Cassiterite U-Pb Dating with LA-MC-ICP-MS of the Laozhailing Cu-Sn Deposit, Yongzhou City, Hunan Province
-
摘要:
锡石是锡多金属矿床中重要的矿石矿物,采用锡石对锡多金属矿床进行定年,已成为获得矿床成矿年龄最直接的方法。但由于锡石具有U含量较低、普通铅高的特点,目前锡石微区原位U-Pb定年方法的技术难点在于理想标样的研制和普通铅的准确扣除。本文通过优化该技术,对湖南省永州市老寨岭铜锡矿床的成矿时代进行约束。老寨岭铜锡矿床是以脉型为主的锡多金属矿床,矿体产出于印支晚期阳明山复式岩体的接触带上,主要由含锡石英脉、碎裂化云英岩化花岗岩及云英岩组成。利用LA-MC-ICP-MS微区原位U-Pb同位素测年技术,对老寨岭铜锡矿床中锡石进行研究,获得16LZ01、16LZ02、16LZ03等三件样品的Tera-Wasserburg U-Pb下交点年龄分别为222.0±1.5Ma(MSWD=1.6,n=37)、220.5±3.5Ma(MSWD=2.9,n=28)、225.0±1.6Ma(MSWD=1.3,n=31)。结合矿床地质特征和前人成岩-成矿年代学成果,研究表明老寨岭铜锡矿床成矿作用主要发生在印支晚期,与阳明山复式花岗岩体的岩浆热液活动关系密切。本文研究结果为老寨岭铜锡矿的岩浆热液成因提供了重要的年代学证据。
-
关键词:
- 铜锡矿床 /
- 锡石U-Pb定年 /
- LA-MC-ICP-MS /
- 老寨岭 /
- 湖南
Abstract:Cassiterite is an important ore mineral in tin polymetallic deposits. Using cassiterite for dating tin polymetallic deposits has become one of the most direct methods to obtain the mineralization age of the deposits. However, due to the low uranium content and high common lead characteristics of cassiterite, the main problems and technical difficulties of the in situ U-Pb dating method for cassiterite lie in the development of ideal standards and the accuracy of common lead correction. The mineralization age of the Laozhailing Cu-Sn deposit in Yongzhou City, Hunan Province is constrained here by optimizing the technology. The Laozhailing Cu-Sn deposit is a vein-type tin polymetallic deposit, which is mainly composed of tin-quartz veins, cataclastic greisenized granite, and greisen. Three samples, 16LZ01, 16LZ02, and 16LZ03, were obtained with Tera-Wasserburg U-Pb lower intersection ages of 222.0±1.5Ma (MSWD=1.6, n=37), 220.5±3.5Ma (MSWD=2.9, n=28), and 225.0±1.6Ma (MSWD=1.3, n=31), respectively. These results indicate mineralization in the late Indosinian period. The mineralization of the Laozhailing Cu-Sn deposit is closely related to the magmatic hydrothermal activity of the Yangmingshan complex granites. The results of this study provide important chronological evidence for the magmatic hydrothermal origin of the Laozhailing Cu-Sn deposit.
