.07.018

    [13]

    温利刚, 曾普胜, 詹秀春, 等. 矿物表征自动定量分析系统(AMICS)技术在稀土稀有矿物鉴定中的应用[J]. 岩矿测试, 2018, 37(2): 121−129. doi: 10.15898/j.cnki.11-2131/td.201708110129

    Wen L G, Zeng P S, Zhan X C, et al. Application of the automated mineral identification and characterization system (AMICS) in the identification of rare earth and rare minerals[J]. Rock and Mineral Analysis, 2018, 37(2): 121−129. doi: 10.15898/j.cnki.11-2131/td.201708110129

    [14]

    朱丹, 桂博艺, 王芳, 等. AMICS测试技术在铌矿中的应用——以竹溪铌矿为例[J]. 有色金属(选矿部分), 2021(3): 1−7. doi: 10.3969/j.issn.1671-9492.2021.03.001

    Zhu D, Gui B Y, Wang F, et al. Application of the advanced mineral identification and characterization system (AMICS) in the Nb deposit: A case study of the Zhuxi Nb deposit[J]. Nonferrous Metals (Mineral Processing Section), 2021(3): 1−7. doi: 10.3969/j.issn.1671-9492.2021.03.001

    [15]

    方明山, 王明燕. AMICS在铜矿伴生金银综合回收中的应用[J]. 矿冶, 2018, 27(3): 104−108. doi: 10.3969/j.issn.1005-7854.2018.03.023

    Fang M S, Wang M Y. Application of AMICS in comprehensive recovery of associated gold and silver in a copper ore[J]. Mining and Metallurgy, 2018, 27(3): 104−108. doi: 10.3969/j.issn.1005-7854.2018.03.023

    [16]

    Jiao Y, Qiu K H, Zhang P C, et al. Process mineralogy of Dalucao rare earth ore and design of beneficiation process based on AMICS[J]. Rare Metals, 2020, 39(8): 959−966. doi: 10.1007/s12598-020-01446-w

    [17]

    Xu W, Shi B, Tian Y, et al. Process mineralogy characteristics and flotation application of a refractory collophanite from Guizhou, China[J]. Minerals, 2021, 11(11): 1249. doi: 10.3390/min11111249

    [18]

    Hrstka T, Gottlieb P, Skála R, et al. Automated mineralogy and petrology—Applications of TESCAN integrated mineral analyzer (TIMA)[J]. Journal of Geosciences, 2018, 63(1): 47−63. doi: 10.3190/jgeosci.250

    [19]

    陈倩, 宋文磊, 杨金昆, 等. 矿物自动定量分析系统的基本原理及其在岩矿研究中的应用——以捷克泰思肯公司TIMA为例[J]. 矿床地质, 2021, 40(2): 345−368. doi: 10.16111/j.0258-7106.2021.02.010

    Chen Q, Song W L, Yang J K, et al. Principle of automated mineral quantitative analysis system and its application in petrology and mineralogy: An example from TESCAN TIMA[J]. Mineral Deposits, 2021, 40(2): 345−368. doi: 10.16111/j.0258-7106.2021.02.010

    [20]

    Keulen N, Malkki S N, Graham S. Automated quantitative mineralogy applied to metamorphic rocks[J]. Minerals, 2020, 10(1): 47. doi: 10.3390/min10010047

    [21]

    Graham S, Keulen N. Nanoscale automated quantitative mineralogy: A 200-nm quantitative mineralogy assessment of fault gouge using mineralogic[J]. Minerals, 2019, 9(11): 665. doi: 10.3390/min9110665

    [22]

    Han S J, Lӧhr S, Abbott A, et al. Earth system science applications of next-generation SEM-EDS automated mineral mapping[J]. Frontiers in Earth Science, 2022, 10: 956912. doi: 10.3389/feart.2022.956912

    [23]

    Shan P F, Cao M J, Evans N, et al. Automated quantitative mineralogy analysis reveals characteristics of Co occurrence in the Jinchang porphyry deposit, NE China[J]. Ore Geology Reviews, 2023, 158(31): 105524. doi: 10.1016/j.oregeorev.2023.105524

    [24]

