Determination of 34 Elements in Ground Substrate of Black Soil by ICP-MS/OES with Alkali Melting Digestion
-
摘要:
黑土样品中有机质含量较高,通常在3%~10%之间,采用敞口酸溶、微波酸溶、高压密闭酸溶、灰化法等传统的前处理方法并不能将样品完全消解,而不同的元素需要采用不同的消解和测定方法,导致实验耗时长,操作过程复杂,分析成本过高,不适合多种元素同时测定。本文采用碳酸钠、四硼酸锂和偏硼酸锂作为混合熔剂分解样品,并提出在酸提取剂中加入酒石酸的方法来提取样品,利用电感耦合等离子体质谱法和发射光谱法(ICP-MS/OES)对黑土地地表基质中34种元素进行测定,解决了传统分析方法不适合多元素同时测定和钽铪等元素易水解的问题。研究了不同提取体系对钽铪元素提取效果的影响,确定了提取剂为30mL盐酸−10mL 100g/L酒石酸是最佳比例。方法检出限为0.01~50.13μg/g,测定结果能够满足土壤分析要求。采用不同种类的土壤标准物质对本方法进行验证,各元素的测定值与标准值基本一致,相对标准偏差(RSD)为0.48%~4.53%,相对误差(RE)为−5.23%~4.85%,实际样品分析的相对标准偏差均在0.16%~4.97%之间。
-
关键词:
- 电感耦合等离子体质谱法 /
- 电感耦合等离子体发射光谱法 /
- 酒石酸 /
- 碱熔 /
- 黑土
Abstract:The organic matter content in black soil samples is high, typically ranging from 3% to 10%. Traditional pretreatment methods such as open acid dissolution digestion, microwave acid dissolution and digestion, high-pressure closed acid dissolution and digestion, and ashing method cannot completely digest the sample, and different elements need to adopt different digestion and determination methods, resulting in long experiments, complex operation processes, high analysis costs, and are not suitable for the simultaneous determination of multiple elements. Sodium carbonate, lithium tetraborate and lithium metaborate were selected as mixed fluxes to digest the samples, and a method of adding tartaric acid to the acid extractor was proposed to extract the samples. 34 elements in the ground substrate of black soil were determined by inductively coupled plasma-mass spectrometry/optical emission spectrometry (ICP-MS/OES). The traditional black soil sample analysis method is not suitable for the simultaneous determination of multiple elements and the easy hydrolysis of elements such as tantalum and hafnium, while ICP-MS/OES is suitable. The effects of different extraction systems on the extraction of tantalum and hafnium were studied, and the optimal ratio of 30mL of hydrochloric acid and 10mL of 100g/L tartaric acid was determined. On this basis, the detection limit of the samples was 0.010−50.13μg/g by the experimental method of control samples, and the results satisfied the requirements of soil analysis and detection. At the same time, different kinds of soil reference materials were selected for practical testing, and the measured values of each element were basically consistent with the standard values, with the relative standard deviations (RSDs) between 0.48%−4.53% and the relative errors between −5.23%−4.85%. In addition, to further verify the feasibility of the method, the relative standard deviations were all between 0.16%−4.97% when applied to actual samples.
