Rare Earth Element Contents and Occurrence Forms in Weathering Crust Ion Adsorption Rare Earth Ore
-
摘要:
风化壳离子吸附型稀土矿床具有稀土元素(REEs)种类齐全、放射性活性低、重稀土含量高,且易开采等特点,是一种极为重要的稀土矿床类型。当前,有关该矿床中稀土元素的测定研究大都只测定了稀土元素全量及离子相分量,且有些方法操作流程较繁琐,对于稀土元素的各种赋存形态分析研究较少。但在研究风化壳离子吸附型稀土矿床的成矿规律时,不仅要分析其稀土元素全量,还需要分析影响该矿床中稀土元素的成矿背景、迁移、富集过程中移动差异性、长期性和可利用性的化学形态,因此,准确测定风化壳离子吸附型稀土矿床中稀土元素全量及各赋存形态含量非常必要。本文以五酸混合消解作为测定风化壳离子吸附型稀土矿样品中稀土元素全量的前处理方法,并将BCR法和Tessier法提取的稀土元素形态结果进行对比,以ICP-MS为检测手段,探讨了样品中稀土元素全量及各赋存形态含量分布情况。结果表明,五酸混合消解能将稀土矿样品中所有稀土元素完全溶出,且操作简便,方法精密度(RSD)为0.82%~5.19%,检出限为0.002~0.027μg/g,各元素测定值与认定值的相对误差为−4.70%~6.65%,∑LREEs/∑HREEs为1.25~16.50,涵盖轻稀土和重稀土富集。BCR法和Tessier法提取的稀土元素各形态结果的相对偏差(RD)为0.79%~8.07%,提取结果基本能相互对应吻合,∑REEs回收率为84.75%~107.13%,∑REEs测定值的相对偏差(RD)为0.62%~21.00%,相对误差(RE)小于40%。相较之下,BCR法前处理流程简单,但是划分的形态没有Tessier法直观、具体,无法获取更详细的各形态数据,在本文实验条件下,Tessier法对于稀土元素形态分析可能具有较好的适应性。风化壳全风化层样品中稀土元素主要以离子吸附态赋存在黏土类矿物表面,因而离子交换态含量最高,随着风化壳剖面深度增加,pH升高,稀土元素更容易与碳酸根或碳酸氢根结合,导致碳酸盐结合态中稀土元素含量增大,Ce元素在该层中极易从Ce3+氧化成Ce4+,以沉淀形式滞留于原地,不同于其他稀土元素分异-富集特征,形成Ce异常;而母岩中的稀土元素主要富集在独立矿物晶格中,残渣态含量最高,各赋存形态下所有稀土元素变化规律基本一致。
Abstract:The weathering crust ion adsorption type rare earth deposit has the characteristics of complete REE types, low radioactivity, high heavy rare earth contents, and easy mining, making it an extremely important type of rare earth deposit. At present, most of the research on the determination of REEs in this deposit only measures the total amount and ionic phase components of REEs, and some methods have complicated operating procedures, while there is relatively little research on the analysis of various REE forms. However, when studying the mineralization laws of weathering crust ion adsorption type rare earth deposits, it is not only necessary to analyze the total amount of REEs, but also to analyze the chemical forms that affect the mineralization background, migration, enrichment process, long-term differences, and availability of REEs in the deposit. Therefore, it is necessary to accurately determine the total amount and contents of various occurrence REE forms in weathering crust ion adsorption type rare earth deposits. In this article, a five acid mixed digestion was used as a pretreatment method for determining the total amount of REEs, and the results of rare earth elements speciation analysis determined by BCR method and Tessier method were compared. ICP-MS was used as the detection method to explore the distribution of the total amount and various REE forms in the samples. The results show that the five-acid mixed digestion can completely dissolve all REEs in the rare earth ore sample, and the operation is simple. The precision (RSD) of this method was between 0.82% to 5.19%, the detection limit was between 0.002g/g to 0.027g/g, and the relative error between the measured value and the recognized value of each element was between −4.70% to 6.65%. The ∑LREEs/∑HREEs was between 1.25 to 16.50, covering the enrichment of light rare earths and heavy rare earths. The relative deviation (RD) of rare earth forms extracted by the two methods of BCR and Tessier was 0.79% to 8.07%, and the extraction results correspond and match each other. The rate of recovery was between 84.75% to 107.13%. The RD of ∑REEs determination values was between 0.62% to 21.00%, and the relative error (RE) was less than 40%. In contrast, the BCR method has a simpler pre-processing flow, but the partitioned forms are not as intuitive and specific as the Tessier method, which cannot be used to obtain more detailed data on each form. Thus, under the conditions of this experiment, the Tessier method may have good adaptability for rare earth form analysis. REEs in the fully weathered layer samples of the weathering crust mainly exist on the surface of clay minerals in the form of ion adsorption, resulting in the highest content of ion exchange state. As the depth of the weathering crust profile increases and the pH rises, REEs are more likely to bind with carbonate or bicarbonate ions, leading to an increase in the rare earth contents in the carbonate bound state. Elemental Ce is easily oxidized from Ce3+to Ce4+ in this layer, and stays in situ in the form of precipitation, resulting in Ce anomaly; REEs in the parent rock are mainly enriched in the independent mineral lattice, with the highest residual content. The variation patterns of all REEs under different occurrence forms are basically consistent.
