中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

GA-BP神经网络在精准刻画场地地下水污染物扩散范围的应用研究

季佳运, 肖霄, 杨品璐, 刘洋, 周亚红. GA-BP神经网络在精准刻画场地地下水污染物扩散范围的应用研究[J]. 岩矿测试, 2025, 44(3): 406-419. doi: 10.15898/j.ykcs.202409280204
引用本文: 季佳运, 肖霄, 杨品璐, 刘洋, 周亚红. GA-BP神经网络在精准刻画场地地下水污染物扩散范围的应用研究[J]. 岩矿测试, 2025, 44(3): 406-419. doi: 10.15898/j.ykcs.202409280204
JI Jiayun, XIAO Xiao, YANG Pinlu, LIU Yang, ZHOU Yahong. Application of a GA-BP Neural Network in Accurately Characterizing the Diffusion Range of Groundwater Pollutants[J]. Rock and Mineral Analysis, 2025, 44(3): 406-419. doi: 10.15898/j.ykcs.202409280204
Citation: JI Jiayun, XIAO Xiao, YANG Pinlu, LIU Yang, ZHOU Yahong. Application of a GA-BP Neural Network in Accurately Characterizing the Diffusion Range of Groundwater Pollutants[J]. Rock and Mineral Analysis, 2025, 44(3): 406-419. doi: 10.15898/j.ykcs.202409280204

GA-BP神经网络在精准刻画场地地下水污染物扩散范围的应用研究

  • 基金项目: 河北省省级科技计划项目(236Z4204G);河北省自然科学基金项目(D2022403016);河北省教育厅科学研究项目(ZD2022119);河北地质大学第二十届学生科研项目(KAG202402)
详细信息
    作者简介: 季佳运,硕士,主要从事污染场地自然衰减方向的研究。E-mail:17805215951@163.com
    通讯作者: 周亚红,博士,副教授,主要从事地下水污染及治理研究。E-mail:zhyh327@163.com
  • 中图分类号: X523

Application of a GA-BP Neural Network in Accurately Characterizing the Diffusion Range of Groundwater Pollutants

More Information
  • 自2021年最新生态环境损害鉴定评估指南发布实施以来,对地下水中污染物(如铬、铅、铁、锰等污染物)的扩散范围刻画的精度要求越来越高。受研究区场地条件限制,采样点无法完全分布均匀,现有插值方法难以解决采样点分布不均而导致扩散范围刻画不准确的问题。本文通过ArcGIS空间插值图展示某化工园区地下水溶质的空间分布,发现Mn2+离子分布与其形成机制规律相差较大,且尝试使用GIS多种插值方法(如克里金法、反距离权重法、样条函数等插值方法)效果均不理想,其扩散方向与研究区地下水流向及形成机理不符,可能是由于其监测点位分布不均。因此以重金属Mn2+为例,使用GA-BP神经网络与标准BP神经网络对园区各点位Mn2+浓度进行回归预测,建立其浓度与空间分布的神经网络模型,选取拟合程度较好的神经网络模型对监测点位缺失区域进行浓度预测,并结合空间插值圈定化工园区中心Mn2+的扩散范围,同时用Mn2+的产生机制对扩散范围进行验证。结果表明:GA-BP神经网络的Mn2+浓度预测效果最好,使用其补充监测点缺失位置的Mn2+浓度并重新绘制Mn2+浓度分布图,新Mn2+分布图显示化工园区中心Mn2+扩散范围为1.70×106m2,超出化工园区面积为2.13×105m2。与优化前的扩散范围相比,校正后的扩散范围符合Mn2+产生和运移规律。GA-BP神经网络对场地地下水污染物扩散范围的精确圈定有较好的辅助效果,可为环境污染评估提供更加科学有效的方法支持。

  • 加载中
  • 图 1  GA-BP神经网络拓扑图

    Figure 1. 

    图 2  Mn2+浓度空间分布图

    Figure 2. 

    图 3  各监测井有机指标极坐标热力图

    Figure 3. 

