中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

模拟自然状况研究针铁矿/水钠锰矿对锑矿区黄壤锑形态的影响

刘京广, 赵平, 任维, 马雪, 何开颖, 朱霞萍. 模拟自然状况研究针铁矿/水钠锰矿对锑矿区黄壤锑形态的影响[J]. 岩矿测试, 2025, 44(3): 391-405. doi: 10.15898/j.ykcs.202502280032
引用本文: 刘京广, 赵平, 任维, 马雪, 何开颖, 朱霞萍. 模拟自然状况研究针铁矿/水钠锰矿对锑矿区黄壤锑形态的影响[J]. 岩矿测试, 2025, 44(3): 391-405. doi: 10.15898/j.ykcs.202502280032
LIU Jingguang, ZHAO Ping, REN Wei, MA Xue, HE Kaiying, ZHU Xiaping. Effects of Goethite/Birnessite on Antimony Speciation in Yellow Soil from an Antimony Mining Area under Simulated Natural Conditions[J]. Rock and Mineral Analysis, 2025, 44(3): 391-405. doi: 10.15898/j.ykcs.202502280032
Citation: LIU Jingguang, ZHAO Ping, REN Wei, MA Xue, HE Kaiying, ZHU Xiaping. Effects of Goethite/Birnessite on Antimony Speciation in Yellow Soil from an Antimony Mining Area under Simulated Natural Conditions[J]. Rock and Mineral Analysis, 2025, 44(3): 391-405. doi: 10.15898/j.ykcs.202502280032

模拟自然状况研究针铁矿/水钠锰矿对锑矿区黄壤锑形态的影响

  • 基金项目: 国家自然科学基金项目(42267009);贵州省地矿局科技计划项目(黔地矿科合[2023]10号)
详细信息
    作者简介: 刘京广,硕士,研究方向:重金属污染土壤修复。E-mail:1521162917@qq.com
    通讯作者: 赵平,博士,研究员,研究方向:自然资源调查与综合利用。E-mail:408658867@qq.com。;  朱霞萍,博士,教授,研究方向:水土污染防控与修复。E-mail:zhuxiaping@cdut.edu.cn
  • 中图分类号: X53

Effects of Goethite/Birnessite on Antimony Speciation in Yellow Soil from an Antimony Mining Area under Simulated Natural Conditions

More Information
  • 锑矿区及周边土壤锑污染严重,锑污染程度与其在土壤中的存在形态关系密切。铁锰氧化物是土壤黏土矿物中最活跃的成分,影响着锑在土壤中的形态转化。现有研究更多关注铁锰氧化物单一矿物对外源锑吸附的影响,而铁锰氧化物对实际土壤中锑形态转化的影响方面的基础研究有待加强。本文将土壤中常见的针铁矿(α-FeOOH)和水钠锰矿(δ-MnO2)以原位制备的方式,分别负载在贵州晴隆锑矿区的锑污染黄壤(原土)中,制得载铁土和载锰土,模拟土壤自然状况,淹水180天,探究了α-FeOOH和δ-MnO2介导下土壤锑形态的转化特征。结果表明,淹水改变了土壤氧化还原特性,影响铁锰氧化物的赋存形态,进而影响锑的形态分布,负载的α-FeOOH主要以无定形铁存在,负载的δ-MnO2以游离锰、无定形锰和络合锰三种形式存在。与原土相比,载铁土悬浮液锑和弱酸提取态锑含量分别降低88.3%~94.4%、21.1%~65.9%,可还原态锑和可氧化态锑含量分别增加49.0%~67.2%、74.3%~159%;载锰土中悬浮液锑、弱酸提取态锑和可还原态锑分别增加14.2%~59.5%、6.50%~32.6%、4.80%~23.3%,可氧化态锑降低16.2%~58.5%。即原土、载铁土和载锰土各形态铁、锰、锑在淹水30天变化明显或是变化趋势发生转折,负载α-FeOOH促进了土壤弱酸提取态锑向土壤可还原态锑和可氧化态锑转化,负载δ-MnO2促进了土壤可氧化态锑向土壤弱酸提取态锑和可还原态锑转化。该研究为锑污染土壤的风险评估和修复技术提供了关键科学依据,对土壤锑污染的控制需结合铁锰氧化物形态调控和氧化还原条件管理,以实现锑的长期稳定化。

  • 加载中
  • 图 1  针铁矿/水钠锰矿以及载铁、载锰土壤的X射线衍射图谱

    Figure 1. 

