Interference of the Spectral Line Mζ in the M Energy Level Series of Ce on the F Element Kα Peak in Monazite Samples
-
摘要:
超轻元素氟(F)的定量分析一直是电子探针(EPMA)矿物分析的难点之一,高分辨定性分析、主量元素谱线干扰峰扣除是F元素准确定量分析的前提。本文以独居石样品中F元素(F含量很低甚至接近0)为研究对象,通过与磷灰石、InP、CeAl2、LaF3标准样品的高分辨定性分析谱图比较、分析,结果表明高含量P元素的Kα三阶线不会对F元素的Kα峰产生干扰,但Ce元素的M能级谱线Mζ会对F元素的Kα峰产生干扰,Ce元素含量高的独居石需要通过干扰峰扣除进行F元素的准确定量分析;稀土元素的M能级谱线Mα、 Mβ、Mζ对超轻元素谱峰的干扰需要引起重视,通过定性分析谱图进行必要的干扰峰修正。
Abstract:Quantitative analysis of the ultra-light element fluorine (F) has always been one of the difficulties in electron probe microanalysis (EPMA). High-resolution qualitative analysis and proper subtraction of spectral interferences from major elements are prerequisites for accurate F quantification. This study focuses on F in monazite samples with very low F content or even close to 0. Through comparison and analysis of high-resolution qualitative analysis spectra with apatite, InP, CeAl2, and LaF3 samples, it is found that the third-order line of high-content P Kα does not interfere with the F Kα peak, but the spectral line Mζ of the M energy level series of Ce interferes with the F Kα peak. Monazite with high Ce content needs accurate quantitative analysis of F through interference peak subtraction. The interference of the M-level spectral lines (including Mα, Mβ, Mζ) of rare earth elements on ultra-light element peaks needs to be taken seriously, and the necessary interference correction should be made through qualitative analysis of the spectra.
-
Key words:
- electron probe microanalysis /
- qualitative analysis /
- monazite /
- apatite /
- interference peak subtraction
-
-
表 1
$ \mathbf{F\ }\mathbf{K}_{\text{α }} $ 、$ \mathbf{P}\mathbf{\ K}_{\text{α }\left(3\right)} $ 、$ \mathbf{C}\mathbf{e}\mathbf{\ M}_{\text{ζ }} $ 的波长$ \left(\mathit{\lambda }\right) $ 和LDE1和TAP两种分光晶体对应的L值Table 1. The wavelength
$ \left(\lambda \right) $ of$ \mathrm{F}\mathrm{\ K}_{\text{α}} $ ,$ \mathrm{P\ }\mathrm{K}_{\text{α}\left(3\right)} $ , and$ \mathrm{C}\mathrm{e}\mathrm{\ M}_{\text{ζ }} $ and L values corresponding to LDE1 and TAP crystals.三阶线 $ \lambda\mathrm{\ \left(nm\right)} $ $ L=\dfrac{R}{d}n\lambda\ \left(\mathrm{m}\mathrm{m}\right) $ LDE1 TAP $ \mathrm{F}\mathrm{\ K}_{\text{α}} $ 1.832 85.493 199.154 $ \mathrm{P\ }\mathrm{K}_{\text{α}\; \left(3\right)} $ 0.6158 $ \approx $ 1.832÷386.212 200.828 $ \mathrm{C}\mathrm{e}\mathrm{\ M}_{\text{ζ }} $ 1.835 85.633 199.48 表 2 本文实验样品中F、P、Ce三种元素的质量浓度
Table 2. Mass concentrations of elements F, P, and Ce in the experimental samples used in this paper.
