Determination of Zirconium and Titanium in Marine Placer Deposits by ICP-OES with Alkali Fusion of Lithium Metaborate-Lithium Tetraborate Composite Flux
-
摘要:
海南岛的海域砂矿蕴藏着丰富的锆钛资源,具有巨大的开发潜力。本文建立了一种基于偏硼酸锂-四硼酸锂复合熔剂(33∶67,m/m)的碱熔-电感耦合等离子体发射光谱法,用于测定海域砂矿中锆和钛的含量。样品采用0.8g复合熔剂混合,在1000℃下熔融15min,冷却后将熔融物倒入稀酸中,在恒温振荡仪中进行振荡溶解。通过简化操作流程、改进溶解熔融物的技术,本方法Zr的检出限为0.40µg/g,TiO2的检出限为0.0025%。通过国家标准物质验证,Zr和TiO2测定值的相对标准偏差(RSD)分别为 1.0%~3.5%、0.7%~3.3%,精密度和准确度均符合地质矿产实验室测试质量管理规范,适用于海域砂矿中锆和钛的快速连续分析。
-
关键词:
- 海域砂矿 /
- 碱熔 /
- 偏硼酸锂-四硼酸锂熔剂 /
- 电感耦合等离子体发射光谱法 /
- 锆 /
- 钛
Abstract:The marine placer deposits of Hainan Island contain abundant zirconium (Zr) and titanium (Ti) resources, which hold significant development potential. An alkali fusion-inductively coupled plasma-optical emission spectrometry method based on a composite flux of lithium metaborate and lithium tetraborate (m∶m=33∶67) was developed for determining Zr and Ti in marine placers. In this method, the sample was fused with 0.8g flux at 1000℃ for 15min. After cooling, the molten substance was poured into a dilute acid and dissolved by oscillation in a constant temperature oscillator. This approach simplifies the operation process by avoiding the complexity associated with high-temperature procedures while enhancing melt dissolution techniques. The detection limit for Zr in this method is 0.40μg/g while that for TiO2 is 0.0025%. Based on standard materials, the relative standard deviation (RSD) of Zr ranges between 1.0%−3.5%; RSD of TiO2 ranges between 0.7%−3.3%. These precision values align with quality management standards set forth by geological and mineral laboratory testing. The method is suitable for rapid continuous analysis of Zr and Ti in marine placer deposits.
-
-
表 1 测定元素分析谱线
Table 1. Analytical spectral lines for determination of elements
元素 谱线
(nm)浓度为5.0mg/L时的
平均响应Zr 339.198 21890 343.823 127200 349.621 8603 Ti 334.941 327000 336.124 172100 表 2 复溶介质的选择
Table 2. Selection of resolution medium
复溶介质 TiO2含量 Zr含量 测定值
(%)标准值
(%)测定值
(µg/g)参考值
(µg/g)4%硝酸 0.780 0.825±0.030 222 229 8%硝酸 0.781 223 12% 硝酸 0.784 220 6% 盐酸 0.784 222 10% 盐酸 0.767 216 15% 盐酸 0.765 219 8% 王水 0.763 218 12% 王水 0.767 221 8% 逆王水 0.769 221 12% 逆王水 0.761 221 表 3 海洋沉积物标准物质的准确性和精密度实验结果
Table 3. Analytical results of the accuracy and precision tests of marine sediment reference materials (n=6)
测试指标 参数 GBW07314 GBW07333 GBW07335 GBW07336 TiO2 测定值(%) 0.777 0.768 0.779
0.778 0.771 0.7920.710 0.705 0.705
0.709 0.722 0.7160.660 0.663 0.652
0.662 0.654 0.6530.576 0.566 0.557
0.564 0.599 0.603平均值(%) 0.778 0.711 0.657 0.578 标准值(%) 0.825±0.030 0.775±0.020 0.720±0.03 0.610±0.03 相对误差(%) 5.8 8.2 8.7 5.3 RSD(%) 1.1 0.9 0.7 3.3 Zr 测定值(µg/g) 215 217 217
212 211 217131 130 134
133 132 133183 167 184
179 178 183122 129 127