-
-
表 1 电感耦合等离子体质谱仪工作条件
Table 1. Operating parameters for ICP-MS measurements
工作参数 设定值 工作参数 设定值 射频功率 1300W 扫描次数 40次 冷却气(Ar)流速 13.0L/min 采集方式 跳峰,3点/质量 辅助气(Ar)流速 1.0L/min 停留时间 10ms/点 雾化器气体(Ar)流速 0.85L/min 测量时间 30s 采样锥(镍)孔径 1.0mm 分析室真空度 ≤5.5×10−7mbar 截取锥(镍)孔径 0.7mm 主循环次数 3次 表 2 样品野外采集信息
Table 2. Field sampling information of the samples
样品编号 矿区 矿体 样品类型 岩性 采样深度(m) W02 A区 S1 全风化 中粒黑云母二长花岗岩 8~10 W04 B区 S15 全风化 粗中粒二云二长花岗岩 6~8 L01 D区 S3 全风化 中粒二长花岗岩 10~12 L03 D区 S1 全风化 中粒花岗岩 3.8~5.8 L05 D区 S3 母岩 中粗粒黑云母二长花岗岩 地表 L08 D区 S1 母岩 中细粒黑云母二长花岗岩 地表 表 3 方法精密度、检出限和准确度
Table 3. Precision, detection limit and accuracy tests of the method
稀土元素 GBW07160 GBW07161 GBW07185 空白
(μg/g)检出限
(μg/g)w0
(μg/g)w
(μg/g)RSD
(%)RE
(%)w0
(μg/g)w
(μg/g)RSD
(%)RE
(%)w0
(μg/g)w
(μg/g)RSD
(%)RE
(%)La 93.8±8.5 92.9 1.81 −0.99 2362±145 2372 1.59 0.43 6.52±0.17 6.45 3.57 −1.12 0.24 0.022 Ce 28.3±4.1 27.9 3.17 −1.37 187±8 186 2.34 −0.70 13.4±0.7 13.1 3.07 −2.62 0.31 0.025 Pr (37.2) 36.7 3.58 −1.29 447±25 444 1.75 −0.77 1.58±0.14 1.51 4.59 −4.48 0.033 0.008 Nd 189±17 191 2.26 1.19 1595±86 1586 1.56 −0.55 6.72±0.40 6.79 2.69 1.02 0.12 0.023 Sm 129±17 132 1.66 2.26 285±26 288 1.43 1.18 2.14±0.22 2.18 3.86 1.93 0.017 0.008 Eu 1.55±0.26 1.48 5.04 −4.52 64.8±3.6 66.4 1.76 2.39 0.11±0.03 0.11 5.19 −4.70 0.003 0.003 Gd (234) 236 1.71 0.96 226±26 228 2.05 1.04 3.01±0.26 3.07 3.58 1.97 0.016 0.008 Tb 49.1±5.1 47.8 3.29 −2.56 34.6±2.2 33.7 2.89 −2.63 0.61±0.07 0.62 2.84 1.94 0.003 0.003 Dy 314±44 317 1.16 0.96 183±17 186 1.68 1.76 4.11±0.13 3.98 1.95 −3.22 0.013 0.005 Ho 65.5±5.4 63.9 2.07 −2.42 35.7±4.0 34.7 2.58 −2.83 0.77±0.07 0.75 3.12 −2.11 0.003 0.004 Er 192±26 194 1.37 1.27 96.0±8.7 97.9 1.85 1.93 2.32±0.20 2.38 3.07 2.70 0.006 0.004 Tm 27.7±3.1 27.5 3.47 −0.90 13.2±1.1 12.7 3.04 −3.48 0.33±0.03 0.35 4.89 5.79 0.001 0.002 Yb 193±26 195 0.82 1.26 87.8±10.5 89.0 2.24 1.31 2.08±0.24 2.15 4.19 3.30 0.007 0.006 Lu 26.7±2.6 27.1 3.55 1.42 12.0±0.9 12.3 2.88 2.75 0.33±0.03 0.35 5.04 6.65 0.001 0.002 Y 2386±205 2398 1.69 0.49 976±47 984 1.69 0.86 23.6±0.6 23.7 2.57 0.62 0.077 0.027 注:括号内的数据为参考值。 表 4 稀土元素全量测定结果
Table 4. Determination results of REEs
稀土元素 W02
(μg/g)RD
(%)W04
(μg/g)RD
(%)L01
(μg/g)RD
(%)L03
(μg/g)RD
(%)L05
(μg/g)RD
(%)L08
(μg/g)RD
(%)La 584 1.07 477 1.40 455 1.60 260 1.26 71.2 1.43 92.1 1.63 Ce 222 2.66 123 3.71 237 1.95 118 3.63 94.3 1.38 179 1.06 Pr 98.4 2.34 96.2 2.08 75.9 4.72 55.4 2.56 16.4 1.83 18.9 3.70 Nd 326 2.82 354 2.75 253 1.35 171 2.98 55.7 1.26 64.5 1.30 Sm 56.4 1.56 91.0 1.87 52.6 4.71 21.5 6.98 9.34 3.00 10.6 2.26 Eu 6.05 4.30 7.41 2.16 5.66 6.71 2.05 5.85 1.22 3.28 1.27 3.15 Gd 35.4 0.34 58.2 0.45 59.1 2.81 11.4 4.39 7.07 1.41 8.59 2.10 Tb 4.30 3.72 8.76 1.14 12.9 6.51 1.08 11.11 1.05 7.62 1.21 6.61 Dy 19.7 