-
-
表 1 标准溶液系列浓度
Table 1. Different concentrations of standard solution series
混合标准储备
溶液编号待测元素 浓度 混标1 Bi,Co,La,Ce,Pr,Nd,
Sm,Eu,Gd,Tb,Dy,Ho,
Er,Tm,Yb,Lu,Y,Ta,
Hf,W,Mo,Th,Tl,U0,1,2,5,10,
20,50μg/L混标2 Mn,Ti,Ba,Sr 0,0.1,1,2,5,
10,20mg/L混标3 K,Na,Ca,Mg,Al,Fe 0,1,10,20,50,
100,200mg/L表 2 不同提取体系中土壤标准物质钽、铪元素的测定结果
Table 2. Analytical results of Ta and Hf in soil reference materials with different extraction systems
标准物质
编号Ta含量(μg/g) Hf含量(μg/g) 标准值 40mL盐酸
测定值盐酸-酒石酸体积比 标准值 40mL盐酸
测定值盐酸-酒石酸体积比 3∶1 1∶1 1∶3 3∶1 1∶1 1∶3 GBW07978 1.26 0.99 1.24 1.16 1.11 8.3 7.01 8.21 8.0 7.9 GBW07979 1.27 1.03 1.26 1.19 1.15 7.3 6.35 7.23 6.96 6.82 GBW07980 2.63 2.01 2.55 2.45 2.36 7.9 6.15 7.83 7.66 7.45 表 3 线性回归方程、相关系数和方法检出限
Table 3. Linear regression equation, correlation coefficient and detection limit of the method
测定方法 元素 线性范围
(mg/L)线性回归方程 相关系数
(R2)方法检出限
(μg/g)ICP-MS Bi 0.1 y=40.351x+0.239 0.9998 0.10 Co 0.1 y=0.015x−0.0055 0.9996 0.03 La 0.1 y=0.0471x−0.102 0.9999 0.10 Ce 0.1 y=0.0505x−0.1016 0.9999 0.06 Pr 0.1 y=0.0741x−0.1802 0.9999 0.01 Nd 0.1 y=0.0272x−0.0517 0.9999 0.02 Sm 0.1 y=0.0259x−0.1029 0.9997 0.02 Eu 0.1 y=0.0513x−0.028 0.9998 0.01 Gd 0.1 y=0.0236x+0.0011 0.9998 0.02 Tb 0.1 y=0.1101x−0.3521 0.9999 0.01 Dy 0.1 y=0.0328x+0.0183 0.9997 0.02 Ho 0.1 y=0.1182x−0.4174 0.9999 0.01 Er 0.1 y=0.0395x+0.0808 0.9999 0.01 Tm 0.1 y=0.121x−0.0324 0.9997 0.02 Yb 0.1 y=0.0429x+0.0003 0.9999 0.01 Lu 0.1 y=0.1457x−0.5858 0.9999 0.01 Y 0.1 y=0.0347x+0.0356 0.9998 0.06 Ta 0.1 y=0.0347x+0.0356 0.9998 0.01 Hf 0.1 y=0.0003x+1.26×10−6 0.9998 0.03 W 0.1 y=95.71x+1.0292 0.9998 0.21 Mo 0.1 y=0.0227x−0.0021 0.9999 0.02 Th 0.1 y=0.086x−0.0021 0.9993 0.02 Tl 0.1 y=0.0451x−0.0121 0.9997 0.01 U 0.1 y=0.1328x−0.0523 0.9995 0.03 ICP-OES Al2O3 100 y=7.484x+198.657 0.9996 41.04 TFe2O3 100 y=327.867x+47.898 0.9998 37.59 MgO 100 y=139249.452x+31935.310 0.9993 4.74 CaO 100 y=3914.427x+2990.342 0.9992 17.76 Na2O 100 y=327.867x+47.898 0.9998 50.13 K2O 100 y=1875.342x+2452.084 0.9994 38.52 Mn 10 y=34.057x+459.306 0.9994 1.32 Ti 10 y=37.370x−644.631 0.9994 2.46 Ba 10 y=541247.043x+1325.417 0.9998 0.63 Sr 10 y=11023.809x+670.300 0.9998 0.15 表 4 方法精密度和准确度测试结果
Table 4. Precision and accuracy tests of the method
元素 GBW07978 GBW07979 GBW07980 标准值
(μg/g)测定值
(μg/g)相对误差
(%)RSD
(%)标准值
(μg/g)测定值
(μg/g)相对误差
(%)RSD
(%)标准值
(μg/g)测定值
(μg/g)相对误差
(%)RSD