-
Key words:
- Cu-Sn deposit /
- cassiterite U-Pb dating /
- LA-MC-ICP-MS /
- Laozhailing /
- Hunan
-
-
表 1 LA-MC-ICP-MS锡石U-Pb定年仪器工作条件
Table 1. Operating conditions of LA-MC-ICP-MS for cassiterite U-Pb dating
激光剥蚀系统
(New Wave 193)多接收电感耦合等离子体质谱
(Neptune)激光波长 193 nm 射频功率 1250W 能量密度 10~13J/cm2 冷却气(Ar)流速 16.00L/min 束斑直径 75μm 辅助气(Ar)流速 0.31L/min 剥蚀频率 8~10Hz 载气(Ar)流速 1.174L/min 剥蚀时间 30s 载气(He)流速 0.83L/min 脉冲宽度 5ns N2增敏 4mL/min 表 2 老寨岭铜锡矿床锡石LA-MC-ICP-MS U-Pb同位素测年结果
Table 2. LA-MC-ICP-MS U-Pb dating results of cassiterite from the Laozhailing copper tin deposit
样品16LZ01 样品16LZ02 点号 238U/206Pb 相对误差
(%)207Pb/206Pb 相对误差
(%)点号 238U/206Pb 相对误差
(%)207Pb/206Pb 相对误差
(%)1 14.61 1.46 0.4639 2.05 14 26.90 1.68 0.1444 8.74 3 24.27 1.14 0.1861 3.11 20 21.89 1.43 0.2299 2.99 4 25.68 0.98 0.1336 2.03 21 22.38 1.50 0.1878 4.75 5 19.94 1.01 0.2969 1.33 23 20.24 1.28 0.3109 2.32 6 24.77 0.97 0.1574 1.67 24 27.01 1.11 0.1086 4.76 7 13.69 1.01 0.4711 1.18 25 23.28 1.28 0.1818 4.00 8 18.28 1.25 0.3300 1.92 27 17.79 1.32 0.3424 2.02 11 10.11 1.42 0.5670 1.29 28 11.24 1.46 0.5527 1.77 13 26.88 1.18 0.1075 6.08 29 12.01 1.70 0.4874 2.13 14 27.36 1.07 0.0709 5.70 31 21.51 1.42 0.2427 3.56 15 27.53 1.08 0.0919 5.84 32 21.78 1.14 0.2453 2.28 16 23.68 1.11 0.1630 3.62 33 27.24 1.19 0.0966 7.19 17 24.61 1.14 0.1567 3.75 34 8.53 1.33 0.5946 1.23 18 19.59 1.02 0.2991 1.40 35 25.53 1.63 0.1628 7.93 19 23.05 0.95 0.2066 1.29 36 25.69 1.40 0.1392 5.58 21 14.85 1.04 0.4391 1.41 37 25.47 1.40 0.1757 4.82 22 26.94 1.24 0.1324 5.49 39 26.73 1.14 0.0928 5.70 23 22.01 1.34 0.2452 3.43 样品16LZ03 25 27.15 0.95 0.0824 2.15 点号 238U/206Pb 相对误差
(%)207Pb/206Pb 相对误差
(%)26 8.89 0.99 0.6127 1.12 2 28.04 1.03 0.0550 7.78 28 11.85 1.02 0.5214 1.17 3 26.82 1.00 0.0846 4.12 30 18.30 1.46 0.3569 2.80 4 27.62 1.06 0.0618 7.30 31 6.19 1.05 0.7026 1.25 6 20.64 1.13 0.2722 2.12 33 9.21 1.26 0.5908 1.30 10 26.84 1.75 0.0734 19.59 34 6.95 1.03 0.6667 1.12 11 21.13 1.13 0.2659 2.15 35 6.49 1.10 0.6797 1.12 12 26.94 1.16 0.0673 10.61 36 27.49 0.98 0.0733 3.81 13 28.27 1.17 0.0658 9.68 37 17.45 1.68 0.3483 2.29 14 27.04 1.19 0.0621 11.64 38 12.12 0.95 0.5167 1.13 15 26.81 1.10 0.0940 5.18 39 10.51 1.02 0.5554 1.18 16 27.76 1.06 0.0694 5.95 40 27.45 0.97 0.0795 3.30 19 26.97 1.02 0.0873 4.37 41 14.04 1.00 0.4475 1.22 20 27.68 1.03 0.0558 7.22 44 28.18 0.96 0.0532 3.75 21 26.52 1.06 0.1122 3.97 45 28.24 0.96 0.0629 3.18 22 26.72 1.73 0.0853 12.89 46 28.57 0.95 0.0594 3.37 24 20.91 1.42 0.2838 3.26 47 28.73 0.97 0.0675 3.89 27 11.20 1.09 0.5236 1.21 48 23.75 1.13 0.1745 3.00 28 16.10 0.96 0.3992 1.18 样品16LZ02 29 17.68 1.01 0.3546 1.31 点号 238U/206Pb 相对误差