1.22 45.3 2.69 80.6 2.70 3.46 4.62 5.64 1.77 6.17 1.62 Ho 3.38 2.37 7.74 1.29 15.6 4.76 0.63 6.35 1.06 3.77 1.11 5.41 Er 9.98 3.81 22.4 5.54 40.7 4.86 2.04 7.84 3.00 7.33 2.92 2.74 Tm 1.39 4.32 3.56 7.30 5.91 3.38 0.27 14.81 0.46 13.04 0.41 9.76 Yb 10.1 2.97 28.2 1.35 37.6 3.30 1.74 2.30 3.15 3.81 2.64 2.27 Lu 1.22 8.20 3.39 5.90 4.59 6.54 0.24 8.33 0.39 10.26 0.32 12.50 Y 83.1 0.91 245 0.85 608 1.43 17.2 5.58 28.7 0.84 29.5 1.02 ∑REEs 1462 0.79 1571 0.22 1944 0.63 666 0.64 299 0.20 420 1.25 ∑LREEs 1293 0.91 1149 0.12 1079 2.02 628 0.53 248 0.08 367 1.40 ∑HREEs 169 0.14 422 1.14 865 1.10 38.0 2.52 50.6 1.58 52.9 0.19 ∑LREEs/∑HREEs 7.67 2.72 1.25 16.50 4.91 6.93 表 5 BCR法稀土元素分步提取结果(n=2)
Table 5. Determination results of REE sequential extraction for BCR method
样品
编号形态
代号La
(μg/g)Ce
(μg/g)Pr
(μg/g)Nd
(μg/g)Sm
(μg/g)Eu
(μg/g)Gd
(μg/g)Tb
(μg/g)Dy
(μg/g)Ho
(μg/g)Er
(μg/g)Tm
(μg/g)Yb
(μg/g)Lu
(μg/g)Y
(μg/g)∑REEs
(μg/g)RD
(%)REEs
回收率
(%)W02 F1 510 24.5 75.0 249 41.7 4.01 27.0 3.14 14.0 2.39 7.52 0.90 7.14 0.79 66.2 1033 2.47 85.63 F2 1.17 10.0 0.31 1.35 0.26 0.02 0.25 0.03 0.17 0.02 0.04 0.01 0.07 0.01 0.25 14.0 3.14 F3 4.69 34.9 1.69 5.49 1.53 0.12 0.88 0.11 0.54 0.08 0.28 0.05 0.47 0.05 1.99 52.8 5.15 F4 8.69 125 1.78 6.59 1.48 0.57 1.52 0.16 0.85 0.14 0.52 0.07 0.61 0.08 3.25 151 2.83 合量 525 194 78.8 262 44.5 4.72 29.7 3.44 15.6 2.63 8.36 1.03 8.29 0.93 71.7 1251 1.95 W04 F1 382 10.2 67.6 251 63.9 5.44 40.8 5.17 24.2 4.03 11.7 1.49 12.3 1.47 101 982 2.03 84.88 F2 0.91 6.48 0.28 1.04 0.29 0.04 0.25 0.03 0.24 0.03 0.08 0.02 0.21 0.02 0.34 10.3 6.21 F3 3.66 19.0 1.52 5.44 1.91 0.21 1.04 0.14 0.90 0.17 0.38 0.07 0.71 0.08 2.42 37.7 4.56 F4 30.9 87.0 7.69 27.2 6.77 0.35 6.44 1.68 11.96 2.38 7.69 1.36 10.9 1.22 99.3 303 3.47 合量 417 123 77.1 285 72.9 6.04 48.5 7.02 37.3 6.61 19.9 2.94 24.1 2.79 203 1333 0.62 L01 F1 410 5.92 63.3 213 43.6 4.19 47.0 11.0 64.1 11.7 34.6 5.08 29.5 3.69 645 1591 1.72 101.64 F2 8.15 5.96 2.35 7.51 1.95 0.22 1.95 0.49 3.19 0.67 1.85 0.29 2.11 0.25 13.1 50.0 1.24 F3 16.0 12.1 4.38 14.1 3.14 0.31 3.29 0.89 5.21 1.24 3.14 0.44 3.35 0.41 30.1 98.0 2.82 F4 3.66 214 0.96 3.11 0.76 0.31 1.85 0.28 1.49 0.29 1.05 0.19 1.51 0.22 6.98 237 3.00 合量 438 238 71.0 238 49.5 5.03 54.1 12.7 74.0 13.9 40.6 6.00 36.5 4.57 695 1976 1.64 L03 F1 201 20.1 43.7 124 14.6 1.38 7.51 0.72 1.89 0.34 1.22 0.11 0.89 0.11 9.88 427 1.98 84.75 F2 5.48 4.31 1.44 5.48 0.91 0.07 0.69 0.14 0.78 0.15 0.39 0.05 0.39 0.05 3.33 23.7 4.05 F3 9.77 10.1 2.77 10.2 1.49 0.12 0.89 0.13 0.63 0.10 0.34 0.05 0.41 0.05 3.35 40.4 5.69 F4 5.44 60.4 1.00 3.21 0.46 0.07 0.66 0.05 0.24 0.05 0.09 0.02 0.10 0.02 0.91 72.7 4.24 合量 222 94.9 48.9 142.9 17.5 1.64 9.75 1.04 3.54 0.64 2.04 0.23 1.79 0.23 17.5 564 0.71 L05 F1 23.1 