(%)Bi 0.38 0.37 −1.70 1.72 0.31 0.30 −4.81 2.91 301 301.66 0.22 1.14 Co 16 16.33 2.09 1.7 15.5 15.57 0.47 1.10 9.5 9.63 1.40 1.43 La 41 39.68 −3.22 0.86 37 37.48 1.29 0.90 55 57.52 4.58 1.18 Ce 82 80.74 −1.54 1.23 70 72.83 4.04 1.01 111 115.20 3.78 0.76 Pr 9.6 9.36 −2.47 1.08 8.5 8.44 −0.76 1.22 12.5 13.02 4.15 1.21 Nd 37 35.07 −5.23 1.53 33.2 34.04 2.54 0.56 45.9 47.05 2.51 0.94 Sm 7.1 7.12 0.22 2.14 6.3 6.27 −0.41 0.96 9.0 9.06 0.62 0.99 Eu 1.4 1.39 −0.86 1.56 1.4 1.41 0.60 1.37 1.27 1.23 −3.44 1.63 Gd 6.2 6.14 −0.92 1.32 5.8 5.99 3.35 1.72 8.0 8.06 1.07 1.17 Tb 1 1.03 2.51 2.03 0.94 0.91 −3.41 1.87 1.34 1.39 3.39 2.50 Dy 5.6 5.65 0.84 0.48 5.2 5.24 0.84 1.45 7.8 7.86 0.78 1.38 Ho 1.12 1.10 −1.78 1.51 1.04 1.05 1.16 1.64 1.55 1.57 1.33 0.97 Er 3.2 3.06 −4.39 1.95 2.9 2.95 1.80 0.73 4.6 4.82 4.8 1.14 Tm 0.51 0.52 2.57 1.37 0.46 0.47 2.27 2.34 0.75 0.77 2.09 1.17 Yb 3.2 3.35 4.80 1.78 2.9 2.94 1.30 1.17 5.1 5.06 −0.69 1.14 Lu 0.5 0.51 2.51 0.96 0.43 0.44 2.83 1.72 0.78 0.78 0.14 1.94 Y 29.9 30.05 0.51 0.78 28.6 28.63 0.12 1.08 43.7 45.49 4.09 1.11 Ta 1.26 1.27 0.57 1.88 1.27 1.26 −1.17 0.94 2.63 2.65 0.89 1.03 Hf 8.3 8.08 −2.65 1.20 7.3 7.23 −0.92 1.5 7.9 8.03 1.61 1.48 W 2.1 2.20 4.85 1.02 1.8 1.82 1.31 1.54 164 156.9 −4.33 1.38 Mo 0.68 0.65 −3.80 3.81 1.11 1.11 0.03 2.49 12.2 12.79 4.83 1.14 Th 13.6 13.53 −0.55 1.82 11.2 11.2 −1.05 1.30 23.9 24.58 2.83 0.99 Tl 0.73 0.74 1.96 1.56 0.58 0.60 4.50 1.69 2.13 2.11 −1.02 1.13 U 3.1 3.05 −1.68 1.43 2.1 2.08 −1.11 1.17 15.6 15.36 −1.55 0.85 Al2O3 148400 143880 −3.05 1.27 132100 135064 2.24 1.71 127000 128578 1.24 0.79 TFe2O3 51300 53188 3.68 2.93 49800 49198 −1.21 4.36 82900 85404 3.02 2.18 MgO 12400 11998 −3.24 3.21 20700 21485 3.79 3.89 9200 9441 2.62 1.76 CaO 13900 14023 0.88 1.69 21800 22191 1.79 1.68 11800 12137 2.86 1.89 Na2O 17300 17840 3.12 2.98 19500 20206 3.62 4.53 1300 1335 2.69 3.56 K2O 27200 27411 0.78 2.00 25100 25720 2.47 2.84 18300 17964 −1.84 2.05 Mn 923 908 −1.60 2.35 674 660 −2.38 1.48 1675 1740 3.86 2.47 Ti 4760 4742 −0.37 2.13 4570 4616 1.00 1.98 4100 4138 0.93 1.17 Ba 639 641 0.38 3.17 679 674 −0.79 4.28 255 248 −2.71 3.49 Sr 186 182 −2.40 2.51 151 154 1.82 2.70 26.3 26.45 0.55 1.69 表 5 黑土地地表基质样品中34种元素分析结果(n=10)
Table 5. Analytical results of 34 elements in ground substrate samples of black soil (n=10)
元素 实际样品S1 实际样品S2 实际样品S3 元素 实际样品S1 实际样品S2 实际样品S3 测定值
(μg/g)RSD
(%)测定值
(μg/g)RSD
(%)测定值
(μg/g)RSD
(%)测定值
(μg/g)RSD
(%)测定值
(μg/g)RSD
(%)测定值
(μg/g)RSD
