中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

沉积岩有机碳同位素组成测定的前处理方法研究

杨宗彩, 徐学敏, 杨佳佳, 沈斌, 苑坤, 张小涛, 许智超, 翟佳. 沉积岩有机碳同位素组成测定的前处理方法研究[J]. 岩矿测试, 2024, 43(6): 847-857. doi: 10.15898/j.ykcs.202403110038
引用本文: 杨宗彩, 徐学敏, 杨佳佳, 沈斌, 苑坤, 张小涛, 许智超, 翟佳. 沉积岩有机碳同位素组成测定的前处理方法研究[J]. 岩矿测试, 2024, 43(6): 847-857. doi: 10.15898/j.ykcs.202403110038
YANG Zongcai, XU Xuemin, YANG Jiajia, SHEN Bin, YUAN Kun, ZHANG Xiaotao, XU Zhichao, ZHAI Jia. A Pre-Treatment Method for the Determination of Organic Carbon Isotope Composition in Sedimentary Rocks[J]. Rock and Mineral Analysis, 2024, 43(6): 847-857. doi: 10.15898/j.ykcs.202403110038
Citation: YANG Zongcai, XU Xuemin, YANG Jiajia, SHEN Bin, YUAN Kun, ZHANG Xiaotao, XU Zhichao, ZHAI Jia. A Pre-Treatment Method for the Determination of Organic Carbon Isotope Composition in Sedimentary Rocks[J]. Rock and Mineral Analysis, 2024, 43(6): 847-857. doi: 10.15898/j.ykcs.202403110038

沉积岩有机碳同位素组成测定的前处理方法研究

  • 基金项目: 国家自然基金青年基金项目(41702159);中国地质调查局地质调查项目(DD20243553)
详细信息
    作者简介: 杨宗彩,硕士,从事有机地球化学研究。E-mail:18851989323@163.com
    通讯作者: 徐学敏,硕士,副研究员,从事油气地球化学、同位素地球化学研究。E-mail:xuxuemin@mail.cgs.gov.cn
  • 中图分类号: P597.2

A Pre-Treatment Method for the Determination of Organic Carbon Isotope Composition in Sedimentary Rocks

More Information
  • 沉积岩的有机碳同位素研究是地质学领域的重要内容,可为地质历史时期的古环境重建、古气候变化解析、碳循环过程理解以及能源资源勘探开发提供重要信息。由于沉积岩中的有机碳主要以干酪根的形式赋存,因此,在获取沉积岩有机碳同位素值之前,需要先对岩石样品开展干酪根提取预处理。提取过程需使用大量危险化学品,制备流程长且面临化学品使用受限等诸多挑战。因此,在实际工作中,亟需开发一种更为便捷、环保的前处理方法。本文建立了一种简易的酸处理方法,实验选取110件不同岩性(灰岩、页岩、油页岩)和不同有机碳含量范围(0.83%~35.33%)的沉积岩样品进行该前处理方法与传统干酪根提取前处理方法的比对实验。结果表明,对于94%的样品,本次建立的前处理方法和干酪根提取方法获得的碳同位素值差值均小于1.0‰,满足行业标准方法重复测定的偏差要求。表明该前处理方法可以有效地实现沉积岩样品中有机碳的分离,进而准确获取有机碳同位素值这一关键地质参数。而且,样品的有机碳含量及岩性未对测定结果产生明显影响,显示该方法对常规地质样品的适用性,可满足地质勘探调查工作需求。

  • 加载中
  • 图 1  样品δ13Cacidδ13Cker线性关系

    Figure 1. 

    图 2  不同岩性样品在不同|Δ13C|范围的数量统计

    Figure 2. 

    图 3  不同有机碳含量样品在不同|Δ13C|范围的数量统计

    Figure 3. 