121 126 128平均值(µg/g) 215 132 179 125 标准值(µg/g) 229 144±13 184±24 134±12 相对误差(%) 6.1 8.2 2.6 6.4 RSD(%) 1.3 1.0 3.5 2.5 表 4 本文方法与封闭酸溶方法的测定结果比对
Table 4. Comparison of the analytical results obtained by this method and sealed acid dissolution method
实际样品
编号TiO2含量(%) RSD
(%)Zr含量(µg/g) RSD
(%)本文方法(碱熔法) 封闭酸溶法 本文方法 封闭酸溶法 y1 0.360 0.366 1.2 364 359 1.0 y2 0.950 0.993 3.1 758 741 1.6 y3 0.765 0.760 0.5 362 362 0.0 y4 0.301 0.305 0.9 379 372 1.3 y5 0.275 0.274 0.3 329 322 1.5 y6 0.302 0.303 0.2 432 436 0.7 y7 0.576 0.604 3.4 701 726 2.5 y8 0.364 0.372 1.5 415 420 0.8 y9 0.504 0.541 5.0 374 374 0.0 y10 0.674 0.702 2.9 518 499 2.6 y11 2.19 2.41 4.9 4553 4563 0.2 y12 0.730 0.750 1.9 706 710 0.4 y13 1.56 1.66 4.5 2090 2203 3.7 y14 1.30 1.39 4.9 2002 2098 3.3 y15 0.894 0.949 4.2 1999 2102 3.6 y16 1.29 1.36 3.8 1728 1811 3.3 y17 0.625 0.644 2.1 1720 1827 4.3 y18 0.755 0.751 0.4 1555 1601 2.1 y19 0.995 0.998 0.2 1377 1402 1.3 y20 0.561 0.593 4.0 1212 1279 3.8 y21 0.830 0.886 4.6 1202 1244 2.4 y22 1.03 1.10 4.4 1054 1125 4.6 y23 0.833 0.844 0.9 872 884 1.0 y24 0.773 0.798 2.3 746 759 1.3 y25 0.533 0.558 3.3 664 689 2.6 -
[1] 于洋, 吴磊, 王娜, 等. 电感耦合等离子体质谱法测定岩石样品中15种稀土元素含量不确定度的评估[J]. 华北地质, 2024, 47(2): 105−110. doi: 10.19948/j.12-1471/P.2024.02.12
Yu Y, Wu L, Wang N, et al. Uncertainty evaluation of 15 rare earth elements in rock by ICP-MS[J]. North China Geology, 2024, 47(2): 105−110. doi: 10.19948/j.12-1471/P.2024.02.12
[2] 贾雷, 李俊东, 黄青春, 等. 电感耦合等离子体质谱法测定大批量钼多金属矿中钼及4种主要伴生元素的含量[J]. 理化检验(化学分册), 2024, 60(3): 260−265. doi: 10.11973/lhjy-hx202403003
Jia L, Li J D, Huang Q C, et al. Determination of molybdenum and 4 major associated elements in large-scale molybdenum polymetallic ores by inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2024, 60(3): 260−265. doi: 10.11973/lhjy-hx202403003
[3] 陆海川, 袁新, 夏祥, 等. 微敞开体系消解-电感耦合等离子体质谱法测定地球化学样品中稀土元素[J]. 冶金分析, 2024, 44(2): 30−39. doi: 10.13228/j.boyuan.issn1000-7571.012316
Lu H C, Yuan X, Xia X, et al. Determination of rare earth elements in geochemical samples by inductively coupled plasma mass spectrometry after digestion in micro-open system[J]. Metallurgical Analysis., 2024, 44(2): 30−39. doi: 10.13228/j.boyuan.issn1000-7571.012316
[4] 辜洋建, 陈璐, 王玉环, 等. 高压密闭消解-电感耦合等离子体质谱法测定地球化学样品中6种元素的含量[J]. 理化检验(化学分册), 2024, 60(7): 731−736. doi: 10.11973/lhjy-hx230174
Gu Y J, Chen L, Wang Y H, et al. Determination of 6 elements in geochemical sample by inductively coupled plasma mass spectrometry with high pressure sealed digestion[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2024, 60(7): 731−736. doi: 10.11973/lhjy-hx230174
[5] 常青. 密闭消解-电感耦合等离子体发射光谱法检测钨钼矿中伴生元素的研究[J]. 化学工程与装备, 2024(6): 128−130. doi: 10.19566/j.cnki.cn35-1285/tq.2024.06.037