(%)Bi 2.89 0.16 0.24 3.74 0.17 2.36 Ta 0.91 2.19 1.08 2.13 1.57 1.17 Co 11.16 1.19 13.64 1.52 11.45 1.46 Hf 9.13 1.46 6.87 2.09 6.73 1.66 La 21.57 1.37 26.71 2.17 25.24 1.86 W 0.87 3.62 1.28 2.00 1.08 1.57 Ce 40.74 1.55 50.85 1.57 47.67 1.82 Mo 0.38 4.97 0.52 3.61 0.78 2.77 Pr 4.66 2.17 5.75 2.35 5.57 2.54 Th 5.48 2.42 8.90 1.10 6.17 1.62 Nd 17.39 1.37 21.03 2.00 20.67 1.32 Tl 0.40 2.49 0.55 1.92 0.46 2.70 Sm 3.05 2.55 3.75 1.93 3.86 2.28 U 1.36 2.00 1.58 2.00 2.52 1.63 Eu 0.70 2.40 0.83 1.63 0.86 2.20 Al2O3 130291 1.57 131927 1.40 135236 1.15 Gd 3.17 2.17 3.75 2.85 3.88 2.38 TFe2O3 52914 3.72 57903 2.55 47205 3.30 Tb 0.44 3.67 0.55 1.26 0.57 4.56 MgO 10160 3.26 11095 2.95 11263 2.11 Dy 2.38 2.26 3.20 2.18 3.17 2.25 CaO 9997 3.65 9990 2.61 11334 2.14 Ho 0.48 2.25 0.65 1.83 0.62 2.26 Na2O 17326 3.97 17783 2.7 20010 3.49 Er 1.31 1.99 1.83 2.03 1.72 2.46 K2O 28325 3.2 27825 2.35 29015 1.91 Tm 0.20 3.15 0.29 2.22 0.27 1.92 Mn 1792 2.46 1134 2.29 2605 2.66 Yb 1.31 1.77 1.92 1.70 1.72 1.93 Ti 5331 1.58 5676 2.02 5905 1.84 Lu 0.21 1.35 0.30 2.01 0.26 2.28 Ba 863 2.52 686 2.53 968 2.95 Y 16.56 1.42 22.72 1.62 21.92 1.74 Sr 143 1.73 140 2.59 197 2.21 表 6 实际样品采用不同消解方法34种元素分析结果
Table 6. Analytical results of 34 elements in actual samples with different digestion methods
元素 实际样品S4 实际样品S5 元素 实际样品S4 实际样品S5 本方法(碱熔法)
测定值(μg/g)封闭酸溶法
测定值(μg/g)本方法(碱熔法)
测定值(μg/g)封闭酸溶法
测定值(μg/g)本方法(碱熔法)
测定值(μg/g)封闭酸溶法
测定值(μg/g)本方法(碱熔法)
测定值(μg/g)封闭酸溶法
测定值(μg/g)Ta 0.542 0.577 8.3 7.01 Gd 2.005 2.089 6.004 5.818 Hf 5.483 5.964 7.9 6.15 Tb 0.351 0.345 0.958 0.881 La 13.19 13.59 45.48 44.81 Dy 1.846 1.974 5.697 5.351 Ce 23.88 25.39 86.46 84.29 Ho 0.403 0.424 1.108 1.051 Pr 3.169 3.358 9.75 9.554 Er 1.151 1.214 3.219 3.154 Nd 12.59 13.02 37.07 36.31 Tm 0.203 0.21 0.504 0.499 Sm 2.334 2.46 6.89 6.731 Yb 1.345 1.379 3.182 3.185 Eu 0.588 0.633 1.31 1.269 Lu 0.213 0.234 0.499 0.485 -
[1] 刘航, 李瑞红, 李胜荣, 等. 松辽平原典型黑土区不同土壤结构的古气候背景与黑土成因机制[J]. 地质通报, 2024, 43(5): 766−778. doi: 10.12097/gbc.2023.02.049
Liu H, Li R H, Li S R, et al. Paleoclimate background and genetic mechanisms of different soil structures in typical black soil areas of Songliao Plain[J]. Geological Bulletin of China, 2024, 43(5): 766−778. doi: 10.12097/gbc.2023.02.049
[2] 刘顺国, 徐英德, 裴久渤, 等. 以土壤普查成果助推黑土地科学保护与利用[J]. 土壤通报, 2024, 55(4): 1185−1190. doi: 10.19336/j.cnki.trtb.2023093001
Liu S G, Xu Y D, Pei J B, et al. Promoting the scientific protection and utilization of black soil through the third national soil survey results[J]. Chinese Journal of Soil Science, 2024, 55(4): 1185−1190. doi: 10.19336/j.cnki.trtb.2023093001