    温利刚, 贾木欣, 王清, 等. 基于扫描电子显微镜的自动矿物学新技术——BPMA及其应用前景[J]. 有色金属(选矿部分), 2021(2): 13−24. doi: 10.3969/j.issn.1671-9492.2021.02.003

    Wen L G, Jia M X, Wang Q, et al. A new SEM-based automated mineralogy system: BPMA and its application prospects in mining industry[J]. Nonferrous Metals (Mineral Processing Section), 2021(2): 13−24. doi: 10.3969/j.issn.1671-9492.2021.02.003

    [25]

    徐承焱, 王培龙, 孙体昌, 等. BPMA在矿石可选性研究实验课程中的应用[J]. 实验技术与管理, 2021, 38(4): 223−230, 239. doi: 10.16791/j.cnki.sjg.2021.04.045

    Xu C Y, Wang P L, Sun T C, et al. Application of BPMA in experimental course of ore beneficiablity research[J]. Experimental Technology and Management, 2021, 38(4): 223−230, 239. doi: 10.16791/j.cnki.sjg.2021.04.045

    [26]

    Hou X Z, Yang Z F, Wang Z J. The occurrence characteristics and recovery potential of middle-heavy rare earth elements in the Bayan Obo deposit, Northern China[J]. Ore Geology Reviews, 2020, 126: 103737. doi: 10.1016/j.oregeorev.2020.103737

    [27]

    Gu Y, Schouwstra R P, Rule C. The value of automated mineralogy[J]. Minerals Engineering, 2014, 58(4): 100−103. doi: 10.1016/j.mineng.2014.01.020

    [28]

    Rollinson G. Automated Mineralogy by SEM-EDS[M].Encyclopedia of Geology (The 2nd edition, 2019: 1-8.

    [29]

    Worden R H, Utley J E P. Automated mineralogy (SEM-EDS) approach to sandstone reservoir quality and diagenesis[J]. Frontiers in Earth Science, 2022, 10: 794266. doi: 10.3389/feart.2022.794266

    [30]

    温利刚, 付强, 于志超, 等. 矿物自动定量分析系统在低品位微细粒钼矿工艺矿物学研究中的应用[J]. 有色金属(选矿部分), 2022(2): 31−38. doi: 10.3969/j.issn.1671-9492.2022.02.004

    Wen L G, Fu Q, Yu Z C, et al. Application of automated quantitative mineralogy system in the process mineralogy study of low-grade fine-grained molybdenum ore[J]. Nonferrous Metals (Mineral Processing Section), 2022(2): 31−38. doi: 10.3969/j.issn.1671-9492.2022.02.004

    [31]

    张涛, 宋文磊, 陈倩, 等. 矿物自动定量分析系统在低品位铜矿渣工艺矿物学研究中的应用[J]. 岩矿测试, 2023, 42(4): 748−759. doi: 10.15898/j.ykcs.202210250206

    Zhang T, Song W L, Chen Q, et al. Application of automated quantitative mineral analysis system in process mineralogy of low-grade copper slag[J]. Rock and Mineral Analysis, 2023, 42(4): 748−759. doi: 10.15898/j.ykcs.202210250206

    [32]

    谢小敏, 李利, 袁秋云, 等. 应用TIMA分析技术研究Alum页岩有机质和黄铁矿粒度分布及沉积环境特征[J]. 岩矿测试, 2021, 40(1): 50−60. doi: 10.15898/j.cnki.11-2131/td.202007120103

    Xie X M, Li L, Yuan Q Y, et al. Grain size distribution of organic matter and pyrite in Alum shales characterized by TIMA and its paleo-environmental significance[J]. Rock and Mineral Analysis, 2021, 40(1): 50−60. doi: 10.15898/j.cnki.11-2131/td.202007120103

    [33]

    张然, 叶丽娟, 党飞鹏, 等. 自动矿物分析技术在鄂尔多斯盆地砂岩型铀矿矿物鉴定和赋存状态研究中的应用[J]. 岩矿测试, 2021, 40(1): 61−73. doi: 10.15898/j.cnki.11-2131/td.202005130071