    图 4  四种典型有机指标空间分布图

    Figure 4. 

    图 5  神经网络拟合效果

    Figure 5. 

    图 6  预测效果对比:(a)锰浓度;(b)预测误差

    Figure 6. 

    图 7  校正后Mn2+点位分布图

    Figure 7. 

    图 8  石油类浓度分布图

    Figure 8. 

    图 9  硝酸根(a)和Mn2+(b)浓度分布图

    Figure 9. 

    表 1  地下水样品分析测试方法

    Table 1.  Analysis methods for groundwater sample

    检测项目
    Analytical items
    分析测试方法
    Analysis methods
    方法检出限
    Method detection limit
    硝酸盐 Nitrate 离子色谱法
    Ion chromatography
    0.004mg/L
    锰 Manganese 电感耦合等离子体质谱法
    Inductively coupled plasma mass spectrometer
    0.00012mg/L
    石油类 Oil 红外分光光度法
    Infrared spectrophotometry
    0.06mg/L
    石油烃(C10~C40)
    Petroleum hydrocarbons ( C10~C40 )
    气相色谱法
    Gas chromatography
    0.004mg/L
    丙酮 Acetone 气相色谱法
    Gas chromatography
    0.2mg/L
    4-硝基苯胺 4-Nitroaniline 气相色谱-质谱法
    Gas chromatography-mass spectrometry
    4.6μg/L
    苯酚 Phenol 气相色谱-质谱法
    Gas chromatography-mass spectrometry
    0.1μg/L
    甲苯 Toluene 气相色谱-质谱法
    Gas chromatography-mass spectrometry
    0.3μg/L
    乙苯 Ethylbenzene 气相色谱-质谱法
    Gas chromatography-mass spectrometry
    1.2μg/L
    间二甲苯+对二甲苯 m-Xylene+p-Xylene 气相色谱-质谱法
    Gas chromatography-mass spectrometry
    1.2μg/L
    邻二甲苯 o-Xylene 气相色谱-质谱法
    Gas chromatography-mass spectrometry
    1.2μg/L
    下载: 导出CSV

    表 2  研究区监测数据

    Table 2.  Monitoring data of the study area

    点位
    Point positions

    Manganese
    (mg/L)
    苯酚
    Phenol
    (µg/L)
    丙酮
    Acetone
    (µg/L)
    硝基苯
    Nitrobenzene
    (µg/L)
    4-硝基苯胺
    4-Nitroaniline
    (µg/L)
    石油烃(C10~C40)
    Petroleum
    hydrocarbons
    (C10-C40)
    (mg/L)
    石油类
    Oil
    (mg/L)
    甲苯
    Toluene
    (µg/L)
    乙苯
    Ethylbenzene
    (µg/L)
    间-二甲苯+
    对-二甲苯
    m-Xylene+
    p-Xylene
    (µg/L)
    邻-二甲苯
    o-Xylene
    (µg/L)
    M01 0.184 0.3 0.24 0.45
    M02 0.18 0.2 2.37 0.29 2.4
    M03 0.768 0.1 5.46 0.98 0.4 1.3 0.6
    M04 0.031 1.1 0.00864 39.7 34.8 1.64 18.2 0.4 1.2 0.4
    M05 0.0658 0.00552 6.3 0.62 0.11 2.3
    M06 0.0452 0.14 0.11
    M07 0.0752 2.78 0.17 1
    M08 0.182 0.4 23.5 2.52
    M09 0.0024 0.55 0.17
    M10 0.18 0.5 27.6 2.95
    M11 0.194 58 8.95 8.98
    M12 0.0018 0.02 0.03
    注:“—”表示未检出。
    下载: 导出CSV

    表 3  隐含层节点的确定过程

    Table 3.  Determination process of hidden layer nodes

    隐藏层节点
    Hidden layer node
    训练集的均方误差
    Mean square error of training set
    隐藏层节点
    Hidden layer node
    训练集的均方误差
    Mean square error of training set
    2 0.12601 8 0.67715
    3 0.27314 9 0.32133
    4 0.11288 10 0.2487
    5 0.20273 11 0.06521
    6 0.031883 12 2.0155
    7 0.069991
    下载: 导出CSV