[3] 高佳, 朱耀辉, 赵荣荣. 中国黑土地保护: 政策演变、现实障碍与优化路径[J]. 东北大学学报(社会科学版), 2024, 26(1): 82−89. doi: 10.15936/j.cnki.1008-3758.2024.01.009
Gao J, Zhu Y H, Zhao R R. Black soil protection in China: Policy evolution, realistic obstacles and optimization paths[J]. Journal of Northeastern University (Social Science), 2024, 26(1): 82−89. doi: 10.15936/j.cnki.1008-3758.2024.01.009
[4] 马婧萱, 崔晓丹, 梁强, 等. 东北典型黑土富硒区土壤与作物硒含量特征及影响因素——以海伦市为例[J]. 土壤, 2024, 56(5): 1101−1110. doi: 10.13758/j.cnki.tr.2024.05.022
Ma J X, Cui X D, Liang Q, et al. Characteristics and influencing factors of Se content of soil and crop in Se-rich areas of isohumosols (mollisols) in Northeast China: A case study of Hailun[J]. Soils, 2024, 56(5): 1101−1110. doi: 10.13758/j.cnki.tr.2024.05.022
[5] 马瑞, 田芷源, 赵艳, 等. 东北黑土典型水蚀区农田侵蚀与退化特征[J]. 水土保持学报, 2024, 38(5): 71−81. doi: 10.13870/j.cnki.stbcxb.2024.05.024
Ma R, Tian Z Y, Zhao Y, et al. Characteristics of erosion and degradation for farms and sin the typical water erosion area of the black soil region, Northeast China[J]. Journal of Soil and Water Conservation, 2024, 38(5): 71−81. doi: 10.13870/j.cnki.stbcxb.2024.05.024
[6] 司佳雪, 董鑫, 张晓晴, 等. 基于CiteSpace的国内外土壤污染治理研究进展和发展动态分析[J]. 现代化工, 2024, 44(9): 17−23. doi: 10.16606/j.cnki.issn0253-4320.2024.09.004
Si J X, Dong X, Zhang X Q, et al. CiteSpace based analysis on research progress and development trend of global soil contamination control[J]. Modern Chemical Industry, 2024, 44(9): 17−23. doi: 10.16606/j.cnki.issn0253-4320.2024.09.004
[7] Chai L, Zhou Y Q, Dong H K, et al. Soil contamination and carrying capacity across the Tibetan Plateau using structural equation models[J]. Environmental Pollution, 2023, 337: 122640. doi: 10.1016/J.ENVPOL.2023.122640
[8] 王萌, 俞磊, 秦璐瑶, 等. 土壤环境基准的科学问题与研究方法: 以Cd为例[J]. 地学前缘, 2024, 31(2): 147−156. doi: 10.13745/j.esf.sf.2024.3.15
Wang M, Yu L, Qin L Y, et al. Scientific issues and research methods of soil environmental standards: A case study on cadmium[J]. Earth Science Frontiers, 2024, 31(2): 147−156. doi: 10.13745/j.esf.sf.2024.3.15
[9] 陈龙, 郭海全, 尚晓雨, 等. 新乐市地表基质有机碳储量变化趋势及影响因素[J]. 黑龙江农业科学, 2023(3): 34−40. doi: 10.11942/j.issn1002-2767.2023.03.0034
Chen L, Guo H Q, Shang X Y, et al. Change trend and determinants of organic carbon storage in ground substrate of Xinle City[J]. Heilongjiang Agricultural Sciences, 2023(3): 34−40. doi: 10.11942/j.issn1002-2767.2023.03.0034
[10] 贾建丽, 于妍. 环境土壤学[M]. 北京: 化学工业出版社, 2022: 258.