    Zhang R, Ye L J, Dang F P, et al. Application of automatic mineral analysis technology to identify minerals and occurrences of elements in sandstone-type uranium deposits in the Ordos Basin[J]. Rock and Mineral Analysis, 2021, 40(1): 61−73. doi: 10.15898/j.cnki.11-2131/td.202005130071

    [34]

    Liu T T, Song W L, Kynicky J, et al. Automated quantitative characterization REE ore mineralogy from the giant Bayan Obo deposit, Inner Mongolia, China[J]. Minerals, 2022, 12(4): 426. doi: 10.3390/min12040426

    [35]

    Guhl A, Brett B, Schulz B, et al. Particle responses of stabilised fly ash to chemical treatment for resource extraction: An automated mineralogy investigation[J]. Minerals Engineering, 2019, 145(3): 106092. doi: 10.1016/j.mineng.2019.106092

    [36]

    肖仪武, 叶小璐, 冯凯, 等. “四稀”金属矿工艺矿物学研究技术现状与展望[J]. 矿冶, 2022, 31(3): 6−13. doi: 10.3969/j.issn.1005-7854.2022.03.002

    Xiao Y W, Ye X L, Feng K, et al. Current situation and prospect of “Four Rare” process mineralogy research technology[J]. Mining and Metallurgy, 2022, 31(3): 6−13. doi: 10.3969/j.issn.1005-7854.2022.03.002

    [37]

    Coetzee L L, Theron S J, Martin G J, et al. Modern gold deportments and its application to industry[J]. Minerals Engineering, 2011, 24(6): 565−575. doi: 10.1016/j.mineng.2010.09.001

    [38]

    Goodall W R, Butcher A R. The use of QEMSCAN in practical gold deportment studies[J]. Mineral Processing and Extractive Metallurgy, 2012, 121(4): 199−204. doi: 10.1179/1743285512Y.0000000021

    [39]

    冯岳川, 邓军, 于皓丞, 等. 胶东玲珑金矿田金的赋存状态及其对成矿过程的指示意义[J]. 岩石学报, 2023, 39(2): 377−392. doi: 10.18654/1000-0569/2023.02.06

    Feng Y C, Deng J, Yu H C, et al. Gold occurrence and its indicative significance to mineralization process in Linglong gold district, Jiaodong gold province[J]. Acta Petrologica Sinica, 2023, 39(2): 377−392. doi: 10.18654/1000-0569/2023.02.06

    [40]

    徐净, 侯文达, 王力圆, 等. 稀有金属花岗岩结晶分异过程中铷的富集与成矿: 来自江西甘坊岩体的矿物学证据[J]. 地质学报, 2023, 97(11): 3766−3785. doi: 10.19762/j.cnki.dizhixuebao.2023366

    Xu J, Hou W D, Wang L Y, et al. Rb mineralization during magmatic differentiation: Insight from mineralogical study on the Ganfang rare metal granite, Jiangxi Province[J]. Acta Geologica Sinica, 2023, 97(11): 3766−3785. doi: 10.19762/j.cnki.dizhixuebao.2023366

    [41]

    温利刚, 贾木欣, 付强, 等. 矿物自动定量分析系统在金的赋存状态研究中的应用[J]. 有色金属(选矿部分), 2022(4): 1−8. doi: 10.3969/j.issn.1671-9492.2022.04.001

    Wen L G, Jia M X, Fu Q, et al. Application of automated quantitative mineralogy system in the deportment study of low-grade and fine-grained gold[J]. Nonferrous Metals (Mineral Processing Section), 2022(4): 1−8. doi: 10.3969/j.issn.1671-9492.2022.04.001

    [42]

    温利刚, 付强, 贾木欣, 等. 基于工艺矿物学自动分析系统的微细粒金矿物量化表征[J]. 有色金属工程, 2022, 12(11): 76−84. doi: 10.3969/j.issn.2095-1744.2022.11.011

    Wen L G, Fu Q, Jia M X, et al. Quantitative investigation of fine-grained gold minerals by automated process mineralogy analyzing system[J]. Nonferrous Metals Engineering, 2022, 12(11): 76−84. doi: 10.3969/j.issn.2095-1744.2022.11.011

    [43]