    表 1  实验使用的标准物质及有机碳含量

    Table 1.  Details of reference materials and their organic carbon content

    测试项目 标准物质编号 研制单位 有机碳含量推荐值(%)或
    同位素组成δ13C推荐值(‰)
    总有机碳含量 GBW01117 江苏省铸造热处理研究所 3.08±0.02
    501-676 美国力可公司 0.13±0.04
    501-024 美国力可公司 3.19±0.03
    502-694 美国力可公司 10.80±0.26
    碳同位素组成 GBW(E)04407 石油勘探开发科学研究院 −22.43±0.3
    GBW(E)04408 石油勘探开发科学研究院 −36.93±0.3
    USGS24 美国地质调查局 −16.05±0.3
    NBS-22 国际原子能机构 −30.03±0.05
    下载: 导出CSV

    表 2  样品岩性信息及TOC、δ13Ckerδ13CacidΔ13C测定结果

    Table 2.  Lithological information of samples and measured results of TOC, δ13Cker, δ13Cacid and Δ13C

    样品岩性 样品数量
    (件)
    TOC(%) δ13Cker(‰) δ13Cacid(‰) Δ13C(‰)
    测定值范围 平均值 测定值范围 平均值 测定值范围 平均值 测定值范围 平均值
    灰岩 39 0.83~18.69 9.62 −27.5~−22.2 −24.6 −27.3~−22.4 −24.4 −0.3~1.1 0.2
    页岩 59 0.87~35.33 11.73 −34.6~−21.8 −26.3 −34.5~−20.0 −26.2 −2.8~1.8 0.1
    油页岩 12 6.53~21.94 14.25 −25.8~−21.5 −24.0 −25.9~−21.1 −23.8 −0.6~0.5 0.2
    下载: 导出CSV

    表 3  三种坩埚酸处理取得的δ13C测定结果

    Table 3.  The measurement results of δ13C obtained by acid treatment with three crucibles.

    样品编号 δ13C测定值(‰) δ13C测定平均值
    (‰)
    δ13C测定值
    标准偏差(‰)
    Ⅰ型坩埚 Ⅱ型坩埚 Ⅲ型坩埚
    页岩1 −33.8 −34.1 −34.1 −34.0 0.2
    页岩2 −32.8 −32.8 −32.9 −32.8 0.1
    页岩3 −31.3 −31.4 −31.3 −31.3 0.1
    页岩4 −30.7 −30.7 −30.8 −30.7 0.1
    页岩5 −30.3 −30.5 −30.5 −30.4 0.1
    页岩6 −29.5 −29.4 −29.5 −29.5 0.1
    页岩7 −29.4 −29.3 −29.2 −29.3 0.1
    页岩8 −28.4 −28.3 −28.4 −28.4 0.1
    灰岩1 −27.2 −27.3 −27.3 −27.3 0.1
    灰岩2 −26.5 −26.6 −26.6 −26.6 0.1
    下载: 导出CSV
  • [1]

    杜勇. 华南早三叠世异常碳-氮-硫生物地球化学循环及其控制机理[D]. 北京: 中国地质大学(北京), 2023.

    Du Y. Anomalous carbon-nitrogen-sulfur biogeochemical cycle in the early Triassic of South China and its controlling mechanism[D]. Beijing: China University of Geosciences (Beijing), 2023.

    [2]

    吴夏, 黄俊华, 白晓, 等. 沉积岩总有机质碳同位素分析的前处理影响[J]. 地球学报, 2008, 29(6): 677−683. doi: 10.3321/j.issn:1006-3021.2008.06.003

    Wu X, Huang J H, Bai X, et al. Pretreatment effect of carbon isotope analysis of total organic matter in sedimentary rocks[J]. Acta Geoscientica Sinica, 2008, 29(6): 677−683. doi: 10.3321/j.issn:1006-3021.2008.06.003

    [3]

    王万洁, 侯兴旺, 刘稷燕, 等. 传统稳定同位素技术在环境科学领域的应用及研究进展[J]. 环境化学, 2021, 40(12): 3640−3650. doi: 10.7524/j.issn.0254-6108.2021041601

    Wang W J, Hou X W, Liu J Y, et al. Application and research progress of traditional stable isotope technology in environmental science[J]. Environmental Chemistry, 2021, 40(12): 3640−3650. doi: 10.7524/j.issn.0254-6108.2021041601

    [4]

    王新欣. 中国南方泥炭沉积13ka以来长链正构烷烃单体碳、氢同位素组成特征及其古境意义[D]. 北京: 中国地质大学(北京), 2017.

    Wang X X. Carbon and hydrogen isotopic composition characteristics of long-chain n-alkanes monomer and its paleoenvironmental significance since 13ka peat deposition in Southern China [D]. Beijing: China University of Geosciences (Beijing), 2017.