5.55 6.35 22.2 3.28 0.34 2.34 0.34 1.47 0.24 0.68 0.07 0.55 0.05 7.56 74.1 3.81 107.13 F2 14.1 10.1 3.44 12.0 2.24 0.24 1.54 0.37 1.24 0.26 0.65 0.07 0.66 0.08 6.44 53.4 2.77 F3 8.00 8.44 2.24 7.34 1.21 0.11 0.79 0.12 0.62 0.13 0.24 0.04 0.31 0.03 3.44 33.1 7.98 F4 28.1 75.7 6.44 21.2 3.69 0.66 3.04 0.49 2.85 0.58 1.55 0.29 1.77 0.19 12.9 159 4.16 合量 73.3 99.8 18.5 62.7 10.4 1.35 7.71 1.32 6.18 1.21 3.12 0.47 3.29 0.35 30.3 320 3.32 L08 F1 8.44 12.3 2.11 5.57 0.55 0.04 0.44 0.05 0.29 0.04 0.09 0.01 0.08 0.01 1.38 31.4 6.94 104.51 F2 6.44 12.4 1.49 7.14 1.59 0.09 1.35 0.25 1.34 0.19 0.55 0.08 0.49 0.06 7.04 40.5 4.74 F3 5.49 8.44 1.17 3.74 0.59 0.04 0.41 0.05 0.32 0.05 0.14 0.02 0.16 0.02 2.08 22.7 6.61 F4 71.4 158.3 14.2 49.7 7.88 1.19 6.25 0.95 4.69 0.88 2.38 0.35 2.24 0.29 23.2 344 1.92 合量 91.8 191 19.0 66.2 10.6 1.36 8.45 1.30 6.64 1.16 3.16 0.46 2.97 0.38 33.7 439 1.79 注:回收率为各形态分析步骤合量与稀土元素全量之比百分数。 表 6 Tessier法稀土元素分步提取结果(n=2)
Table 6. Determination results of REE sequential extraction for Tessier method
样品
编号形态
代号La
(μg/g)Ce
(μg/g)Pr
(μg/g)Nd
(μg/g)Sm
(μg/g)Eu
(μg/g)Gd
(μg/g)Tb
(μg/g)Dy
(μg/g)Ho
(μg/g)Er
(μg/g)Tm
(μg/g)Yb
(μg/g)Lu
(μg/g)Y
(μg/g)∑REEs
(μg/g)RD
(%)∑REEs
回收率
(%)W02 T1 16.9 0.23 2.95 10.4 2.37 0.22 1.70 0.23 1.09 0.18 0.50 0.07 0.42 0.05 5.18 42.5 4.28 90.45 T2 467 17.3 52.6 163 18.9 1.74 15.4 1.39 4.72 0.85 2.56 0.23 1.27 0.15 34.6 782 1.21 T3 55.1 8.92 24.6 92.0 25.2 2.60 13.5 2.00 10.0 1.69 5.08 0.78 6.13 0.73 33.0 281 2.69 T4 3.19 4.80 1.15 3.95 1.04 0.10 0.58 0.08 0.45 0.08 0.24 0.04 0.36 0.04 1.45 17.6 3.18 T5 1.12 9.82 0.35 1.26 0.28 0.02 0.21 0.03 0.13 0.02 0.07 0.01 0.09 0.01 0.27 13.7 3.21 T6 1.62 30.1 0.51 1.75 0.40 0.04 0.40 0.04 0.17 0.03 0.09 0.01 0.14 0.02 0.32 35.6 4.15 T7 8.54 123 1.91 6.44 1.44 0.47 1.55 0.19 0.96 0.16 0.47 0.08 0.68 0.09 3.06 149 2.89 合量 553 194 84.1 279 49.6 5.19 33.3 3.96 17.5 3.01 9.01 1.22 9.09 1.09 77.9 1321 1.94 W04 T1 25.6 0.76 4.00 13.5 2.50 0.24 1.88 0.24 1.14 0.20 0.54 0.07 0.44 0.05 5.73 56.9 3.23 89.70 T2 348 3.47 46.5 162 28.3 2.28 21.5 2.26 8.74 1.50 4.10 0.45 2.67 0.33 59.2 691 2.41 T3 42.6 7.87 23.3 94.6 37.6 3.33 19.9 3.31 16.8 2.57 7.45 1.29 10.9 1.29 43.8 317 1.71 T4 2.31 2.73 1.01 3.93 1.45 0.13 0.78 0.14 0.72 0.11 0.34 0.06 0.59 0.07 1.95 16.3 2.21 T5 0.87 6.63 0.30 1.18 0.38 0.04 0.26 0.04 0.21 0.03 0.10 0.02 0.17 0.02 0.37 10.6 5.09 T6 1.21 15.4 0.37 1.39 0.40 0.04 0.32 0.04 0.21 0.03 0.10 0.02 0.17 0.02 0.41 20.1 4.18 T7 30.0 84.6 7.59 27.0 6.95 0.32 6.64 1.61 11.7 2.40 7.56 1.31 10.6 1.30 97.3 297 1.58 合量 451 121 83.1 304 77.6 6.38 51.3 7.64 39.5 6.84 20.2 3.22 25.5 3.08 209 1409 1.49 L01 T1 0.04 0.02 0.01 0.03 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.07 0.21 8.60 102.68 T2 334 3.19 36.2 