(%)207Pb/206Pb 相对误差
(%)30 12.14 1.92 0.4923 1.81 1 23.69 1.57 0.1971 4.63 32 11.41 1.71 0.5392 2.04 2 22.94 1.75 0.2425 5.39 35 20.23 1.09 0.2744 2.29 3 26.44 1.15 0.0983 4.66 37 6.59 1.50 0.6880 1.24 4 12.24 1.37 0.5146 1.38 38 12.71 1.01 0.5104 1.32 5 16.29 1.75 0.3750 4.02 39 11.57 1.05 0.5372 1.26 6 21.99 1.32 0.1977 4.05 42 6.28 1.18 0.6895 1.14 9 25.72 1.92 0.1617 7.71 43 12.81 1.01 0.5093 1.23 10 26.57 1.33 0.1231 6.72 44 26.55 1.11 0.0950 5.47 11 26.86 1.45 0.1116 8.63 45 26.91 1.09 0.0890 5.92 12 25.24 1.50 0.1156 7.27 46 9.56 1.49 0.5940 1.40 13 19.38 2.32 0.3257 6.37 47 24.84 1.09 0.1566 3.47 表 3 正式发表的潜在的微区原位锡石U-Pb定年标样
Table 3. The published potential standards of in situ cassiterite U-Pb dating
样品 U含量
(×10−6)U-Pb年龄
(Ma)测试方法 储量 参考文献 AY-4 30~33 158.2±0.4 ID-TIMS 多 [4] — 159.9±1.9 LA-ICP-MS Yankee 6~12 246.48±0.51 ID-TIMS 有限 [22] — 243.9±4.8 SIMS Euriowie — 1588±42 SIMS 有限 [22] SPG4 4.5~26.5 1536.6±1.0 ID-TIMS 有限 [22] — 1542.7±1.7 LA-ICP-MS [23] Cornwall 0.5~9.4 285.14±0.25 ID-TIMS 有限 [28] — 283.2±1.8 LA-ICP-MS [23] Jian-1 1.3~11.9 154.969±0.082 ID-TIMS 有限 [28] — 156.81±0.36 LA-ICP-MS [23] SPGⅡ 23~29 1539.5±0.5 ID-TIMS 有限 [29] RG-114 1.2~1.5 1022±3 ID-TIMS 有限 [26] BB#7 6.2~9.6 262.2±0.8 ID-TIMS 有限 [26] 19GX 7.6~13 100.0±0.3 ID-TIMS 有限 [26] 注: 表中“—”代表暂无数据。 表 4 阳明山岩体锡多金属矿床成岩成矿年龄
Table 4. Isotope ages for tin polymetallic deposits of Yangmingshan granitic pluton
年龄 测试对象 矿物 测试方法 年龄(Ma) 参考文献 成岩年龄 阳明山岩体二云母二长花岗岩 锆石 LA-ICP-MS 218.0±10.0 [32] 阳明山岩体电气石白云母花岗岩 锆石 LA-ICP-MS 218.9±3.4 [32] 白果市土坳黑(白)云母二长花岗岩 锆石 LA-ICP-MS 228.6±1.4 [33] 白果市土坳黑(白)云母二长花岗岩 锆石 LA-ICP-MS 205±1.8 [33] 阳明山二云母二长花岗岩 锆石 LA-ICP-MS 229.0±2.0 [33] 阳明山二云母二长花岗岩 锆石 LA-ICP-MS 221.8±1.3 [33] 大江背电气石白云母二长花岗岩 锆石 LA-ICP-MS 218.2±2.0 [33] 大源里黑云母正长花岗岩 锆石 LA-ICP-MS 217.8±1.6 [33] 塔山岩体中细粒二长花岗岩 锆石 LA-ICP-MS 221.5±1.9 [34] 阳明山中细粒斑状二长花岗岩 锆石 LA-ICP-MS 213.7±1.0 [34] 塔山岩体花岗岩 锆石 LA-ICP-MS 247.2±5.9 [35] 塔山黑云母二长花岗岩 锆石 SHRIMP 218±3 [36] 板角沅中粗粒斑状电气石黑云母二长花岗岩 锆石 LA-ICP-MS 226.9±1.6 [11] 板角沅中粗粒斑状电气石黑云母二长花岗岩 锆石 LA-ICP-MS 223.8±1.9 [11] 板角沅细粒电气石白云母二长花岗岩 锆石 LA-ICP-MS 224.3±1.0 [11] 成矿年龄 板角沅锡矿脉 锡石 LA-MC-ICP-MS 216.7±2.4 [11] 老寨岭铜锡矿脉 锡石 LA-MC-ICP-MS 222.0±1.5 本文研究 老寨岭铜锡矿脉 锡石 LA-MC-ICP-MS 220.5±3.5 本文研究 老寨岭铜锡矿脉 锡石 LA-MC-ICP-MS 225.0±1.6 本文研究 -
[1] Gulson B L, Jones M T. Cassiterite: Potential for direct dating of mineral deposits and a precise age for the Bushveld complex granites[J]. Geology, 1992, 355-358.