Chang Q. Research on the detection of trace elements in tungsten-molybdenum ores by closed vessel digestion-inductively coupled plasma optical emission spectrometry (ICP-OES)[J]. Chemical Engineering and Equipment, 2024(6): 128−130. doi: 10.19566/j.cnki.cn35-1285/tq.2024.06.037
[6] 王蕾, 于汀汀, 孙红宾, 等. 高压密闭酸溶-电感耦合等离子体发射光谱法测定硼矿石中的硼[J]. 岩矿测试, 2024, 43(3): 468−475. doi: 10.15898/j.ykcs.202308070131
Wang L, Yu T T, Sun H B, et al. Boron analysis in boron ores by inductively coupled plasma-optical emission spectrometry with sealed acid digestion at high pressure[J]. Rock and Mineral Analysis, 2024, 43(3): 468−475. doi: 10.15898/j.ykcs.202308070131
[7] 李佳, 胡忠贵, 江梦宇, 等. 微波消解-电感耦合等离子发射光谱法同时测定碳酸盐岩中Ca、Mg、Sr、Ba等多元素[J]. 中国无机分析化学, 2023, 13(1): 94−99. doi: 10.3969/j.issn.2095-1035.2023.01.013
Li J, Hu Z G, Jiang M Y, et al. Simultaneous determination of 13 elements such as Ca, Mg, Sr, Ba in carbonate rocks by inductively coupled plasma atomic emission spectrometry with microwave digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(1): 94−99. doi: 10.3969/j.issn.2095-1035.2023.01.013
[8] 李旭霞. 电感耦合等离子体发射光谱法测定土壤中7种金属元素[J]. 化学工程师, 2024, 38(6): 32−34, 63. doi: 10.16247/j.cnki.23-1171/tq.20240632
Li X X. Determination of 7 metal elements in soil by ICP-AES[J]. Chemical Engineer, 2024, 38(6): 32−34, 63. doi: 10.16247/j.cnki.23-1171/tq.20240632
[9] 余蕾, 刘军, 张小毅, 等. 微波消解-电感耦合等离子体原子发射光谱法测定菱镁矿中10种主量元素[J]. 冶金分析, 2023, 43(1): 74−81. doi: 10.13228/j.boyuan.issn1000-7571.011840
Yu L, Liu J, Zhang X Y, et al. Determination of 10 major elements in magnesite by microwave digestion-inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2023, 43(1): 74−81. doi: 10.13228/j.boyuan.issn1000-7571.011840
[10] 滕广清, 王彬果. 碱熔-电感耦合等离子体原子发射光谱法测定石灰石中8种组分[J]. 冶金分析, 2024, 44(7): 88−94. doi: 10.13228/j.boyuan.issn1000-7571.012409
Teng G Q, Wang B G. Determination of 8 components in limestone by inductively coupled plasma atomic emission spectrometry with alkali fusion[J]. Metallurgical Analysis, 2024, 44(7): 88−94. doi: 10.13228/j.boyuan.issn1000-7571.012409
[11] 席秀丽, 安婷婷. 电感耦合等离子体发射光谱法测定高岭土中8项组分含量[J]. 分析仪器, 2024(3): 25−30. doi: 10.3969/j.issn.1001‐232x.2024.03.005
Xi X L, An T T. Determination of 8 components in kaolin by inductively coupled plasma emission spectrometry[J]. Analytical Instrumentation, 2024(3): 25−30. doi: 10.3969/j.issn.1001‐232x.2024.03.005
[12] 鲁雪飞. 电感耦合等离子体发射光谱法测定钼铬合金中9种元素[J]. 铁合金, 2024, 55(3): 51−54. doi: 10.16122/j.cnki.issn1001-1943.2024.03.013
Lu X F. Determination of 9 elements in molybdenum-chromium alloy by inductively coupled plasma emission spectroscopy[J]. Ferro-Alloys, 2024, 55(3): 51−54. doi: 10.16122/j.cnki.issn1001-1943.2024.03.013
[13] 邢夏, 徐进力, 刘彬, 等. 电感耦合等离子体发射光谱法在地质样品分析中的应用进展[J]. 物探与化探, 2016, 40(5): 998−1006. doi: 10.11720/wtyht.2016.5.25
Xing X, Xu J L, Liu B, et al. Advances in the application of inductively coupled plasma optical emission spectrometry in geological sample analysis[J]. Geophysical & Geochemical Exploration, 2016, 40(5): 998−1006. doi: 10.11720/wtyht.2016.5.25