    表 4  GA-BP、BP神经网络预测结果与误差

    Table 4.  Prediction results and errors of GA-BP and BP neural network

    样本序号
    Sample serial number
    Mn2+实测值
    Mn2+ measured value (mg/L)
    BP
    预测值
    (mg/L)
    GA-BP
    预测值
    (mg/L)
    BP误差
    (mg/L)
    GA-BP
    误差
    (mg/L)
    1 0.1800 −0.1366 0.1849 −0.3166 0.0049
    2 0.1940 −0.1669 0.1876 −0.3609 −0.0064
    3 0.0018 −0.1581 0.0057 −0.1599 0.0039
    下载: 导出CSV

    表 5  BP神经网络误差

    Table 5.  Error of BP neural network

    BP神经网络种类
    Error in types of BP neural network
    误差
    mae mse rmse mape
    标准的BP神经网络模型
    Standard BP neural network model
    0.279 0.085 0.292 3082.097%
    遗传算法优化的BP神经网络模型
    Genetic algorithm optimized BP
    neural network
    0.005 2.694×106 0.005 75.066%
    下载: 导出CSV
  • [1]

    Gao Y, Qian H, Ren W, et al. Hydrogeochemical characterization and quality assessment of ground-water based on integrated-weight water quality index in a concentrated urban area[J]. Journal of Cleaner Production, 2020, 260: 121006. doi: 10.1016/j.jclepro.2020.121006

    [2]

    张保会, 王林芳, 郭宏, 等. 我国污染场地修复决策系统研究进展[J]. 环境与可持续发展, 2021, 46(2): 138−143. doi: 10.19758/j.cnki.issn1673-288x.202102138

    Zhang B H, Wang L F, Guo H, et al. Research progress of decision-making system for remediation of contaminated sites in China[J]. Environment and Sustainable Development, 2021, 46(2): 138−143. doi: 10.19758/j.cnki.issn1673-288x.202102138

    [3]

    陈卫平, 谢天, 李笑诺, 等. 欧美发达国家场地土壤污染防治技术体系概述[J]. 土壤学报, 2018, 55(3): 527−542. doi: 10.11766/trxb201712130487

    Chen W P, Xie T, Li X N, et al. Generalization of technical systems for soil pollution prevention and control in developed countries[J]. Acta Pedologica Sinica, 2018, 55(3): 527−542. doi: 10.11766/trxb201712130487

    [4]

    陈吉吉, 陶蕾, 刘保献, 等. 北京市平原区地下水铁锰分布特征及成因分析[J]. 水文地质工程地质, 2024, 51(6): 198−207. doi: 10.16030/j.cnki.issn.1000-3665.202311051

    Chen J J, Tao L, Liu B X, et al. Distribution characteristics and genesis analysis of groundwater iron and manganese in Beijing plain area[J]. Hydrogeological Engineering Geology, 2024, 51(6): 198−207. doi: 10.16030/j.cnki.issn.1000-3665.202311051

    [5]

    Jiang W J, Sheng Y Z, Wang G C, et al. Cl, Br, B, Li, and noble gases isotopes to study the origin and evolution of deep groundwater in sedimentary basins, a review[J]. Environmental Chemistry Letters, 2022, 20: 1497−1528. doi: 10.1007/s10311-021-01371-z

    [6]

    於方, 赵丹, 王膑, 等. 《生态环境损害鉴定评估技术指南土壤与地下水》解读[J]. 环境保护, 2019, 47(5): 19−23. doi: 10.14026/j.cnki.0253-9705.2019.05.004

    Yu F, Zhao D, Wang B, et al. Interpretation of technical guidelines for identification and assessment of eco-environmental damage to soil and groundwater[J]. Environmental Protection, 2019, 47(5): 19−23. doi: 10.14026/j.cnki.0253-9705.2019.05.004

    [7]

    刘宏伟. 中宁石空工业园区地下水锰污染评价及其水环境影响预测研究[D]. 西安: 长安大学, 2013.