113 16.1 1.58 21.76 3.82 21.6 4.55 11.0 1.21 5.55 0.71 314 888 0.80 T3 85.2 2.96 29.9 107 28.7 3.08 29.59 7.42 48.3 9.18 24.7 3.78 25.3 3.10 328 736 0.86 T4 11.9 1.85 3.36 11.41 2.81 0.30 2.72 0.70 4.64 0.89 2.44 0.40 2.88 0.35 27.2 73.9 2.03 T5 7.98 5.76 2.12 7.36 1.72 0.19 1.82 0.46 3.11 0.62 1.67 0.26 1.90 0.23 12.7 47.9 3.80 T6 3.38 9.28 0.88 3.09 0.70 0.07 0.72 0.16 1.05 0.20 0.55 0.09 0.66 0.08 4.63 25.5 2.81 T7 3.54 203 0.89 2.90 0.73 0.27 1.67 0.21 1.40 0.29 0.95 0.18 1.36 0.17 6.72 224 2.10 合量 446 226 73.4 245 50.8 5.49 58.3 12.8 80.1 15.7 41.3 5.92 37.7 4.64 693 1996 0.64 L03 T1 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 11.27 87.67 T2 168 14.0 28.6 56.4 4.88 0.41 3.39 0.28 0.67 0.12 0.41 0.03 0.14 0.02 4.06 281 3.37 T3 35.4 8.71 15.8 70.1 10.9 1.02 4.44 0.55 1.34 0.27 0.85 0.12 0.86 0.11 6.16 157 2.94 T4 5.72 1.80 1.87 6.47 0.99 0.09 0.42 0.05 0.24 0.04 0.13 0.02 0.13 0.01 1.04 19.0 5.89 T5 5.79 4.54 1.65 5.78 0.96 0.10 0.75 0.15 0.85 0.16 0.43 0.06 0.45 0.05 3.43 25.2 4.22 T6 4.21 9.49 1.10 3.88 0.63 0.06 0.53 0.09 0.52 0.09 0.28 0.04 0.29 0.04 2.54 23.8 2.77 T7 5.73 64.3 1.04 3.40 0.60 0.09 0.73 0.07 0.28 0.05 0.13 0.02 0.15 0.02 0.95 77.6 3.92 合量 225 103 50.1 146 19.0 1.77 10.3 1.19 3.90 0.73 2.23 0.29 2.02 0.25 18.2 584 3.42 L05 T1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 21.00 103.85 T2 5.32 0.38 0.81 2.55 0.28 0.02 0.24 0.02 0.09 0.01 0.04 0.00 0.01 0.00 0.64 10.4 4.04 T3 17.7 5.21 5.31 18.4 2.98 0.28 1.92 0.26 1.20 0.21 0.56 0.07 0.48 0.06 6.71 61.4 3.13 T4 5.23 2.30 1.34 4.65 0.77 0.07 0.47 0.07 0.35 0.06 0.16 0.02 0.15 0.02 1.97 17.6 2.84 T5 13.3 9.67 3.35 11.5 2.13 0.22 1.58 0.26 1.30 0.23 0.59 0.09 0.59 0.07 6.32 51.2 3.59 T6 2.88 6.27 0.79 2.83 0.53 0.05 0.39 0.06 0.34 0.06 0.17 0.03 0.19 0.02 1.66 16.3 3.19 T7 26.9 73.1 6.23 20.3 3.52 0.62 2.88 0.45 2.62 0.52 1.48 0.24 1.69 0.21 12.7 153 3.29 合量 71.3 96.9 17.8 60.2 10.2 1.26 7.48 1.12 5.90 1.09 3.00 0.45 3.11 0.38 30.0 310 1.79 L08 T1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 14.10 102.96 T2 1.23 0.09 0.21 0.72 0.06 0.01 0.07 0.01 0.03 0.00 0.01 0.00 0.00 0.00 0.21 2.65 8.30 T3 7.06 11.2 1.50 4.72 0.56 0.04 0.45 0.05 0.22 0.04 0.10 0.01 0.09 0.01 1.11 27.2 3.99 T4 1.07 1.63 0.24 0.69 0.09 0.01 0.07 0.01 0.04 0.01 0.03 0.00 0.02 0.00 0.22 4.13 7.28 T5 6.52 12.8 1.84 7.37 1.74 0.10 1.39 0.23 1.29 0.23 0.59 0.08 0.54 0.07 7.15 41.9 2.96 T6 4.49 7.06 0.98 3.30 0.55 0.04 0.40 0.06 0.31 0.05 0.14 0.02 0.13 0.02 1.99 19.5 3.59 T7 69.7 157 13.9 47.5 7.74 1.14 6.09 0.89 4.52 0.82 2.20 0.31 2.03 0.23 22.7 337 2.03 合量 90.1 190 18.7 64.3 10.7 1.34 8.47 1.25 6.41 1.15 3.07 0.42 2.81 0.33 33.4 432 2.40 注:回收率为各形态分析步骤合量与稀土元素全量之比百分数。 -
[1] 王倩. 土壤稀土形态分析方法与地球化学应用研究[D]. 北京: 中国地质大学(北京), 2014.