    图 2  淹水时间对悬浮液铁锰锑含量的影响

    Figure 2. 

    图 3  淹水时间对土壤铁形态的影响

    Figure 3. 

    图 4  淹水时间对土壤锰形态的影响

    Figure 4. 

    图 5  原土/载铁土/载锰土锑形态变化的对比

    Figure 5. 

    图 6  淹水时间与土壤各形态锑、各形态铁、各形态锰之间的相关性分析结果(原土)

    Figure 6. 

    图 7  淹水时间与土壤各形态锑、各形态铁之间的相关性分析结果(载铁土)

    Figure 7. 

    图 8  淹水时间与土壤各形态锑、各形态锰之间的相关性分析结果(载锰土)

    Figure 8. 

  • [1]

    米艳华, 雷梅, 黎其万, 等. 滇南矿区重金属污染耕地的植物修复及其健康风险[J]. 生态环境学报, 2016, 25(5): 864−871. doi: 10.16258/j.cnki.1674-5906.2016.05.020

    Mi Y H, Lei M, Li Q W, et al. Plant remediation and health risks of heavy metal contaminated farmland in southern Yunnan mining area[J]. Journal of Ecological Environment, 2016, 25(5): 864−871. doi: 10.16258/j.cnki.1674-5906.2016.05.020

    [2]

    Mbadugha L, Cowper D, Dossanov S, et al. Geogenic and anthropogenic interactions at a former Sb mine: Environmental impacts of As and Sb[J]. Environmental Geochemistry and Health, 2020, 42: 11−24. doi: 10.1007/s10653-020-00652-w

    [3]

    Ning Z P, Xiao T F, Xiao E Z. Antimony in the soil-plant system in an Sb mining/smelting area of Southwest China[J]. International Journal of Phytoremediation, 2015, 17(11): 1081−1089. doi: 10.1080/15226514.2015.1021955

    [4]

    李聪, 杨爱江, 陈蔚洁, 等. 锑胁迫对鱼腥草抗氧化能力及渗透调节物质的影响[J]. 江苏农业科学, 2019, 47(13): 175−179. doi: 10.15889/j.issn.1002-1302.2019.13.043

    Li C, Yang A J, Chen W J, et al. The effect of antimony stress on the antioxidant capacity and osmoregulatory substances of Houttuynia cordata[J]. Jiangsu Agricultural Sciences, 2019, 47(13): 175−179. doi: 10.15889/j.issn.1002-1302.2019.13.043

    [5]

    莫昌琍, 吴丰昌, 符志友, 等. 湖南锡矿山锑矿区农用土壤锑、砷及汞的污染状况初探[J]. 矿物学报, 2013, 33(3): 344−350. doi: 10.16461/j.cnki.1000-4734.2013.03.005

    Mo C L, Wu F C, Fu Z Y, et al. Preliminary study on the pollution status of antimony, arsenic, and mercury in agricultural soil of tin mine antimony mining area in Hunan Province[J]. Acta Mineralogica Sinica, 2013, 33(3): 344−350. doi: 10.16461/j.cnki.1000-4734.2013.03.005

    [6]

    Ren W, Ran Y Y, Mou Y W, et al. Pollution characteristics and risk assessment of antimony and arsenic in a typical abandoned antimony smelters[J]. Environmental Geochemistry and Health, 2023, 45(7): 5467−5480. doi: 10.1007/s10653-023-01559-y

    [7]

    Lai Z Y, He M C, Lin C Y, et al. Interactions of antimony with biomolecules and its effects on human health[J]. Ecotoxicology and Environmental Safety, 2022, 233: 113317. doi: 10.1016/j.ecoenv.2022.113317

    [8]

    谢晓峰. 贵州晴隆锑矿山废弃物中锑的表生迁移转化过程和机制[D]. 贵阳: 贵州大学, 2023.