Jia J L, Yu Y. Environmental soil science[M]. Beijing: Chemical Industry Press, 2022: 258.
[11] 唐碧玉, 张征莲, 谷娟平, 等. 四酸消解-电感耦合等离子体质谱法测定铝土矿中18种元素的含量[J]. 理化检验(化学分册), 2024, 60(9): 857−864. doi: 10.11973/lhjy-hx220864
Tang B Y, Zhang Z L, Gu J P. Determination of 18 elements in bauxite by inductively coupled plasma mass spectrometry with four-acid digestion[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2024, 60(9): 857−864. doi: 10.11973/lhjy-hx220864
[12] Provete S C, Dalfior M B, Mantovaneli R, et al. Comparison of the performance of ICP-MS, CV-ICP-OES, and TDA AAS in determining mercury in marine sediment samples[J]. ACS Omega, 2024, 9(50): 49229−49238. doi: 10.1021/ACSOMEGA.4C06144
[13] Baghaliannejad R, Aghahoseini M, Amini K M. Determination of rare earth elements in uranium materials by ICP-MS and ICP-OES after matrix separation by solvent extraction with TEHP[J]. Talanta, 2021, 222: 121509. doi: 10.1016/j.talanta.2020.121509
[14] 孙梦荷, 苏春风, 方迪, 等. 电感耦合等离子体质谱(ICP-MS)法在稀土分析中的应用进展[J]. 中国无机分析化学, 2023, 13(9): 939−949. doi: 10.3969/j.issn.2095-1035.2023.09.005
Sun M H, Su C F, Fang D, et al. Application progress of inductively coupled plasma mass spectrometry (ICP-MS) in rare earth analysis[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(9): 939−949. doi: 10.3969/j.issn.2095-1035.2023.09.005
[15] Rito B, Almeida D, Coimbra C. Post-measurement compressed calibration for ICP-MS-based metal quantification in mine residues bioleaching[J]. Scientific Reports, 2022, 12(1): 16007. doi: 10.1038/s41598-022-19620-8
[16] Morrison C, Sun H, Yao Y, et al. Methods for the ICP-OES analysis of semiconductor materials[J]. Chemistry of Materials, 2020, 32(5): 1760−1768. doi: 10.1021/acs.chemmater.0c00255
[17] 王树加, 郑巧清, 卢思, 等. 微波消解-电感耦合等离子体质谱(ICP-MS)法测定土壤7种金属元素[J]. 中国无机分析化学, 2023, 13(12): 1336−1341. doi: 10.3969/j.issn.2095-1035.2023.12.010
Wang S J, Zheng Q Q, Lu S, et al. Determination of seven metal elements in soil samples by inductively coupled plasma mass spectrometry with microwave digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(12): 1336−1341. doi: 10.3969/j.issn.2095-1035.2023.12.010
[18] 官迪, 陈山, 田发祥, 等. 微波消解-电感耦合等离子体质谱法测定有机肥中镉、砷、汞、铅、铬含量[J]. 中国土壤与肥料, 2024(1): 226−231. doi: 10.11838/sfsc.1673-6257.22784