[2] Jiang S Y, Yu J M, Lu J J. Trace and rare-earth element geochemistry in tourmaline and cassiterite from the Yunlong tin deposit, Yunnan, China: Implication for migmatitic-hydrothermal fluid evolution and ore genesis[J]. Chemical Geology, 2004, 209: 193−213.
[3] 李惠民, 郝爽, 耿建珍, 等. 用激光烧蚀多接收器等离子体质谱(LA-MC-ICPMS)直接原位测定锡多金属矿床中的锡石U-Pb同位素年龄[J]. 矿物学报, 2009, 29(S1): 313. doi: 10.3321/j.issn:1000-4734.2009.z1.163
Li H M, Hao S, Geng J Z, et al. Direct determination of cassiterite U-Pb isotope age in the tin polymentallic deposit by laser ablation multiple receivers plasma mass spectrometry (LA-MC-ICP-MS)[J]. Acta Mineralogica Sinica, 2009, 29(S1): 313. doi: 10.3321/j.issn:1000-4734.2009.z1.163
[4] Yuan S D, Peng J T, Hao S, et al. In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin-polymetallic mineralization[J]. Ore Geology Reviews, 2011, 43: 235−242. doi: 10.1016/j.oregeorev.2011.08.002
[5] 马楠, 邓军, 王庆飞, 等. 云南腾冲大松坡锡矿成矿年代学研究: 锆石LA-ICP-MS U-Pb年龄和锡石LA-MC-ICP-MS U-Pb年龄证据[J]. 岩石学报, 2013, 29(4): 1223−1235.
Ma N, Deng J, Wang Q F, et al. Geochronology of the Dasongpo tin deposit, Yunnan Province: Evidence from zircon LA-ICP-MS U-Pb ages and cassiterite LA-MC-ICP-MS U-Pb age[J]. Acta Petrologica Sinica, 2013, 29(4): 1223−1235.
[6] 王小娟, 刘玉平, 缪应理, 等. 都龙锡锌多金属矿床LA-MC-ICPMS锡石U-Pb测年及其意义[J]. 岩石学报, 2014, 30(3): 867−876.
Wang X J, Liu Y P, Miao Y L, et al. In situ LA-MC-ICP-MS cassiterite U-Pb dating of Dulong Sn-Zn polymetallic deposit and its significance[J]. Acta Petrologica Sinica, 2014, 30(3): 867−876.
[7] 徐斌, 蒋少涌, 罗兰. 江西彭山锡多金属矿集区尖峰坡锡矿床LA-MC-ICP-MS锡石U-Pb测年及其地质意义[J]. 岩石学报, 2015, 31(3): 701−708.
Xu B, Jiang S Y, Luo L. LA-MC-ICP-MS U-Pb dating of cassiterite from the Jianfengpo Sn deposit in the Pengshan Sn-polymetallic ore field, Jiangxi Province and its geological significance[J]. Acta Petrologica Sinica, 2015, 31(3): 701−708.