[14] 何红蓼, 李冰, 韩丽荣, 等. 封闭压力酸溶-ICP-MS法分析地质样品中47个元素的评价[J]. 分析试验室, 2002, 21(5): 8−12. doi: 10.13595/j.cnki.issn1000-0720.2002.0132
He H L, Li B, Han L R, et al. Evaluation of the closed-vessel pressure acid dissolution-ICP-MS method for the determination of 47 elements in geological samples[J]. Chinese Journal of Analysis Laboratory, 2002, 21(5): 8−12. doi: 10.13595/j.cnki.issn1000-0720.2002.0132
[15] 冯俊, 王银剑, 段文, 等. 电感耦合等离子体质谱(ICP-MS)法测定地质样品中镉、铬、钨、钽和铌[J]. 中国无机分析化学, 2024, 14(5): 586−592. doi: 10.3969/j.issn.2095-1035.2024.05.010
Feng J, Wang Y J, Duan W, et al. Determination of cadmium, chromium, tungsten, tantalum and niobium in geological samples by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2024, 14(5): 586−592. doi: 10.3969/j.issn.2095-1035.2024.05.010
[16] 王佳翰, 李正鹤, 杨峰, 等. 碱熔-电感耦合等离子体原子发射光谱法测定海洋沉积物中铝铁锰钛[J]. 冶金分析, 2021, 41(3): 68−74. doi: 10.13228/j.boyuan.issn1000-7571.011185
Wang J H, Li Z H, Yang F, et al. Determination of aluminum, iron, manganese, and titanium in marine sediment by alkali fusion-inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2021, 41(3): 68−74. doi: 10.13228/j.boyuan.issn1000-7571.011185
[17] 曹宁宁, 张兆鑫, 李佳昊, 等. 碱熔-电感耦合等离子体发射光谱(ICP-OES)法同时测定土壤中4种金属元素[J]. 中国无机分析化学, 2024, 14(5): 593−599. doi: 10.3969/j.issn.2095-1035.2024.05.011
Cao N N, Zhang Z X, Li J H, et al. Simultaneous determination of four metal elements in soil by inductively coupled plasma emission spectrometry (ICP-OES) with alkali melting[J]. Chinese Journal of Inorganic Analytical Chemistry, 2024, 14(5): 593−599. doi: 10.3969/j.issn.2095-1035.2024.05.011
[18] 席秀丽, 王生进, 高艳敏, 等. 偏硼酸锂-四硼酸锂熔融-电感耦合等离子体原子发射光谱法测定土壤中14种成分[J]. 冶金分析, 2024, 44(4): 65−72. doi: 10.13228/j.boyuan.issn1000-7571.012320
Xi X L, Wang S J, Gao Y M, et al. Determination of 14 components in soil by lithium metaborate-tetraborate fusion-inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2024, 44(4): 65−72. doi: 10.13228/j.boyuan.issn1000-7571.012320
[19] 滕广清, 张改梅, 鲍希波. 四硼酸锂-偏硼酸锂熔融-重铬酸钾滴定法测定铁矿石中全铁[J]. 冶金分析, 2023(9): 76−80. doi: 10.13228/j.boyuan.issn1000-7571.012074
Teng G Q, Zhang G M, Bao X B. Determination of total iron in iron ore by lithium tetraborate-lithium metaborate fusion and potassium dichromate titration method[J]. Metallurgical Analysis, 2023(9): 76−80. doi: 10.13228/j.boyuan.issn1000-7571.012074
[20] Chojnacka K, Samoraj M, Tuhy Ł, et al. Using XRF and ICP-OES in biosorption studies[J]. Molecules, 2018, 23(8): 2076. doi: 10.3390/molecules23082076
[21] Khan S R, Sharma B, Chawla P A, et al. Inductively coupled plasma optical emission spectrometry (ICP-OES): A powerful analytical technique for elemental analysis[J]. Food Analytical Methods, 2022: 1−23.