    Xie X F. Surface migration and transformation process and mechanism of antimony in Qinglong antimony mine waste in Guizhou Province[D]. Guiyang: Guizhou University, 2023.

    [9]

    李婉霞, 陈梅青, 刘奕安, 等. 水钠锰矿界面铁矿物的形成对Sb迁移转化的影响机理[J]. 中国环境科学, 2025, 45(3): 1341−1350. doi: 10.19674/j.cnki.issn1000-6923.20241028.009

    Li W X, Chen M Q, Liu Y A, et al. Mechanism of the influence of iron mineral formation at the interface of sodium manganese ore on antimony migration and transformation[J]. China Environmental Science, 2025, 45(3): 1341−1350. doi: 10.19674/j.cnki.issn1000-6923.20241028.009

    [10]

    崔婷, 叶欣, 朱霞萍, 等. 土壤铁锰氧化物形态测定及吸附Sb(Ⅲ)的主控因子研究[J]. 岩矿测试, 2023, 42(1): 167−176. doi: 10.15898/j.cnki.11-2131/td.202111250187

    Cui T, Ye X, Zhu X P, et al. Determination of soil iron and manganese oxide forms and study on the main control factors of Sb(Ⅲ) adsorption[J]. Rock and Mineral Analysis, 2023, 42(1): 167−176. doi: 10.15898/j.cnki.11-2131/td.202111250187

    [11]

    胡敏, 李芳柏. 土壤微生物铁循环及其环境意义[J]. 土壤学报, 2014, 51(4): 683−698. doi: 10.1002/3527602097

    Hu M, Li F B. Soil microbial iron cycling and its environmental significance[J]. Journal of Soil Science, 2014, 51(4): 683−698. doi: 10.1002/3527602097

    [12]

    Cornell R M, Schwertmann U. The iron oxides: Structure, properties, reactions, occurrences, and uses[M]. Clay Minerals, 1999, 34(1): 209−211.

    [13]

    郭贵宾, 袁晓雅, 黄理金, 等. 土壤中典型矿物对锑的吸附-沉积行为研究[J]. 岩矿测试, 2025, 44(1): 127−139. doi: 10.15898/j.ykcs.202404210093

    Guo G B, Yuan X Y, Huang L J, et al. Study on the adsorption deposition behavior of typical minerals in soil towards antimony[J]. Rock and Mineral Analysis, 2025, 44(1): 127−139. doi: 10.15898/j.ykcs.202404210093

    [14]

    Zhou W Q, Zhou J W, Feng X B, et al. Antimony isotope fractionation revealed from EXAFS during adsorption on Fe(oxyhydr)oxides[J]. Environmental Science & Technology, 2023, 57(25): 9353−9361. doi: 10.1021/acs.est.3c01906

    [15]

    Yu S H, Wang Y, Wan Y Y, et al. Enhance antimony adsorption from aquatic environment by microwave-assisted prepared Fe3O4 nanospherolites[J]. Environmental Science and Pollution Research, 2023, 30(41): 94401−94413. doi: 10.1007/s11356-023-29060-0

    [16]

    向超, 王媛媛, 曾嘉庆, 等. 冶炼渣堆周边土壤砷锑垂向迁移分布及影响因素[J]. 中国有色金属学报, 2024, 34(8): 2773−2786. doi: 10.11817/j.ysxb.1004.0609.2024-44745

    Xiang C, Wang Y Y, Zeng J Q, et al. Vertical migration distribution and influencing factors of arsenic and antimony in the soil around the smelting slag heap[J]. The Chinese Journal of Nonferrous Metals, 2024, 34(8): 2773−2786. doi: 10.11817/j.ysxb.1004.0609.2024-44745

    [17]