实验样品 元素F含量(%) 元素P含量(%) 元素Ce含量(%) 化学成分特点 独居石 很少或接近0 13.14 29.56 含Ce、P、低F InP 0 21.17 0 含P、不含F、Ce 磷灰石 3.70 16.47 0.75 含F、Ce、P CeAl2 0 0 72.23 含Ce,不含F、P LaF3 29.51 0 0 含F,不含Ce、P 表 3 独居石定量分析条件
Table 3. Quantitative analysis conditions of monazite
元素 分光晶体 峰位计数时间(s) 背景计数时间(s) 标准样品 标准样品来源 谱线 U PETJ 10 5 沥青铀矿 国家标准物质 Mα Th PETJ 10 5 Th SPI Mα Ca PETJ 10 5 磷灰石 SPI Kα La PETJ 10 5 独居石 SPI Lα Ce PETJ 10 5 独居石 SPI Lα Si TAP 10 5 石英 SPI Kα Gd LIFH 10 5 Gd SPI Lβ Dy LIFH 10 5 独居石 SPI Lα Sm LIFH 10 5 独居石 SPI Lα Pr LIFH 10 5 PrF3 SPI Lβ Nd LIFH 10 5 独居石 SPI Lα F LDE1 10 5 磷灰石 SPI Kα Pb PETH 10 5 方铅矿 SPI Mα P PETH 10 5 磷灰石 SPI Kα Y PETH 10 5 Y SPI Lα 表 4 扣除
$ \mathbf{C}\mathbf{e}\mathbf{\ M}_{\text{ζ }} $ 峰对$ \mathbf{F}\mathbf{\ K}_{\text{α }} $ 的干扰前后的独居石定量分析结果Table 4. Quantitative analysis results of monazite before and after removing the interference of
$ \mathrm{C}\mathrm{e}\;{\mathrm{M}}_{\text{ζ }} $ peak on$ {\mathrm{F}\;\mathrm{K}}_{\text{α}} $ .元素
Element扣除Ce干扰前含量 扣除Ce干扰后含量 Mass(%) Cation Mass(%) Cation P2O5 26.84 5.53 26.85 5.53 Ce2O3 24.85 2.21 24.87 2.21 ThO2 11.98 0.66 11.98 0.66 Nd2O3 11.03 0.96 11.03 0.96 La2O3 9.72 0.87 9.71 0.87 Sm2O3 3.31 0.28 3.31 0.28 Pr2O3 2.82 0.25 2.81 0.25 Gd2O3 2.59 0.21 2.59 0.21 Y2O3 2.09 0.27 2.09 0.27 SiO2 1.8 0.44 1.8 0.44 Dy2O3 0.91 0.07 0.91 0.07 CaO 0.89 0.23 0.89 0.23 F 0.55 0.42 0.01 0.01 =O −0.23 — −0.01 — UO2 0.52 0.03 0.52 0.03 PbO 0.30 0.02 0.30 0.02 Total 99.96 12.44 99.66 12.04 注:“—”无此数据。 -
[1] 吕华华, 石学法, 杨刚, 等. 大洋沉积物中独居石的矿物成分[J]. 矿物学报, 2015(35): 775.
Lyu H H, Shi X F, Yang G, et al. Mineral composition of monazite in oceanic sediments[J]. Journal of Mineralogy, 2015(35): 775.
[2] 张苏江, 张立伟, 张彦文, 等. 国内外稀土矿产资源及其分布概述[J]. 无机盐工业, 2020, 52(1): 9−16. doi: 10.11962/1006-4990.2019-0578
Zhang S J, Zhang L W, Zhang Y W, et al. Summarize on rare earth mineral resources and their distribution at home and abroad[J]. Inorganic Chemicals Industry, 2020, 52(1): 9−16. doi: 10.11962/1006-4990.2019-0578
[3] Chen N S, Sun M, Wang Q Y, et al. EMP chemical ages of monazites from central zone of the eastern Kunlun Orogen: Records of multi-tectonometamorphic events[J]. Chinese Science Bulletin, 2007, 52(16): 2252−2263. doi: 10.1007/s11434-007-0299-5
[4] Suzuki K, Adachi M. Precambrian provenance and Silurian metamorphism of the Tsubonosawa paragneiss in the South Kitakami terrane, Northeast Japan, revealed by the chemical Th-U-total Pb isochron ages of monazite, zircon and xenotime[J]. Geochemical Journal, 2008, 25(5): 357−376. doi: 10.2343/geochemj.25.357
[5] 周剑雄, 陈振宇, 芮宗瑶. 独居石的电子探针钍-铀-铅化学测年[J]. 岩矿测试, 2002, 21(4): 241−246. doi: 10.3969/j.issn.0254-5357.2002.04.001
Zhou J X, Chen Z Y, Rui Z Y. Th-U-Pb chemical dating of monazite by electron probe[J]. Rock and Mineral Analysis, 2002, 21(4): 241−246. doi: 10.3969/j.issn.0254-5357.2002.04.001