Wang Q. Study on the speciation of REE in soil and its application in geochemistry[D]. Beijing: China University of Geosciences (Beijing), 2014.
[2] 黄健. 广东仁居风化壳离子吸附型稀土矿床中稀土元素的富集分异机制研究[D]. 北京: 中国科学院大学, 2021.
Huang J. REE enrichment and fractionation mechanism of the Renju ion adsorption type REE deposit in Guangdong Province [D]. Beijing: University of Chinese Academy of Sciences, 2021.
[3] 林卓玲, 黄光庆. 土壤稀土元素的迁移-富集机制及其生态效应[J]. 地球环境学报, 2023, 14(5): 521−538. doi: 10.7515/JEE221024
Lin Z L, Huang G Q. Migration enrichment mechanism and ecological effects of rare elements in soil[J]. Journal of Earth Environment, 2023, 14(5): 521−538. doi: 10.7515/JEE221024
[4] 宋旭东, 樊小伟, 陈文, 等. 电感耦合等离子体质谱法测定离子吸附型稀土矿中全相稀土总量[J]. 冶金分析, 2018, 38(6): 19−24. doi: 10.13228/j.boyuan.issn1000-7571.010305
Song X D, Fan X W, Chen W, et al. Determination of total-phase rare earth content in ion-adsorption rare earth ore by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2018, 38(6): 19−24. doi: 10.13228/j.boyuan.issn1000-7571.010305
[5] 朱云, 郭琳, 于汀汀, 等. 提取风化壳淋积型稀土矿中稀土元素的前处理方法探讨[J]. 岩矿测试, 2023, 42(5): 877−887. doi: 10.15898/j.ykcs.202308070130
Zhu Y, Guo L, Yu T T, et al. Discussion on pretreatment method for extracting rare earth elements from weathered crust elution-deposited rare earth ores[J]. Rock and Mineral Analysis, 2023, 42(5): 877−887. doi: 10.15898/j.ykcs.202308070130
[6] 王臻, 肖仪武, 冯凯. 离子吸附型稀土矿成矿特点及元素赋存形式[J]. 有色金属(选矿部分), 2021(6): 43−51. doi: 10.3969/j.issn.1671-9492.2021.06.006
Wang Z, Xiao Y W, Feng K. Metallogenic characteristics and occurrence of REE in ion adsorption type rare earth deposits[J]. Nonferrous Metals (Mineral Processing Section), 2021(6): 43−51. doi: 10.3969/j.issn.1671-9492.2021.06.006
[7] Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844−851. doi: 10.1021/ac50043a017
[8] Quevauviller P, Rauret G, Griepink B. Single and sequential extraction in sediments and soils[J]. International Journal of Environmental Analytical Chemistry, 1993, 51(1/2/3/4): 231−235. doi: 10.1080/03067319308027629
[9] Shuman L. Fractionation method for soil microelements[J]. Soil Science, 1985, 140(1): 11−22. doi: 10.1097/00010694-198507000-00003
[10] Gibson M J, Farmer J G. Multi-step sequential chemical extraction of heavy metals from urban soils[J]. Environmental Pollution, 1986, 11(2): 117−135. doi: 10.1016/0143-148x(86)90039-x
[11] Miller W P, Martens D C, Zelazny L W. Effect of sequence in extraction of trace metals from soils[J]. Soil Science of America Journal, 1986, 50(3): 598−601. doi: 10.2136/sssaj1986.03615995005000030011x
[12] 李娜, 夏瑜, 何绪文, 等. 基于Tessier法的土壤中不同形态镉的转化及其影响因素研究进展[J]. 土壤通报, 2021, 52(6): 1505−1512. doi: 10.19336/j.cnki.trtb.2020111101
Li N, Xia Y, He X W, et al. Research progress of Cd form transformation and the effective environmental factors in soil based on Tessier analysis[J]. Chinese Journal of Soil Science, 2021, 52(6): 1505−1512. doi: 10.19336/j.cnki.trtb.2020111101
[13] 杨华, 王艳丽, 李利荣. 涡旋提取-改进BCR法测定土壤中重金属的化学形态[J]. 中国无机分析化学, 2023, 13(6): 598−603. doi: 10.3969/j.issn.2095-1035.2023.06.013
Yang H, Wang Y L, Li L R. Determination of chemical morphology of heavy metals in soil by vortex extraction and improved BCR method[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(6): 598−603. doi: 10.3969/j.issn.2095-1035.2023.06.013
[14] 余璨. BCR多级连续提取法在拉萨河流域表层沉积物重金属形态分析研究中的应用[D]. 拉萨: 西藏大学, 2019.