    Liu H W. Evaluation of groundwater manganese pollution and prediction of water environment impact in Zhongning Shikong industrial park [D]. Xi’an: Chang’an University, 2013.

    [8]

    Jiang W J, Meng L S, Liu F T, et al. Distribution, source investigation, and risk assessment of topsoil heavy metals in areas with intensive anthropogenic activities using the positive matrix factorization (PMF) model coupled with self-organizing map (SOM)[J]. Environmental Geochemistry and Health, 2023, 45: 6353−6370. doi: 10.1007/s10653-023-01587-8

    [9]

    李元杰, 王森杰, 张敏, 等. 土壤和地下水污染的监控自然衰减修复技术研究进展[J]. 中国环境科学, 2018, 38(3): 1185−1193. doi: 10.19674/j.cnki.issn1000-6923.2018.0141

    Li Y J, Wang S J, Zhang M, et al. Research progress of monitored natural attenuation remediation technology for soil and groundwater pollution[J]. China Environmental Science, 2018, 38(3): 1185−1193. doi: 10.19674/j.cnki.issn1000-6923.2018.0141

    [10]

    王兴, 刘莹, 王春晖, 等. 海洋盐度分布的插值方法应用与对比研究[J]. 海洋通报, 2016, 35(3): 324−330. doi: 10.11840/j.issn.1001-6392.2016.03.011

    Wang X, Liu Y, Wang C H, et al. Application and comparative study of interpolation methods for ocean salinity distribution[J]. Ocean Bulletin, 2016, 35(3): 324−330. doi: 10.11840/j.issn.1001-6392.2016.03.011

    [11]

    Mohammed A, Paraskevas T, Gaetano P, et al. Application of multiple spatial interpolation approaches to annual rainfall data in the Wadi Cheliff Basin (North Algeria)[J]. Ain Shams Engineering Journal, 2024, 15(3): 10257. doi: 10.1016/j.asej.2023.102578

    [12]

    段宁, 杨思言, 魏婉婷. 基于BP神经网络的铅酸蓄电池厂地下水重金属浓度预测[J]. 环境科学与技术, 2016, 39(1): 194−198. doi: 10.3969/j.issn.1003-6504.2016.01.031

    Duan N, Yang S Y, Wei W T. Prediction of heavy metal concentrations of the groundwater from a lead-acid battery factory based on BP neural network[J]. Environmental Science & Technology, 2016, 39(1): 194−198. doi: 10.3969/j.issn.1003-6504.2016.01.031

    [13]

    刘伟韬, 李蓓蓓, 杜衍辉, 等. 基于改进的SSA-BP神经网络的矿井突水水源识别模型研究[J]. 工矿自动化, 2024, 50(2): 98−105, 115. doi: 10.13272/j.issn.1671-251x.2023070101

    Liu W T, Li B B, Du Y H, et al. Research on the recognition model of mine water inrush source based on improved SSA-BP neural network[J]. Industry and Mine Automation, 2024, 50(2): 98−105, 115. doi: 10.13272/j.issn.1671-251x.2023070101

    [14]

    Robertson B, Dam-Bates V P, Gansell O. Halton iterative partitioning master frames[J]. Environmental and Ecological Statistics, 2021, 29(1): 1−22. doi: 10.1007/s10651-020-00481-1

    [15]

    李海斌. 基于遗传算法的BP神经网络在柴油机故障诊断中的应用[J]. 科技视界, 2014, 2(13): 206, 211. doi: 10.19694/j.cnki.issn2095-2457.2014.13.148

    Li H B. Application of BP neural network based on genetic algorithm in diesel engine fault diagnosis[J]. Science & Technology Vision, 2014, 2(13): 206, 211. doi: 10.19694/j.cnki.issn2095-2457.2014.13.148

    [16]