    张一帆, 范裕, 陈静, 等. 矿精粉中关键金属元素赋存状态研究方法流程的建立: 以长江中下游成矿带富钴硫矿精粉为例[J]. 岩石学报, 2021, 37(9): 2791−2804. doi: 10.18654/1000-0569/2021.09.12

    Zhang Y F, Fan Y, Chen J, et al. Establishment of a research workflow for occurrence state of critical metal in ore concentrate powder: A case study of the cobalt-rich sulfur ore concentrate powder from the middle-lower Yangtze River valley metallogenic belt, China[J]. Acta Petrologica Sinica, 2021, 37(9): 2791−2804. doi: 10.18654/1000-0569/2021.09.12

    [44]

    张一帆, 范裕. 矿石中关键金属钴赋存状态研究方法流程的建立: 以庐枞盆地龙桥富钴矽卡岩铁矿床为例[J]. 岩石学报, 2023, 39(10): 3156−3168. doi: 10.18654/1000-0569/2023.10.18

    Zhang Y F, Fan Y. Establishment of research methodology and workflow for the occurrence state of the critical metal cobalt in ore: A case study of the Longqiao cobalt-rich skarn iron deposit in the Luzhong Basin[J]. Acta Petrologica Sinica, 2023, 39(10): 3156−3168. doi: 10.18654/1000-0569/2023.10.18

    [45]

    Schulz B, Sandmann D, Gilbricht S. SEM-based automated mineralogy and its application in geo- and material sciences[J]. Minerals, 2020, 10(11): 1004. doi: 10.3390/min10111004

    [46]

    Kwitko-Ribeiro R. New sample preparation developments to minimize mineral segregation in process mineralogy[C]//Broekmans M. Proceedings of the 10th International Congress for Applied Mineralogy (ICAM). Verlag Berlin Heidelberg: Springer, 2012: 411−417.

    [47]

    方明山, 刘方明, 肖仪武, 等. 浅谈岩矿样品制样设备的现状及发展趋势[J]. 矿冶, 2021, 30(1): 69−73. doi: 10.3969/j.issn.1005-7854.2021.01.013

    Fang M S, Liu F M, Xiao Y W, et al. Discussion on the current situation and development trend of rock and ore sample preparation equipment[J]. Mining and Metallurgy, 2021, 30(1): 69−73. doi: 10.3969/j.issn.1005-7854.2021.01.013

    [48]

    肖仪武, 叶小璐, 武若晨, 等. 选矿产品矿物自动分析的光片制备[J]. 中国无机分析化学, 2020, 10(2): 1−6. doi: 10.3969/j.issn.2095-1035.2020.02.001

    Xiao Y W, Ye X L, Wu R C, et al. Polished section sample preparation of mineral processing products for mineral automatic analysis[J]. Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(2): 1−6. doi: 10.3969/j.issn.2095-1035.2020.02.001

    [49]

    王明燕, 李磊, 肖仪武. 内蒙古某银矿矿石特性及其对选矿的影响[J]. 有色金属(选矿部分), 2022(4): 20−26, 32. doi: 10.3969/j.issn.1671-9492.2022.04.003

    Wang M Y, Li L, Xiao Y W. Mineralogical properties of a silver ore in Inner Mongolia and its effects on mineral processing[J]. Nonferrous Metals (Mineral Processing Section), 2022(4): 20−26, 32. doi: 10.3969/j.issn.1671-9492.2022.04.003

    [50]

    敖顺福, 王春光, 洪秋阳, 等. 云南某含银低品位铅锌矿工艺矿物学特性研究[J]. 贵金属, 2019, 40(2): 12−18. doi: 10.3969/j.issn.1004-0676.2019.02.003

    Ao S F, Wang C G, Hong Q Y, et al. Process mineralogical features and factors affecting mineral processing for a low-grade lead-zinc ore containing silver from Yunnan Province[J]. Precious Metals, 2019, 40(2): 12−18. doi: 10.3969/j.issn.1004-0676.2019.02.003

    [51]

    敖顺福. 有色金属矿中伴生金银选矿进展[J/OL]. 贵金属, 1−11[2024-01-01]. http://kns.cnki.net/kcms/detail/53.1063.TG.202309132023.002.html.