Yu C. Application of BCR sequential extraction procedure on heavy metal speciation in surface sediments of the Lhasa River Catchments[D]. Lhasa: Tibet University, 2019.
[15] 陈莉薇, 陈海英, 武君, 等. 利用Tessier五步法和改进BCR法分析铜尾矿中Cu、Pb、Zn赋存形态的对比研究[J]. 安全与环境学报, 2020, 20(2): 735−740. doi: 10.13637/j.issn.1009-6094.2019.0661
Chen L W, Chen H Y, Wu J, et al. Comparative study on speciation of Cu, Pb and Zn from mining tailings via Tessier 5-step sequential extraction and improved BCR method[J]. Journal of Safety and Environment, 2020, 20(2): 735−740. doi: 10.13637/j.issn.1009-6094.2019.0661
[16] 李默挺, 陶红, 孙燕, 等. 改进的BCR连续提取法-电感耦合等离子体质谱法分析水泥基底泥固化材料中重金属形态[J]. 理化检验(化学分册), 2019, 55(4): 401−407.
Li M T, Tao H, Sun Y, et al. ICP-MS determination of combination states of heavy metal elements in solidified materials of cement-based sediment with separation by modified BCR successive extraction[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 55(4): 401−407.
[17] 张安丰, 杨博为, 王永鑫, 等. 动能歧视(KED)-电感耦合等离子体质谱(ICP-MS)法测定贵州沉积型稀土矿中16中稀土元素[J]. 中国无机分析化学, 2024, 14(5): 575−585. doi: 10.3969/j.issn.2095-1035.2024.05.009
Zhang A F, Yang B W, Wang Y X, et al. Determination of 16 rare elements in sedimentary rare earth ores in Guizhou Province by inductively coupled plasma mass spectrometry with kinetic energy discrimination (KED)[J]. Chinese Journal of inorganic Analytical Chemistry, 2024, 14(5): 575−585. doi: 10.3969/j.issn.2095-1035.2024.05.009
[18] 张民, 何显川, 谭伟, 等. 云南临沧花岗岩离子吸附型稀土矿床地球化学特征及其成因讨论[J]. 中国地质, 2022, 49(1): 201−214. doi: 10.12029/gc20220112
Zhang M, He X C, Tan W, et al. Geochemical characteristics and genesis of ion-adsorption type REE deposit in the Lincang granite, Yunnan[J]. Geology in China, 2022, 49(1): 201−214. doi: 10.12029/gc20220112
[19] 高国华, 颜鋆, 赖安邦, 等. 离子吸附型稀土矿抗坏血酸强化-还原浸取过程[J]. 中国有色金属学报, 2019, 29(6): 1289−1297. doi: 10.19476/j.ysxb.1004.0609.2019.06.18
Gao G H, Yan J, Lai A B, et al. Intensification-reduction leaching process of ion-adsorption type rare earths ore with ascorbic acid[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(6): 1289−1297. doi: 10.19476/j.ysxb.1004.0609.2019.06.18
[20] 周华娇. 离子吸附型稀土浸取特征评价与浸取剂选择[D]. 南昌: 南昌大学, 2022.
Zhou H J. Evaluation of ion-adsorption rare earths leaching characterization and the selection of leaching reagents[D]. Nanchang: Nanchang University, 2022.