    王玉雯, 陈颖辉, 师庭飞. 改进的BP网络在深基坑变形预报中的应用[J]. 科学技术与工程, 2010, 10(15): 3791−3794. doi: 10.3969/j.issn.1671-1815.2010.15.057

    Wang Y W, Chen Y H, Shi T F. Application of improved BP network in deformation prediction of deep foundation pit[J]. Science, Technology and Engineering, 2010, 10(15): 3791−3794. doi: 10.3969/j.issn.1671-1815.2010.15.057

    [17]

    徐杰, 但斌斌, 容芷君, 等. BP神经网络在铁液预处理脱硫率预测中的应用[J]. 铸造技术, 2017, 38(9): 2183−2187, 2192. doi: 10.16410/j.issn1000-8365.2017.09.033

    Xu J, Dan B B, Rong Z J, et al. Application of BP neural network in prediction of desulfurization rate of molten iron pretreatment[J]. Casting Technology, 2017, 38(9): 2183−2187, 2192. doi: 10.16410/j.issn1000-8365.2017.09.033

    [18]

    杨帆. 基于BP神经网络的CO2通量预测模型研究[D]. 哈尔滨: 东北林业大学, 2017.

    Yang F. Research on CO2 flux prediction model based on BP neural network [D]. Harbin: Northeast Forestry University, 2017.

    [19]

    孙卫鹏, 徐合力, 高岚. 基于GA-BP的船舶同步发电机定转子绕组匝间短路故障诊断研究[J]. 中国修船, 2020, 33(4): 48−54. doi: 10.13352/j.issn.1001-8328.2020.04.013

    Sun W P, Xu H L, Gao L. Research on fault diagnosis of inter-turn short circuit of stator and rotor windings of ship synchronous generator based on GA-BP[J]. China Ship Repair, 2020, 33(4): 48−54. doi: 10.13352/j.issn.1001-8328.2020.04.013

    [20]

    王嵘冰, 徐红艳, 李波, 等. BP神经网络隐含层节点数确定方法研究[J]. 计算机技术与发展, 2018, 28(4): 31−35. doi: 10.3969/j.issn.1673-629X.2018.04.007

    Wang R B, Xu H Y, Li B, et al. Research on the determination method of hidden layer nodes in BP neural network[J]. Computer Technology and Development, 2018, 28(4): 31−35. doi: 10.3969/j.issn.1673-629X.2018.04.007

    [21]

    陈克根. 统计机器学习中的过拟合问题[J]. 文渊(中学版), 2019(11): 755. doi: 10.12252/j.issn.2096-627X.2019.11.1103

    Chen K G. Overfitting problem in statistical machine learning[J]. Wen Yuan (Middle School Edition), 2019(11): 755. doi: 10.12252/j.issn.2096-627X.2019.11.1103

    [22]

    王蒙. 机器学习中样本筛选方法的研究与应用[D]. 成都: 电子科技大学, 2017.

    Wang M. Research and application of sample screening methods in machine learning [D]. Chengdu: University of Electronic Science and Technology of China, 2017.

    [23]

    Zheng Z X, Zhang Y L, Su X S, et al. Responses of hydrochemical parameters, community structures, and microbial activities to the natural biodegradation of petroleum hydrocarbons in a groundwater-soil environment[J]. Environmental Earth Sciences, 2016, 75(21): 1. doi: 10.1007/s12665-016-6193-1

    [24]

    Klinchuch L, Delfino T. Reductive dissolution and preci-pitation of manganese due to biodegradation of petroleum hydrocarbons[J]. Environmental Geosciences, 2000, 7(4): 211−212. doi: 10.1046/j.1526-0984.2000.74002-12.x

    [25]

    Ning Z, Zhang M, He Z, et al. Spatial pattern of bacterial community diversity formed in different groundwater field corresponding to electron donors and acceptors distributions at a petroleum-contaminated site[J]. Water, 2018, 10(7): 842. doi: 10.3390/w10070842

    [26]

    温晶. 石油污染含水层石油相和水相有机质组分研究[D]. 北京: 中国石油大学(北京), 2023.