[22] Morrison C, Sun H, Yao Y, et al. Methods for the ICP-OES analysis of semiconductor materials[J]. Chemistry of Materials, 2020, 32(5): 1760−1768. doi: 10.1021/acs.chemmater.0c00255
[23] Shishov A, Savinov S, Volodina N, et al. Deep eutectic solvent-based extraction of metals from oil samples for elemental analysis by ICP-OES[J]. Microchemical Journal, 2022, 179: 107456. doi: 10.1016/j.microc.2022.107456
[24] Al-Juhaimi F, Kulluk D A, Mohamed Ahmed I A, et al. Quantitative determination of macro and micro elements and heavy metals accumulated in wild fruits analyzed by ICP-OES method[J]. Environmental Monitoring and Assessment, 2023, 195(11): 1370. doi: 10.1007/s10661-023-12025-8
[25] 李亚楠. 应用ICP-OES法测定矿区土壤中有价稀土元素含量[J]. 矿产勘查, 2024, 15(7): 1245−1253. doi: 10.20008/j.kckc.202407012
Li Y N. Application of ICP-OES method to determine the content of valuable rare earth elements in soil of mining areas[J]. Mineral Exploration, 2024, 15(7): 1245−1253. doi: 10.20008/j.kckc.202407012
[26] 黄超冠, 蒙义舒, 郭焕花, 等. 过氧化钠碱熔-电感耦合等离子体发射光谱法测定钛铝合金中的铬铁钼硅[J]. 岩矿测试, 2018, 37(1): 30−35. doi: 10.15898/j.cnki.11-2131/td.201704240065
Huang C G, Meng Y S, Guo H H, et al. Determination of chromium, iron, molybdenum, and silicon in Ti-Al alloy by inductively coupled plasma-optical emission spectrometry with sodium peroxide alkali fusion[J]. Rock and Mineral Analysis, 2018, 37(1): 30−35. doi: 10.15898/j.cnki.11-2131/td.201704240065
[27] 李正鹤, 黄金松, 王佳翰. 工作碱熔-电感耦合等离子体质谱法测定海洋沉积物中的稀土元素[J]. 化学世界, 2021, 62(11): 660−666. doi: 10.19500/j.cnki.0367-6358.20200701
Li Z H, Huang J S, Wang J H. Determination of rare earth elements in marine sediments by alkaline fusion inductively coupled plasma mass spectrometry[J]. Chemical World, 2021, 62(11): 660−666. doi: 10.19500/j.cnki.0367-6358.20200701
[28] 王佳翰, 李正鹤, 杨峰, 等. 偏硼酸锂碱熔-电感耦合等离子体质谱法同时测定海洋沉积物中48种元素[J]. 岩矿测试, 2021, 40(2): 306−315. doi: 10.15898/j.cnki.11-2131/td.202006050085
Wang J H, Li Z H, Yang F, et al. Simultaneous determination of 48 elements in marine sediments by ICP-MS with lithium metaborate fusion[J]. Rock and Mineral Analysis, 2021, 40(2): 306−315. doi: 10.15898/j.cnki.11-2131/td.202006050085
[29] 聂富强, 杜丽丽, 李景滨, 等. 碱熔-电感耦合等离子体发射光谱法(ICP-OES)测定高碳高硅钢中的硅含量[J]. 中国无机分析化学, 2015, 5(4): 74−78. doi: 10.3969/j.issn.2095-1035.2015.04.017
Nie F Q, Du L L, Li J B, et al. Determination of silicon content in high carbon and high silicon steel by inductively coupled plasma optical emission spectrometry with sodium peroxide fusion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(4): 74−78. doi: 10.3969/j.issn.2095-1035.2015.04.017
[30] 杨林, 邹国庆, 周武权, 等. 碱熔-电感耦合等离子体发射光谱(ICP-OES)法测定钨锡矿石中钨锡钼铜铅锌硫砷[J]. 中国无机分析化学, 2023, 13(11): 1191−1196. doi: 10.3969/j.issn.2095-1035.2023.11.005
Yang L, Zou G Q, Zhou W Q, et al. Determination of W, Sn, Mo, Cu, Pb, Zn, S, and As in tungsten-tin ore by inductively coupled plasma optical emission spectrometry with alkali fusion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(11): 1191−1196. doi: 10.3969/j.issn.2095-1035.2023.11.005
-