[8] Zhang R Q, Lu J J, Wang R C, et al. Constraints of in situ zircon and cassiterite U-Pb, molybdenite Re-Os and muscovite 40Ar-39Ar ages on multiple generations of granitic magmatism and related W-Sn mineralization in the Wangxianling area, Nanling Range, South China [J]. Ore Geology Reviews, 2015, 65: 1021−1042.
[9] 熊峥嵘, 李信念, 祁程, 等. 锡石年代学和黑钨矿微量元素对湘东鸡冠石钨矿床的成因约束[J]. 岩石学报, 2021, 37(3): 769−780.
Xiong Z R, Li X N, Qi C, et al. Geochronology of cassiterite and trace element compositions of wolframite: Contraints to the ore genisis of Jiguanshi tungsten deposite, Eastern Hunan Province[J]. Acta Geologica Sinica, 2021, 37(3): 769−780.
[10] Zhao Z, Yang X Y, Li W Y, et al. Petrogenesis of the granite related to the Baishaziling Sn deposit, Dayishan ore field, Southern China[J]. Geochemistry, 2022, 82: 125873. doi: 10.1016/j.chemer.2022.125873
[11] Du Y, Lu Y Y, Zhang Z Z, et al. Indosinian magmatism and mineralization in the Banjiaoyuan tin deposit, middle Nanling Range, South China: Constraints from zircon and cassiterite U-Pb ages, geochemistry and Sr-Nd-Hf isotopic compositions[J]. Ore Geology Reviews, 2022, 151: 105190. doi: 10.1016/j.oregeorev.2022.105190
[12] Liu L, Xu G F, Lu Y Y, et al. Muscovite 40Ar-39Ar and cassiterite U-Pb dating of the Indosinian Aotou quartz-vein type tin deposit, Southern China and its geological significance[J]. Ore Geology Reviews, 2023, 158: 105516.
[13] Zhang T F, Hou Z Q, Pan X F, et al. Cassiterite geochemistry and U-Pb geochronology of the Shihuiyao Rb-(Nb-Ta-Be-Sn) deposit, Northeast China: Implication for ore-forming processes and mineral exploration[J]. Ore Geology Reviews, 2023, 156: 105393. doi: 10.1016/j.oregeorev.2023.105393
[14] 黄层, 袁顺达, 赵盼捞. 南岭地区双园冲锡矿成岩成矿时代及其对柿竹园—荷花坪地区锡钨找矿的指示[J]. 岩石学报, 2023, 39(6): 1717−1729. doi: 10.18654/1000-0569/2023.06.08
Huang C, Yuan S D, Zhao P L, et al. Geochronology of granite and associated Sn mineralization in the Shuangyuanchong Sn deposit and its implication for Sn-W prospecting potential in the Shizhuyuan—Hehuaping area, the Nanling region, South China[J]. Acta Geologica Sinica, 2023, 39(6): 1717−1729. doi: 10.18654/1000-0569/2023.06.08
[15] 周红英, 耿建珍, 崔玉荣, 等. 磷灰石微区原位LA-MC-ICP-MS U-Pb同位素定年[J]. 地球学报, 2012, 33(6): 857−864. doi: 10.3975/cagsb.2012.06.03
Zhou H Y, Geng J Z, Cui Y R, et al. In situ U-Pb dating of apatite using LA-MC-ICP-MS[J]. Acta Geoscientica Sinica, 2012, 33(6): 857−864. doi: 10.3975/cagsb.2012.06.03
[16] 崔玉荣, 涂家润, 陈枫, 等. LA-(MC)-ICP-MS锡石U-Pb定年研究进展[J]. 地质学报,2017, 91(6): 1386−1399.
Cui Y R, Tu J R, Chen F, et al. The research advances in LA-(MC)-ICP-MS U-Pb dating of cassiterite[J]. Acta Geologica Sinica, 2017, 91(6): 1386−1399.