    Xu W, Wang H J, Liu R P, et al. The mechanism of antimony(Ⅲ) removal and its reactions on the surfaces of Fe-Mn binary oxide[J]. Journal of Colloid and Interface Science, 2011, 363(1): 320−326. doi: 10.1016/j.jcis.2011.07.026

    [18]

    Mitsunobu S, Muramatisu C, Watanabe K, et al. Behavior of antimony(Ⅴ) during the transformation of ferrihydrite and its environmental implications[J]. Environmental Science & Technology, 2013, 47(17): 9660−9667. doi: 10.1021/es4010398

    [19]

    Kuang L Y, Liu Y Y, Fu D D, et al. FeOOH-graphene oxide nanocomposites for fluoride removal from water: Acetate mediated nano FeOOH growth and adsorption mechanism[J]. Journal of Colloid and Interface Science, 2017, 490: 259−269. doi: 10.1016/j.jcis.2016.11.071

    [20]

    Liu Z G, Zhang F S. Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass[J]. Journal of Hazardous Materials, 2009, 167(1-3): 933−939. doi: 10.1016/j.jhazmat.2009.01.085

    [21]

    Zhou C C, Li C, Yang K L, et al. Sb(Ⅴ) removal by different iron oxides from simulated textile-wastewater[J]. Acta Scientiae Circumstantiae, 2022, 42(2): 96−107. doi: 10.13671/j.hjkxxb.2021.0155

    [22]

    Burton E D, Hockmann K, Karimian N. Antimony sorption to goethite: Effects of Fe(Ⅱ)-catalyzed recrystallization[J]. ACS Earth and Space Chemistry, 2020, 4(3): 476−487. doi: 10.1021/acsearthspacechem.0c00013

    [23]

    Shangguan Y X, Qin X P, Zhao L, et al. Effects of iron oxide on antimony(V) adsorption in natural soils: Transmission electron microscopy and X-ray photoelectron spectroscopy measurements[J]. Journal of Soils & Sediments, 2016, 16(2): 509−517. doi: 10.1007/s11368-015-1229-9

    [24]

    Guo W J, Fu Z Y, Wang H, et al. Removal of antimonate (Sb(Ⅴ)) and antimonite (Sb(Ⅲ)) from aqueous solutions by coagulation-flocculation-sedimentation (CFS): Dependence on influencing factors and insights into removal mechanisms[J]. Science of the Total Environment, 2018, 644: 1277−1285. doi: 10.1016/j.scitotenv.2018.07.034

    [25]

    Lu H B, Han X G, Ren J M, et al. Enhanced removal of Sb(Ⅲ) and Sb(Ⅴ) by acid birnessite with doped titanium ions[J]. Technology of Water Treatment, 2023, 49(8): 30−39.

    [26]

    Sun Q, Liu C, Alves M E, et al. The oxidation and sorption mechanism of Sb on δ-MnO2[J]. Chemical Engineering Journal, 2018, 342: 429−437. doi: 10.1016/j.cej.2018.02.091

    [27]

    Sun W N, Sun X X, Li B Q, et al. Bacterial response to antimony and arsenic contamination in rice paddies during different flooding conditions[J]. Science of the Total Environment, 2019, 675: 273−285. doi: 10.1016/j.scitotenv.2019.04.146

    [28]

    崔晓丹, 王玉军, 周东美. 水分管理对污染土壤中砷锑形态及有效性的影响[J]. 农业环境科学学报, 2015, 34(9): 1665−1673. doi: 10.11654/jaes.2015.09.006

    Cui X D, Wang Y J, Zhou D M. The impact of water management on the forms and availability of arsenic and antimony in polluted soil[J]. Journal of Agro-Environmental Science, 2015, 34(9): 1665−1673. doi: 10.11654/jaes.2015.09.006

    [29]

    张又弛, 唐晓达, 罗文邃. 淹水还原条件下红壤中葡萄糖及腐植酸对铁锰形态的影响[J]. 土壤学报, 2014, 51(2): 270−277. doi: 10.11766/trxb201303140117