Guan D, Chen S, Tian F X, et al. Determination of cadmium, arsenic, mercury, lead and chromium in organic fertilizer by microwave digestion combined with inductively coupled plasma mass spectrometry[J]. Soil and Fertilizer Sciences in China, 2024(1): 226−231. doi: 10.11838/sfsc.1673-6257.22784
[19] 吴佳伦, 罗霜, 李思思, 等. 微波消解/石墨消解-ICP-MS测定土壤中的多种重金属[J]. 中国测试, 2021, 47(5): 58−63. doi: 10.11857/j.issn.1674-5124.2020080056
Wu G L, Luo S, Li S S, et al. Microwave digestion/graphite digestion-ICP-MS determination of multiple heavy metals in soil[J]. China Measurement & Test, 2021, 47(5): 58−63. doi: 10.11857/j.issn.1674-5124.2020080056
[20] 王蕾, 于汀汀, 孙红宾, 等. 高压密闭酸溶-电感耦合等离子体发射光谱法测定硼矿石中的硼[J]. 岩矿测试, 2024, 43(3): 468−475. doi: 10.15898/j.ykcs.202308070131
Wang L, Yu T T, Sun H B, et al. Boron analysis in boron ores by inductively coupled plasma-optical emission spectrometry with sealed acid digestion at high pressure[J]. Rock and Mineral Analysis, 2024, 43(3): 468−475. doi: 10.15898/j.ykcs.202308070131
[21] 邵坤, 余滔, 龚大兴. 高压密闭消解-ICP-AES法测定沉积型稀土矿中La、Ce、Pr、Nd、Y、Nb、Zr[J]. 稀土, 2024, 45(1): 87−94. doi: 10.16533/J.CNKI.15-1099/TF.20230034
Shao K, Yu T, Gong D X. Determination of La, Ce, Pr, Nd, Y, Nb and Zr in sedimentary rare-earth ore by ICP-AES with sealed digestion[J]. Chinese Rare Earths, 2024, 45(1): 87−94. doi: 10.16533/J.CNKI.15-1099/TF.20230034
[22] 郝志红, 刘彬, 杜雪苗, 等. 干法灰化-发射光谱法测定植物样品中B和Sn[J]. 中国无机分析化学, 2023, 13(12): 1437−1443. doi: 10.3969/j.issn.2095-1035.2023.12.024
Hao Z H, Liu B, Du X M, et al. Determination of B, Sn in plant samples by emission spectrometry with dry ashing[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(12): 1437−1443. doi: 10.3969/j.issn.2095-1035.2023.12.024
[23] 谢旭, 卢兵, 赵文志, 等. 微波消解-电感耦合等离子体质谱(ICP-MS)法测定黑土地地表基质调查样品中碘[J]. 中国无机分析化学, 2024, 14(7): 980−985. doi: 10.3969/j.issn.2095-1035.2024.07015
Xie X, Lu B, Zhao W Z, et al. Determination of iodine in black soil surface matrix survey samples by inductively coupled plasma mass spectrometry (ICP-MS) with microwave digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2024, 14(7): 980−985. doi: 10.3969/j.issn.2095-1035.2024.07015
[24] 杜贯新. 松嫩黑土区西北部多流域黑土地球化学及重金属累积特征[D]. 大庆: 东北石油大学, 2023.
Du G X. The geochemical and heavy metal accumulation characteristics of black soil in the northwest of Songnen black soil region were studied[D]. Daqing: Northeast Petroleum University, 2023.