    [5]

    Saparin M A, Mustapha K A, Ismail M S. Biostratigraphy, organic petrography and carbon isotope chemostratigraphy of the Ordovician—Silurian black shales from the northwestern domain of Peninsular Malaysia[J]. International Journal of Coal Geology, 2023, 277: 104355. doi: 10.1016/j.coal.2023.104355

    [6]

    Weinerová H, Bábek O, Slavík L, et al. Oxygen and carbon stable isotope records of the Lochkovian—Pragian boundary interval from the Prague Basin (lower Devonian, Czech Republic)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 560: 110036. doi: https://doi.org/10.1016/j.palaeo.2020.110036

    [7]

    Guo W, Ye F, Xu S, et al. Seasonal variation in sources and processing of particulate organic carbon in the Pearl River Estuary, South China[J]. Estuarine Coastal and Shelf Science, 2015, 167: 540−548. doi: 10.1016/j.ecss.2015.11.004

    [8]

    Śliwiński M G, Whalen M T, Newberry R J, et al. Stable isotope (δ13Ccarb and org, δ15Norg) and trace element anomalies during the late Devonian ‘Punctata Event’ in the Western Canada Sedimentary Basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 307(1): 245−271. doi: https://doi.org/10.1016/j.palaeo.2011.05.024

    [9]

    Bian J, Hou D, Cui Y, et al. Geochemical characteristics and origin of the ultra-deep hydrocarbons from the Shunbei Oilfield in the Tarim Basin, China: Insight from molecular biomarkers and carbon isotope geochemistry[J]. Marine and Petroleum Geology, 2023, 158: 106542. doi: https://doi.org/10.1016/j.marpetgeo.2023.106542

    [10]

    Geske A, Zorlu J, Richter D K, et al. Impact of diagenesis and low grade metamorphosis on isotope (δ26Mg, δ13C, δ18O and 87Sr/86Sr) and elemental (Ca, Mg, Mn, Fe and Sr) signatures of Triassic Sabkha dolomites[J]. Chemical Geology, 2012, 332−333: 45−64. doi: 10.1016/j.chemgeo.2012.09.014

    [11]

    Salminen P E, Karhu J A, Melezhik V A. Kolosjoki sedimentary formation: A record in the aftermath of the Paleoproterozoic global positive δ13C excursion in sedimentary carbonates[J]. Chemical Geology, 2013, 362: 165−180. doi: 10.1016/j.chemgeo.2013.10.018

    [12]

    Xu S, Zhang Z, Jia G, et al. Controlling factors and environmental significance of BIT and δ13C of sedimentary GDGTs from the Pearl River Estuary, China over recent decades[J]. Estuarine, Coastal and Shelf Science, 2020, 233: 106534. doi: https://doi.org/10.1016/j.ecss.2019.106534

    [13]

    朱扬明, 郑霞, 刘新社, 等. 储层自生方解石碳同位素值应用于油气运移示踪[J]. 天然气工业, 2007(9): 24−27. doi: 10.3321/j.issn:1000-0976.2007.09.007

    Zhu Y M, Zheng X, Liu X S, et al. Application of carbon isotope value of authigenic calcite in reservoir to hydrocarbon migration tracing[J]. Natural Gas Industry, 2007(9): 24−27. doi: 10.3321/j.issn:1000-0976.2007.09.007

    [14]

    Zedgenizov D, Rubatto D, Shatsky V, et al. Eclogitic diamonds from variable crustal protoliths in the Northeastern Siberian craton: Trace elements and coupled δ13C−δ18O signatures in diamonds and garnet inclusions[J]. Chemical Geology, 2016, 422: 46−59. doi: 10.1016/j.chemgeo.2015.12.018

    [15]

    Li X, Xie H, Birdwell J E, et al. Intramolecular carbon isotope geochemistry of butane isomers from laboratory maturation and Monte-Carlo simulations of kerogen types Ⅰ, Ⅱ, and Ⅲ[J]. Geochimica et Cosmochimica Acta, 2023, 360: 57−67. doi: 10.1016/j.gca.2023.09.003

    [16]

    Mahanipour A, Mutterlose J, Kani A L, et al. Palaeoecology and biostratigraphy of early Cretaceous (Aptian) calcareous nannofossils and the δ13Ccarb isotope record from NE Iran[J]. Cretaceous Research, 2011, 32(3): 331−356. doi: 10.1016/j.cretres.2011.01.006

    [17]

    Gocke M, Pustovoytov K, Kuehn P, et al. Carbonate rhizoliths in loess and their implications for paleoenvironmental reconstruction revealed by isotopic composition: δ13C, 14C[J]. Chemical Geology, 2012, 291: 294−295. doi: 10.1016/j.chemgeo.2011.10.012