[17] 崔玉荣, 肖志斌, 涂家润, 等. 氧化物型含铀矿物微区原位Hf 同位素分析技术研究进展[J]. 岩矿测试, 2022, 41(5): 691−703. doi: 10.15898/j.cnki.11-2131/td.202205180104
Cui Y R, Xiao Z B, Tu J R, et al. Processes in situ Hf isotopic analysis on oxide-type U-bearing accessory minerals[J]. Rock and Mineral Analysis, 2022, 41(5): 691−703. doi: 10.15898/j.cnki.11-2131/td.202205180104
[18] Tera F, Wasserburg G J. U-Th-Pb systematics in Three Apollo 14 basalts and the problem of initial Pb in Lunar rocks[J]. Earth and Planetary Science Letters, 1972, 14: 281−304. doi: 10.1016/0012-821X(72)90128-8
[19] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1−2): 537−571. doi: 10.1093/petrology/egp082
[20] Vermeesch P. IsoplotR: A free and open toolbox for geochronology[J]. Geoscience Frontiers, 2018, 9(5): 1479−1493. doi: 10.1016/j.gsf.2018.04.001
[21] 张东亮, 彭建堂, 胡瑞忠, 等. 锡石U-Pb同位素体系的封闭性及其测年的可靠性分析[J]. 地质论评, 2011, 57(4): 549−554. doi: 10.16509/j.georeview.2011.04.014
Zhang D L, Peng J T, Hu R Z, et al. The closure of U-Pb isotope system in cassiterite and its reliability for dating[J]. Geological Reviews, 2011, 57(4): 549−554. doi: 10.16509/j.georeview.2011.04.014
[22] Carr P A, Norman M D, Bennett V C. Assessment of crystallographic orientation effects on secondary ion mass spectrometry (SIMS) analysis of cassiterite[J]. Chemical Geology, 2017, 467: 122−133. doi: 10.1016/j.chemgeo.2017.08.003
[23] Neymark L A, Holm-Denoma C S, Moscati R J, et al. In situ LA-ICPMS U-Pb dating of cassiterite without a known-age matrix matched reference material: Examples from worldwide tin deposits spanning the Proterozoic to the Tertiary[J]. Chemical Geology, 2018, 483: 410−425. doi: 10.1016/j.chemgeo.2018.03.008
[24] Nambaje C, Williams I S, Sajeev K. SHRIMP U-Pb dating of cassiterite: Insights into the timing of Rwandan tin mineralisation and associated tectonic processes[J]. Ore Geology Reviews, 2021, 135: 104185.
[25] 朱艺婷, 李晓峰, 余勇, 等. 滇西松山锡矿锡石LA-SF-ICP-MS U-Pb 年代学及其对区域锡成矿作用的指示[J]. 岩石学报, 2021, 37(7): 2179−2188. doi: 10.18654/1000-0569/2021.07.12
Zhu Y T, Li X F, Yu Y, et al. LA-SF-ICP-MS U-Pb ages of cassiterite at the Songshan tin deposit and its implications for regional tin mineralisation, Western Yunnan[J]. Acta Petrologica Sinica, 2021, 37(7): 2179−2188. doi: 10.18654/1000-0569/2021.07.12
[26] Yang M, Romer R L, Yang Y H, et al. U-Pb isotopic dating of cassiterite: Development of reference materials and in situ applications by LA-SF-ICP-MS[J]. Chemical Geology, 2022, 593: 120754. doi: 10.1016/j.chemgeo.2022.120754
[27] 陈靖, 侯可军, 王倩, 等. 非基体匹配分馏校正的LA-ICP-MS锡石微区U-Pb定年方法研究[J]. 岩石学报, 2021, 37(3): 943−955. doi: 10.18654/1000-0569/2021.03.18
Chen J, Hou K J, Wang Q, et al. In situ U-Pb dating of cassiterite by LA-ICP-MS without a matrix-matched standard[J]. Acta Petrologica Sinica, 2021, 37(3): 943−955. doi: 10.18654/1000-0569/2021.03.18
[28] Tapster S, Bright J W G. High-precision ID-TIMS cassiterite U-Pb systematics using a low-contamination hydrothermal decomposition: Implications for LA-ICP-MS and ore deposit geochronology[J]. Geochronology, 2020, 2(2): 425−441. doi: 10.5194/gchron-2-425-2020
[29] Rizvanova N G, Kuznetsov A B. A new approach to ID-TIMS U-Pb dating of cassiterite by the example of the Pitkäranta tin deposit[J]. Doklady Earth Sciences, 2020, 491: 146−149. doi: 10.1134/S1028334X20030150
[30] 涂家润, 崔玉荣, 周红英, 等. 锡石U-Pb定年方法评述[J]. 地质调查与研究, 2019, 42(4): 245−253.