[6] 张龙, 陈振宇, 汪方跃, 等. 电子探针技术研究粤北龙华山岩体中独居石蚀变晕圈的结构与成分特征[J]. 岩矿测试, 2022, 41(2): 174−184. doi: 10.15898/j.cnki.11-2131/td.202109070118
Zhang L, Chen Z Y, Wang F Y, et al. Application of electron probe microanalyzer to study the textures and compositions of alteration coronas of monazite from the Longhuashan granite, northern Guangdong Province[J]. Rock and Mineral Analysis, 2022, 41(2): 174−184. doi: 10.15898/j.cnki.11-2131/td.202109070118
[7] 杨世平, 杨细华, 李安邦, 等. 电子探针技术研究大别造山带富硫独居石地球化学特征及稀土矿化成因[J]. 岩矿测试, 2022, 41(4): 541−553. doi: 10.15898/j.cnki.11-2131/td.202110240154
Yang S P, Yang X H, Li A B, et al. Study on geochemical characteristics and REE mineralization of S-enriched monazite in the Dabie orogenic belt by electron probe microanalysis[J]. Rock and Mineral Analysis, 2022, 41(4): 541−553. doi: 10.15898/j.cnki.11-2131/td.202110240154
[8] 陈益平, 潘家永, 胡凯, 等. 贵州遵义镍-钼富集层中独居石的发现及成因意义[J]. 岩石矿物学杂志, 2007, 26(4): 340−344. doi: 10.3969/j.issn.1000-6524.2007.04.007
Chen Y P, Pan J Y, Hu K, et al. Discovery of monazite in the Ni-Mo sulfide layer of Zunyi, Guizhou Province, and its genetic significance[J]. Acta Petrologica et Mineralogica, 2007, 26(4): 340−344. doi: 10.3969/j.issn.1000-6524.2007.04.007
[9] 胡欢, 王汝成, 谢磊, 等. 基于大罗兰圆(R=140mm)大分光晶体的SPI独居石标样化学成分精准测定[J]. 高校地质学报, 2021, 27(3): 317−326. doi: 10.16108/j.issn1006-7493.2021036
Hu H, Wang R C, Xie L, et al. High precision analysis of chemical composition of SPI monazite standard on large spectrometer of 140mm Rowland circle[J]. Geological Journal of China Universities, 2021, 27(3): 317−326. doi: 10.16108/j.issn1006-7493.2021036
[10] 张晓峰, 胡晋生, 李明, 等. ZAF定量碳元素时K因子测量的要点解析[J]. 冶金分析, 2024, 44(9): 72−76. doi: 10.13228/j.boyuan.issn1000-7571.012466
Zhang X F, Hu J S, Li M, et al. Analysis on key points for K factor measurement during quantification of carbon by ZAF[J]. Metallurgical Analysis, 2024, 44(9): 72−76. doi: 10.13228/j.boyuan.issn1000-7571.012466
[11] 王娟, 陈意, 毛骞, 等. 金红石微量元素电子探针分析[J]. 岩石学报, 2017, 33(6): 1934−1946.
Wang J, Chen Y, Mao Q, et al. Electron microprobe trace element analysis of rutile[J]. Acta Petrologica Sinica, 2017, 33(6): 1934−1946.
[12] 李小犁. 电子探针微量元素分析的一些思考[J]. 高校地质学报, 2021, 27(3): 306−316. doi: 10.16108/j.issn1006-7493.2021034
Li X L. Several perspectives on microprobe trace elements analysis[J]. Geological Journal of China Universities, 2021, 27(3): 306−316. doi: 10.16108/j.issn1006-7493.2021034
[13] 张文兰, 胡欢, 刘鹏, 等. 重稀土-钒-铝硅酸盐矿物电子探针定量分析[J]. 岩矿测试, 2022, 41(5): 754−763. doi: 10.15898/j.cnki.11-2131/td.202110250155
Zhang W L, Hu H, Liu P, et al. Electron probe quantitative analysis of HREE-V-aluminosilicate minerals[J]. Rock and Mineral Analysis, 2022, 41(5): 754−763. doi: 10.15898/j.cnki.11-2131/td.202110250155
[14] Schulz B, Krause J, Dörr W. A protocol for electron probe microanalysis (EPMA) of monazite for chemical Th-U-Pb age dating[J]. Minerals, 2024, 14(8): 817. doi: 10.3390/min14080817
-