    [18]

    Zaccone C, Casiello G, Longobardi F, et al. Evaluating the ‘conservative’ behavior of stable isotopic ratios (δ13C, δ15N, and δ18O) in humic acids and their reliability as paleoenvironmental proxies along a peat sequence[J]. Chemical Geology, 2011, 285(1−4): 124−132. doi: 10.1016/j.chemgeo.2011.03.018

    [19]

    Thibault N, Harlou R, Schovsbo N, et al. Upper Campanian—Maastrichtian nannofossil biostratigraphy and high-resolution carbon-isotope stratigraphy of the Danish Basin: Towards a standard δ13C curve for the Boreal Realm[J]. Cretaceous Research, 2012, 33(1): 72−90. doi: 10.1016/j.cretres.2011.09.001

    [20]

    Feng L, Zhang Q. The pre-sturtian negative δ13C excursion of the Dajiangbian Formation deposited on the western margin of Cathaysia Block in South China[J]. Journal of Earth Science (Wuhan, China), 2016, 27(2): 225−232. doi: 10.1007/s12583-016-0665-9

    [21]

    卢凤艳, 安芷生. 鹤庆钻孔沉积物总有机碳、氮含量测定的前处理方法及其环境意义[J]. 地质力学学报, 2010, 16(4): 393−401. doi: 10.3969/j.issn.1006-6616.2010.04.007

    Lu F Y, An Z S. Pretreatment method for determination of total organic carbon and nitrogen content in Heqing borehole sediments and its environmental significance[J]. Journal of Geomechanics, 2010, 16(4): 393−401. doi: 10.3969/j.issn.1006-6616.2010.04.007

    [22]

    曾花森, 霍秋立, 张晓畅, 等. 应用岩石热解数据S2-TOC相关图进行烃源岩评价[J]. 地球化学, 2010, 39(6): 574−579. doi: 10.19700/j.0379-1726.2010.06.007

    Zeng H S, Huo Q L, Zhang X C, et al. Application of S2-TOC correlation diagram of rock pyrolysis data for hydrocarbon source rock evaluation[J]. Geochemistry, 2010, 39(6): 574−579. doi: 10.19700/j.0379-1726.2010.06.007

    [23]

    雷艳, 胡建芳, 向荣, 等. 末次盛冰期以来南海北部神狐海域沉积有机质的组成特征及其古气候/环境意义[J]. 海洋学报, 2017, 39(11): 75−84. doi: 10.3969/j.issn.0253-4193.2017.11.007

    Lei Y, Hu J F, Xiang R, et al. Composition characteristics of sedimentary organic matter in Shenhu Sea area in the Northern South China Sea since the last glacial maximum and its paleoclimate/environmental significance[J]. Journal of Oceanography, 2017, 39(11): 75−84. doi: 10.3969/j.issn.0253-4193.2017.11.007

    [24]

    陈立雷, 张媛媛, 贺行良, 等. 海洋沉积物有机碳和稳定氮同位素分析的前处理影响[J]. 沉积学报, 2014, 32(6): 1046−1051. doi: 10.14027/j.cnki.cjxb.2014.06.006

    Chen L L, Zhang Y Y, He X L, et al. Pretreatment effects of isotopic analysis of organic carbon and stable nitrogen in marine sediments[J]. Acta Sedimenta Sinica, 2014, 32(6): 1046−1051. doi: 10.14027/j.cnki.cjxb.2014.06.006

    [25]

    Zhao G, Deng Q, Zhang H, et al. Trace elements and stable isotopic geochemistry of two sedimentary sections in the lower Cambrian strata from the Tarim Basin, Northwest China: Implications for silicification and biological evolution[J]. Marine and Petroleum Geology, 2023, 147: 105991. doi: 10.1016/j.marpetgeo.2022.105991

    [26]

    南君亚, 刘育燕. 浙江煤山二叠—三叠系界线剖面有机和无机碳同位素变化与古环境[J]. 地球化学杂志, 2004(1): 9−19. doi: 10.19700/j.0379-1726.2004.01.002

    Nan J Y, Liu Y Y. Changes of organic and inorganic carbon isotopes in Permian—Triassic boundary profile in Jingshan Park, Zhejiang Province and paleoenvironment[J]. Journal of Geochemistry, 2004(1): 9−19. doi: 10.19700/j.0379-1726.2004.01.002