Tu J R, Cui Y R, Zhou H Y, et al. Review of U-Pb dating methods for cassiterite[J]. Geological Survey and Research, 2019, 42(4): 245−253.
[31] 涂家润, 周红英, 崔玉荣, 等. 磷灰石ID-TIMS高精度U-Pb定年方法[J]. 岩矿测试, 2024, 43(4): 533−545. doi: 10.15898/j.ykcs.202404170087
Tu J R, Zhou H Y, Cui Y R, et al. A high-precision ID-TIMS U-Pb dating method of apatite[J]. Rock and Mineral Analysis, 2024, 43(4): 533−545. doi: 10.15898/j.ykcs.202404170087
[32] 陈卫锋, 陈培荣, 周新民, 等. 湖南阳明山岩体的LA-ICP-MS锆石U-Pb定年及成因研究[J]. 地质学报, 2006, 80(7): 1065−1077. doi: 10.3321/j.issn:0001-5717.2006.07.013
Chen W F, Chen P R, Zhou X M, et al. Single-zircon LA-ICP-MS U-Pb dating of the Yangmingshan granitic pluton in Hunan, South China and its petrogenetic study[J]. Acta Geologica Sinica, 2006, 80(7): 1065−1077. doi: 10.3321/j.issn:0001-5717.2006.07.013
[33] 刘伟, 曾佐勋, 陈德立, 等. 湖南阳明山复式花岗岩的岩石成因: 锆石U-Pb年代学、地球化学及Hf同位素约束[J]. 岩石学报, 2014, 30(5): 1485−1504.
Liu W, Zeng Z X, Chen D L, et al. Petrogenesis of the Yangmingshan composite granites in South Hunan Province: Contraints from geochemistry, zircon U-Pb geochronology and Hf isotope[J]. Acta Geologica Sinica, 2014, 30(5): 1485−1504.
[34] 马丽艳, 刘树生, 付建明, 等. 湖南塔山、阳明山花岗岩的岩石成因: 来自锆石U-Pb年龄、地球化学及Sr-Nd同位素证据[J]. 地质学报, 2016, 90(2): 284−303. doi: 10.3969/j.issn.0001-5717.2016.02.007
Ma L Y, Liu S S, Fu J M, et al. Petrogenesis of the Tashan—Yangmingshan granitic batholiths: Constraint from zircon U-Pb age, geochemistry and Sr-Nd isotopes[J]. Acta Geologica Sinica, 2016, 90(2): 284−303. doi: 10.3969/j.issn.0001-5717.2016.02.007
[35] 李勇, 张岳桥, 苏金宝, 等. 湖南大义山、塔山岩体锆石U-Pb年龄及其构造意义[J]. 地球学报, 2015, 36(3): 303−312. doi: 10.3975/cagsb.2015.03.05
Li Y, Zhang Y Q, Su J B, et al. Zircon U-Pb dating of Dayishan and Tashan pluton in Hunan Province and its tectonic implications[J]. Acta Geoscientica Sinica, 2015, 36(3): 303−312. doi: 10.3975/cagsb.2015.03.05
[36] 郭爱民, 陈必河, 陈剑锋, 等. 湖南塔山花岗岩SHRIMP锆石U-Pb年龄及其地质意义[J]. 地质通报, 2017, 36(2/3): 459−465. doi: 10.3969/j.issn.1671-2552.2017.02.027
Guo A M, Chen B H, Chen J F, et al. SHRIMP zircon U-Pb age of Tashan granitic pluton from Hunan Province and its geological significance[J]. Geological Bulletin of China, 2017, 36(2/3): 459−465. doi: 10.3969/j.issn.1671-2552.2017.02.027
-