    Wen J. Study on organic matter composition of petroleum phase and aqueous phase in petroleum contaminated aquifer[D]. Beijing: China University of Petroleum (Beijing), 2023.

    [27]

    丁智晖, 董子萱, 于水利. 难降解有机物质的生物降解技术分析[J]. 当代化工研究, 2018(1): 49−51. doi: 10.3969/j.issn.1672-8114.2018.01.031

    Ding Z H, Dong Z X, Yu S L. The analysis of biodegradation technology in the field of refractory organic matters[J]. Modern Chemical Research, 2018(1): 49−51. doi: 10.3969/j.issn.1672-8114.2018.01.031

    [28]

    盛连喜, 李明堂, 徐镜波. 硝基苯类化合物微生物降解研究进展[J]. 应用生态学报, 2007, 18(7): 1654−1660. doi: 10.3321/j.issn:1001-9332.2007.07.039

    Sheng L X, Li M T, Xu J B. Research advances in microbial degradation of nitrobenzene and its substituted compounds[J]. Chinese Journal of Applied Ecology, 2007, 18(7): 1654−1660. doi: 10.3321/j.issn:1001-9332.2007.07.039

    [29]

    豆俊峰, 刘翔. 苯系化合物在硝酸盐还原条件下的生物降解性能[J]. 环境科学, 2006, 27(9): 1846−1852. doi: 10.13227/j.hjkx.2006.09.027

    Dou J F, Liu X. Biodegradability of benzene series compounds under nitrate reduction conditions[J]. Environmental Sciences, 2006, 27(9): 1846−1852. doi: 10.13227/j.hjkx.2006.09.027

    [30]

    林广宇. 地下水位变动带石油烃污染物的迁移转化规律研究[D]. 长春: 吉林大学, 2014.

    Lin G Y. Study on the migration and transformation of petroleum hydrocarbon pollutants in groundwater level fluctuation zone [D]. Changchun: Jilin University, 2014.

    [31]

    路莹. 浅层地下水系统石油类污染物的生物降解机制研究[D]. 长春: 吉林大学, 2013.

    Lu Y. Study on biodegradation mechanism of petroleum pollutants in shallow groundwater system [D]. Changchun: Jilin University, 2013.

    [32]

    李烨, 潘涛, 刘菲, 等. 四氯乙烯在不同地下水环境的生物共代谢降解[J]. 岩矿测试, 2012, 31(4): 682−688. doi: 10.15898/j.cnki.11-2131/td.2012.04.033

    Li Y, Pan T, Liu F, et al. Biological co-metabolic degradation of tetrachloroethylene in different groundwater environments[J]. Rock and Mineral Analysis, 2012, 31(4): 682−688. doi: 10.15898/j.cnki.11-2131/td.2012.04.033

    [33]

    宁卓, 郭彩娟, 蔡萍萍, 等. 某石油污染含水层降解能力地球化学评估[J]. 中国环境科学, 2018, 38(11): 4068−4074. doi: 10.19674/j.cnki.issn1000-6923.2018.0450

    Ning Z, Guo C J, Cai P P, et al. Geochemical assess-ment of the degradation capacity of an oil-contaminated aquifer[J]. Environmental Sciences of China, 2018, 38(11): 4068−4074. doi: 10.19674/j.cnki.issn1000-6923.2018.0450

    [34]

    张敏,张巍,郭彩娟,著. 污染场地自然衰减修复的原理与实践[M]. 北京:科学出版社, 2019:128−130.

    Zhang M, Zhang W, Guo C J, et al. Remediation by natural attenuation at contaminated sites: Principles and practice [M]. Beijing: Science Press, 2019:128−130.

  • 加载中

(9)

(5)

计量
  • 文章访问数:  42
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2024-09-28
修回日期:  2025-01-03
录用日期:  2025-01-10
网络出版日期:  2025-02-22
刊出日期:  2025-05-30

目录