    Zhang Y C, Tang X D, Luo W S. The effect of glucose and humic acid on iron and manganese forms in red soil under flooding reduction conditions[J]. Journal of Soil Science, 2014, 51(2): 270−277. doi: 10.11766/trxb201303140117

    [30]

    姚冬菊, 刘恩光, 宁增平, 等. 贵州某锑冶炼厂周边农田土壤锑、砷污染与人体健康风险评估[J]. 地球与环境, 2021, 49(6): 673−683. doi: 10.14050/j.cnki.1672-9250.2021.49.058

    Yao D J, Liu E G, Ning Z P, et al. Assessment of soil antimony and arsenic pollution and human health risks in the surrounding farmland of an antimony smelter in Guizhou Province[J]. Earth and Environment, 2021, 49(6): 673−683. doi: 10.14050/j.cnki.1672-9250.2021.49.058

    [31]

    吴琼, 张洋, 孟昭福. 十二烷基二甲基甜菜碱(BS-12)在合成针铁矿表面的吸附特征[J]. 环境科学学报, 2019, 39(9): 3045−3052. doi: 10.13671/j.hjkxxb.2019.0225

    Wu Q, Zhang Y, Meng Z F. Adsorption characteristics of dodecyl dimethyl betaine (BS-12) on the surface of synthetic goethite[J]. Journal of Environmental Science, 2019, 39(9): 3045−3052. doi: 10.13671/j.hjkxxb.2019.0225

    [32]

    梁慧锋, 马子川, 刘占牛. 新生态二氧化锰的性质及pH值影响除砷效果的研究[J]. 无机化学学报, 2006, 22(4): 743−747. doi: 10.3321/j.issn:1001-4861.2006.04.029

    Liang H F, Ma Z C, Liu Z N. Study on the properties of new ecological manganese dioxide and the influence of pH value on arsenic removal efficiency[J]. Journal of Inorganic Chemistry, 2006, 22(4): 743−747. doi: 10.3321/j.issn:1001-4861.2006.04.029

    [33]

    冉继伟, 张旭, 宁平, 等. 全国主要土壤铁重金属形态及其与土壤性质的关系[J]. 环境科学导刊, 2017, 36(4): 1−4. doi: 10.13623/j.cnki.hkdk.2017.04.001

    Ran J W, Zhang X, Ning P, et al. The forms of iron and heavy metals in major soils nationwide and their relationship with soil properties[J]. Environmental Science Survey, 2017, 36(4): 1−4. doi: 10.13623/j.cnki.hkdk.2017.04.001

    [34]

    何群, 陈家坊. 土壤中游离铁和络合态铁的测定[J]. 土壤, 1983, 1(6): 242−244.

    He Q, Chen J F. Determination of free iron and complexed iron in soil[J]. Soil, 1983, 1(6): 242−244.

    [35]

    徐晨瀛, 胡启武, 张桂华, 等. 鄱阳湖湿地剖面土壤铁结合态有机碳沿高程的分布特征[J]. 应用生态学报, 2024, 35(12): 3488−3496. doi: 10.13287/j.1001-9332.202412.017

    Xu C Y, Hu Q W, Zhang G H, et al. Distribution characteristics of soil iron bound organic carbon along elevation in Poyang Lake wetland profile[J]. Journal of Applied Ecology, 2024, 35(12): 3488−3496. doi: 10.13287/j.1001-9332.202412.017

    [36]

    Villalobos M, Toner B, Bargar J, et al. Characterization of the manganese oxide produced by pseudomonas putida strain MnB1[J]. Geochimica et Cosmochimica Acta, 2003, 67(14): 2649−2662. doi: 10.1016/S0016-7037(3)00217-5

  • 加载中

(8)

计量
  • 文章访问数:  45
  • PDF下载数:  26
  • 施引文献:  0
出版历程
收稿日期:  2025-02-28
修回日期:  2025-04-11
录用日期:  2025-04-14
网络出版日期:  2025-05-15
刊出日期:  2025-05-30

目录