    [27]

    关成国, 王伟, 周传明. 湖北宜昌埃迪卡拉系陡山沱组下部无机碳同位素再研究: 探寻碳酸盐岩碳同位素组成的原始海水信号[J]. 地质学报, 2024, 98(3): 712−724. doi: 10.19762/j.cnki.dizhixuebao.2023277

    Guan C G, Wang W, Zhou C M. Re-study of inorganic carbon isotopes in the lower part of Doushantuo Formation of Ediacaran system in Yichang, Hubei Province: Exploring the original seawater signal of carbon isotope composition of carbonate rocks[J]. Acta Geologica Sinica, 2024, 98(3): 712−724. doi: 10.19762/j.cnki.dizhixuebao.2023277

    [28]

    李超, 樊隽轩, 孙宗元. 奥陶系无机碳同位素地层学综述[J]. 地层学杂志, 2018, 42(4): 408−428. doi: 10.19839/j.cnki.dcxzz.2018.04.005

    Li C, Fan J X, Sun Z Y. Overview of Ordovician inorganic carbon isotope stratigraphy[J]. Journal of Stratigraphy, 2018, 42(4): 408−428. doi: 10.19839/j.cnki.dcxzz.2018.04.005

    [29]

    于深洋. 黔东北志留纪早期的无机碳同位素地层和生物相-岩相[D]. 合肥: 中国科学技术大学, 2020.

    Yu S Y. Inorganic carbon isotope stratigraphy and bio-lithofacies of early Silurian in Northeastern Guizhou [D]. Hefei: China University of Science and Technology, 2020.

    [30]

    田涛, 周世新, 付德亮, 等. 米仓山—汉南隆起牛蹄塘组页岩稳定碳同位素组成及其意义[J]. 中国石油大学学报(自然科学版), 2019, 43(4): 40−51. doi: 10.3969/j.issn.1673-5005.2019.04.005

    Tian T, Zhou S X, Fu D L, et al. Stable carbon isotope composition of shale in Niutitang Formation of Micangshan—Hannan Uplift and its significance[J]. Journal of China Petroleum University (Natural Science Edition), 2019, 43(4): 40−51. doi: 10.3969/j.issn.1673-5005.2019.04.005

    [31]

    胡广, 刘文汇, 罗厚勇, 等. 成烃生物组合对烃源岩干酪根碳同位素组成的影响: 以塔里木盆地下古生界烃源岩为例[J]. 矿物岩石地球化学通报, 2019, 38(5): 902−913. doi: 10.19658/j.issn.1007-2802.2019.38.133

    Hu G, Liu W H, Luo H Y, et al. Influence of hydrocarbon-forming biological assemblage on carbon isotope composition of kerogen in source rocks: A case study of Lower Paleozoic source rocks in Tarim Basin[J]. Bulletin of Mineral Rock Geochemistry, 2019, 38(5): 902−913. doi: 10.19658/j.issn.1007-2802.2019.38.133

    [32]

    付修根, 王剑, 汪正江, 等. 藏北羌塘盆地胜利河油页岩干酪根特征及碳同位素指示意义[J]. 地球学报, 2009, 30(5): 643−650. doi: 10.3321/j.issn:1006-3021.2009.05.010

    Fu X G, Wang J, Wang Z J, et al. Kerogen characteristics of Shengli River oil shale in Qiangtang Basin, Northern Tibet and its carbon isotope indication significance[J]. Acta Geoscientica Sinica, 2009, 30(5): 643−650. doi: 10.3321/j.issn:1006-3021.2009.05.010

    [33]

    常文博, 李凤, 张媛媛, 等. 元素分析-同位素值质谱法测量海洋沉积物中有机碳和氮稳定同位素组成的实验室间比对研究[J]. 岩矿测试, 2020, 39(4): 535−545. doi: 10.15898/j.cnki.11-2131/td.202003090027

    Chang W B, Li F, Zhang Y Y, et al. Inter-laboratory comparison of stable isotopic compositions of organic carbon and nitrogen in marine sediments measured by elemental analysis-isotope ratio mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(4): 535−545. doi: 10.15898/j.cnki.11-2131/td.202003090027

    [34]