[21] 王学峰, 许春雪, 顾雪, 等. 典型稀土矿区周边土壤中稀土元素含量及赋存形态研究[J]. 岩矿测试, 2019, 38(3): 137−146. doi: 10.15898/j.cnki.11-2131/td.201807180085
Wang X F, Xu C X, Gu X, et al. Concentration and fractionation of rare earth elements in soils surrounding rare earth ore area[J]. Rock and Mineral Analysis, 2019, 38(3): 137−146. doi: 10.15898/j.cnki.11-2131/td.201807180085
[22] 高晶晶, 刘季花, 李先国, 等. 富钴结壳中稀土元素化学相态分析方法及其应用[J]. 分析化学, 2015, 43(12): 1895−1900. doi: 10.11895/j.issn.0253-3820.150418
Gao J J, Liu J H, Li X G, et al. Chemical phase analysis of rare earth elements in cobalt-rich crusts and its application[J]. Chinese Journal of Analytical Chemistry, 2015, 43(12): 1895−1900. doi: 10.11895/j.issn.0253-3820.150418
[23] 王彪, 黄庆, 何良伦, 等. 黔西北麻乍地区沉积型稀土矿中稀土元素赋存状态研究[J]. 矿物学报, 2023, 43(12): 789−798. doi: 10.16461/j.cnki.1000-4734.2023.43.087
Wang B, Huang Q, He L L, et al. The occurrence state of rare earth elements in sedimentary rare earth deposits in Mazha area, Northwest Guizhou[J]. Acta Mineralogica Sinica, 2023, 43(12): 789−798. doi: 10.16461/j.cnki.1000-4734.2023.43.087
[24] 夏传波, 成学海, 姜云, 等. 密闭酸溶-电感耦合等离子体发射光谱/质谱法测定花岗伟晶岩中32种微量元素[J]. 岩矿测试, 2024, 43(2): 247−258. doi: 10.15898/j.ykcs.202307310105
Xia C B, Cheng X H, Jiang Y, et al. Determination of 32 trace elements in granite pegmatite by inductively coupled plasma-optical emission spectrometry and mass spectrometry with closed acid dissolution[J]. Rock and Mineral Analysis, 2024, 43(2): 247−258. doi: 10.15898/j.ykcs.202307310105
[25] 苏春风. 电感耦合等离子体质谱(ICP-MS)法测定稀土矿中16种稀土元素含量[J]. 中国无机分析化学, 2020, 10(6): 28−32. doi: 10.3969/j.issn.2095-1035.2020.06.007
Su C F. Determination of 16 rare earth elements in rare earth ores by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(6): 28−32. doi: 10.3969/j.issn.2095-1035.2020.06.007
[26] 黄健, 谭伟, 梁晓亮, 等. 富稀土矿物的风化特征及其对稀土成矿过程的影响——以广东仁居离子吸附型稀土矿床为例[J]. 地球化学, 2022, 51(6): 684−695. doi: 10.19700/j.0379-1726.2022.06.007
Huang J, Tan W, Liang X L, et al. Weathering characters of REE-bearing accessory minerals and their effects on REE mineralization in Renju Regolith-hosted REE deposits in Guangdong Province[J]. Geochimica, 2022, 51(6): 684−695. doi: 10.19700/j.0379-1726.2022.06.007
[27] 梁晓亮, 谭伟, 马灵涯, 等. 离子吸附型稀土矿床形成的矿物表/界面反应机制[J]. 地学前缘, 2022, 29(1): 29−41. doi: 10.13745/j.esf.sf.2021.8.8
Liang X L, Tan W, Ma L Y, et al. Mineral surface reaction constraints on the formation of ion-adsorption rare earth element deposits[J]. Earth Science Frontiers, 2022, 29(1): 29−41. doi: 10.13745/j.esf.sf.2021.8.8
[28] Li Y H M, Zhou M F, Williams-Jones A E. The genesis of regolith-hosted heavy rare earth element deposits: Insights from the world-class Zudong deposit in Jiangxi Province, South China[J]. Economic Geology, 2019, 114(3): 541−568. doi: 10.5382/econgeo.4642
[29] 张怡斐. 市政污泥热处理过程中主要污染物的迁移转化[D]. 上海: 上海交通大学, 2011.
Zhang Y F. Migratory behavior of major contaminant in the thermal treatment process of sludge[D]. Shanghai: Shanghai Jiao Tong University, 2011.
[30] Han R S, Liu C Q, Emmanuel J M C, et al. REE geochemistry of altered tectonites in the Huize base-metal district, Yunnan, China[J]. Geochemistry: Exploration, Environment, Analysis, 2012, 12: 127−146. doi: 10.1144/1467-7873/10-mindep-053
[31] 罗武平, 李光来, 李成详, 等. 江西相山下家岭稀土矿风化壳剖面地球化学特征[J]. 矿物学报, 2019, 39(3): 237−246. doi: 10.16461/j.cnki.1000-4734.2019.39.057
Luo W P, Li G L, Li C X, et al. Geochemical characteristics of the weathered crust profile in the Xiajialing REE deposit of the Xiangshan area, Jiangxi Province, China[J]. Acta Mineralogica Sinica, 2019, 39(3): 237−246. doi: 10.16461/j.cnki.1000-4734.2019.39.057
[32] Williams-Jones A E, Vasyukova O V. The economic geology of scandium, the runt of the rare earth element litter[J]. Economic Geology, 2018, 113(4): 973−988. doi: 10.5382/econgeo.2018.4579
[33] 王长兵, 倪光清, 瞿亮, 等. 花岗岩风化壳中Ce地球化学特征及其找矿意义——以滇西岔河离子吸附型稀土矿床为例[J]. 矿床地质, 2021, 10(5): 1013−1028. doi: 10.16111/j.0258-7106.2021.05.008
Wang C B, Ni G Q, Qu L, et al. Ce geochemical characteristics of granite weathering crust and its prospecting significance: A case study of Chahe ion adsorption rare earth deposit in Western Yunnan[J]. Mineral Deposits, 2021, 10(5): 1013−1028. doi: 10.16111/j.0258-7106.2021.05.008
-