    Ao S F. Research progress on mineral processing of associated gold and silver in nonferrous metal mines[J/OL]. Precious Metals, 1−11[2024-01-01]. http://kns.cnki.net/kcms/detail/53.1063.TG.202309132023.002.html.

    [52]

    宋宝旭, 邱显扬, 冉金城, 等. 硫化矿浮选体系中辉银矿的浮选行为研究[J]. 贵金属, 2018, 39(2): 24−28. doi: 10.3969/j.issn.1004-0676.2018.02.005

    Song B X, Qiu X Y, Ran J C, et al. Behavior of argentite in the sulphide flotation system[J]. Precious Metals, 2018, 39(2): 24−28. doi: 10.3969/j.issn.1004-0676.2018.02.005

    [53]

    冉金城, 邱显扬. 铜硫分离中银的选择性导向回收[J]. 矿冶工程, 2020, 40(5): 33−38. doi: 10.3969/j.issn.0253-6099.2020.05.008

    Ran J C, Qiu X Y. Selective recovery of silver in Cu-S flotation separation[J]. Mining and Metallurgical Engineering, 2020, 40(5): 33−38. doi: 10.3969/j.issn.0253-6099.2020.05.008

    [54]

    孙晓华, 付强, 应永朋, 等. 青海某低品位铜铅锌银多金属矿工艺矿物学研究[J]. 有色金属(选矿部分), 2020(5): 5−10. doi: 10.3969/j.issn.1671-9492.2020.05.002

    Sun X H, Fu Q, Ying Y P, et al. Mineralogy of a low-grade copper-lead-zinc-silver polymetallic ore in Qinghai Province[J]. Nonferrous Metals (Mineral Processing Section), 2020(5): 5−10. doi: 10.3969/j.issn.1671-9492.2020.05.002

    [55]

    陈桥, 佟琳琳, 陈贵民, 等. 海南抱伦金矿工艺矿物学研究[J]. 东北大学学报(自然科学版), 2019, 40(9): 1268−1272. doi: 10.12068/j.issn.1005-3026.2019.09.010

    Chen Q, Tong L L, Chen G M, et al. Process mineralogy of Baolun gold mine in Hainan Province[J]. Journal of Northeastern University (Natural Science), 2019, 40(9): 1268−1272. doi: 10.12068/j.issn.1005-3026.2019.09.010

    [56]

    吉强, 李光胜, 朱幸福, 等. 基于工艺矿物学分析提高金浮选尾矿选矿回收率的研究[J]. 贵金属, 2023, 44(3): 31−34. doi: 10.3969/j.issn.1004-0676.2023.03.007

    Ji Q, Li G S, Zhu X F, et al. Study on improving floatation tailings of a gold mineral recovery based on process mineralogy analysis[J]. Precious Metals, 2023, 44(3): 31−34. doi: 10.3969/j.issn.1004-0676.2023.03.007

    [57]

    李国栋, 刘剑, 郭艳华, 等. 应用重选-浮选联合工艺综合回收窑渣中金、银的试验研究[J]. 矿山机械, 2020, 48(8): 44−48. doi: 10.16816/j.cnki.ksjx.2020.08.010

    Li G D, Liu J, Guo Y H, et al. Test research on comprehensive recovery of gold and silver from kiln slag by combined process of gravity separation and flotation[J]. Mining and Processing Equipment, 2020, 48(8): 44−48. doi: 10.16816/j.cnki.ksjx.2020.08.010

    [58]

    冯博, 朱贤文, 彭金秀, 等. 有色金属硫化矿中伴生金银资源回收研究进展[J]. 贵金属, 2016, 37(2): 70−76. doi: 10.3969/j.issn.1004-0676.2016.02.014

    Feng B, Zhu X W, Peng J X, et al. Research progress in recovering associated gold and silver from non-ferrous metal sulfide ores[J]. Precious Metals, 2016, 37(2): 70−76. doi: 10.3969/j.issn.1004-0676.2016.02.014

  • 加载中

(2)

(9)

计量
  • 文章访问数:  118
  • PDF下载数:  0
  • 施引文献:  0
出版历程
收稿日期:  2023-10-25
修回日期:  2024-01-08
录用日期:  2024-04-15
刊出日期:  2024-05-31

目录