    徐丽, 邢蓝田, 王鑫, 等. 元素分析仪-同位素值质谱测量碳氮同位素值最佳反应温度和进样量的确定[J]. 岩矿测试, 2018, 37(1): 15−20. doi: 10.15898/j.cnki.11-2131/td.201701130005

    Xu L, Xing L T, Wang X, et al. Determination of the optimal reaction temperature and sample size for measuring carbon-nitrogen isotope ratio by elemental analyzer-isotope ratio mass spectrometry[J]. Rock and Mineral Analysis, 2018, 37(1): 15−20. doi: 10.15898/j.cnki.11-2131/td.201701130005

    [35]

    Brodie C R, Casford J S L, Lloyd J M, et al. Evidence for bias in C/N, δ13C and δ15N values of bulk organic matter, and on environmental interpretation, from a lake sedimentary sequence by pre-analysis acid treatment methods[J]. Quaternary Science Reviews, 2011, 30(21−22): 3076−3087. doi: 10.1016/j.quascirev.2011.07.003

    [36]

    Nielsen C J S B. Effects of decarbonation treatments on δ13C value in marine sediments[J]. Marine Chemistry, 2000, 72(1): 55−59. doi: 10.1016/S0304-4203(00)00066-9

    [37]

    李秀美, 范宝伟, 侯居峙, 等. 青藏高原达则错沉积物有机碳同位素特征及古气候环境意义[J]. 地球科学, 2022, 47(6): 2275−2286. doi: 10.3799/dqkx.2021.167

    Li X M, Fan B W, Hou J Z, et al. Isotopic characteristics of organic carbon in Dazecuo sediments in Qinghai—Tibet Plateau and its paleoclimatic and environmental significance[J]. Geoscience, 2022, 47(6): 2275−2286. doi: 10.3799/dqkx.2021.167

    [38]

    陆燕, 王小云, 曹建平. 沉积物中16种多环芳烃单体碳同位素GC-C-IRMS测试[J]. 石油实验地质, 2018, 40(4): 532−537. doi: 10.11781/sysydz201804532

    Lu Y, Wang X Y, Cao J P. Determination of carbon isotopes of 16 polycyclic aromatic hydrocarbons in sediments by GC-C-IRMS[J]. Petroleum Experimental Geology, 2018, 40(4): 532−537. doi: 10.11781/sysydz201804532

    [39]

    刘颖, 孙惠玲, 周晓娟, 等. 过去5000a以来抚仙湖沉积物有机质碳同位素的古环境指示意义[J]. 湖泊科学, 2017, 29(3): 722−729. doi: 10.18307/2017.0322

    Liu Y, Sun H L, Zhou X J, et al. Paleoenvironmental implications of carbon isotope of organic matter in sediments of Fuxian Lake since the past 5000a[J]. Lake Science, 2017, 29(3): 722−729. doi: 10.18307/2017.0322

    [40]

    杨盼盼. 哈拉湖沉积物有机碳同位素(δ13Corg)的环境指示意义[D]. 兰州: 兰州大学, 2021.

    Yang P P. Environmental implications of organic carbon isotope (δ13Corg) in sediments of Hala Lake [D]. Lanzhou: Lanzhou University, 2021.

    [41]

    耿悦, 吕喜玺, 于瑞宏, 等. 乌梁素海悬浮颗粒物和沉积物有机碳同位素特征及来源[J]. 湖泊科学, 2021, 33(6): 1753−1765. doi: 10.18307/2021.0612

    Geng Y, Lyu X X, Yu R H, et al. Characteristics and sources of organic carbon isotopes of suspended particles and sediments in Wuliangsuhai Lake[J]. Lake Science, 2021, 33(6): 1753−1765. doi: 10.18307/2021.0612

    [42]

    胡志中, 晏雄, 金鹭, 等. 富有机质页岩氮同位素分析方法研究[J]. 岩矿测试, 2023, 42(4): 677−690. doi: 10.15898/j.ykcs.202212090231

    Hu Z Z, Yan X, Jin L, et al. Study on nitrogen isotope analysis method for rich organic shale[J]. Rock and Mineral Analysis, 2023, 42(4): 677−690. doi: 10.15898/j.ykcs.202212090231

  • 加载中

(3)

(3)

计量
  • 文章访问数:  108
  • PDF下载数:  0
  • 施引文献:  0
出版历程
收稿日期:  2024-03-11
修回日期:  2024-09-06
录用日期:  2024-10-31
网络出版日期:  2024-11-14
刊出日期:  2024-12-31

目录