[25] 马树侠, 高明飞. 微波消解/湿法灰化-电感耦合等离子体原子发射光谱法测定原油重油中6种金属元素的含量[J]. 理化检验(化学分册), 2022, 58(4): 481−484. doi: 10.11973/lhjy-hx202204020
Ma S X, Gao M F. Microwave digestion/wet ashing-inductively coupled plasma atomic emission spectrometry was used to determine the contents of six metal elements in crude oil and heavy oil[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2022, 58(4): 481−484. doi: 10.11973/lhjy-hx202204020
[26] 孙孟华, 朱永晓, 赵烨, 等. 过氧化钠碱熔-电感耦合等离子体质谱法测定地质样品中锆铌铪钽和稀土元素[J]. 冶金分析, 2024, 44(9): 35−44. doi: 10.13228/j.boyuan.issn1000-7571.012424
Sun M H, Zhu Y X, Zhao Y, et al. Determination of zirconium, niobium, hafnium, tantalum and rare earth elements in geological sample by inductively coupled plasma mass spectrometry with sodium peroxide alkali fusion[J]. Metallurgical Analysis, 2024, 44(9): 35−44. doi: 10.13228/j.boyuan.issn1000-7571.012424
[27] 席秀丽, 安婷婷. 电感耦合等离子体发射光谱法测定高岭土中8项组分含量[J]. 分析仪器, 2024(3): 25−30. doi: 10.3969/j.issn.1001‐232x.2024.03.005
Xi X L, An T T. Determination of 8 components in kaolin by inductively coupled plasma emission spectrometry[J]. Analytical Instrumentation, 2024(3): 25−30. doi: 10.3969/j.issn.1001‐232x.2024.03.005
[28] 乔柱, 范广宇, 赵秀荣, 等. 碱熔酸浸-原子荧光光谱法检测铬铁矿中砷和铅[J]. 分析试验室, 2023, 42(5): 613−617. doi: 10.13595/j.cnki.issn1000-0720.2022.031402
Qiao Z, Fan G Y, Zhao X R, et al. Detection of arsenic and lead in chromite by alkali fusion-acid dissolving atomic fluorescence spectrometry[J]. Chinese Journal of Analysis Laboratory, 2023, 42(5): 613−617. doi: 10.13595/j.cnki.issn1000-0720.2022.031402
[29] 范俊楠, 张钰, 李国坡, 等. 基于不同前处理方式ICP-MS法测定土壤中22种金属元素[J]. 分析科学学报, 2024, 40(4): 454−460. doi: 10.13526/j.issn.1006-6144.2024.04.012
Fan J N, Zhang Y, Li G P, et al. Determination of 22 metals in soil by ICP-MS based on different pretreatment methods[J]. Journal of Analytical Science, 2024, 40(4): 454−460. doi: 10.13526/j.issn.1006-6144.2024.04.012
[30] 薛丁帅, 李文君, 王静, 等. 地质样品中钴、镍的分析进展[J]. 岩石学报, 2023, 39(4): 1217−1232. doi: 10.18654/1000-0569/2023.04.18
Xue D S, Li W J, Wang J, et al. Advances in analysis for cobalt and nickel in geological materials[J]. Acta Petrologica Sinica, 2023, 39(4): 1217−1232. doi: 10.18654/1000-0569/2023.04.18
[31] 郭琳, 于汀汀, 孙红宾, 等. 偏硼酸锂熔融-电感耦合等离子体发射光谱法测定铍矿石中的铍及主量元素[J]. 岩矿测试, 2024, 43(2): 356−365. doi: 10.15898/j.ykcs.202308070129
Guo L, Yu T T, Sun H B, et al. Determination of beryllium and major elements in beryllium ores by inductively coupled plasma-optical emission spectro-metry with lithium metaborate fusion[J]. Rock and Mineral Analysis, 2024, 43(2): 356−365. doi: 10.15898/j.ykcs.202308070129
[32] 袁润蕾, 李小辉, 于亚辉, 等. 偏硼酸锂熔融-电感耦合等离子体发射光谱法测定有色金属矿中二氧化硅[J]. 现代化工, 2024, 44(S2): 391−396. doi: 10.16606/j.cnki.issn0253-4320.2024.S2.069
Yuan R L, Li X H, Yu Y H, et al. Molten lithium metaborate-inductively coupled plasma emission spectrometry for determination of silicon dioxide in non-ferrous metal[J]. Modern Chemical Industry, 2024, 44(S2): 391−396. doi: 10.16606/j.cnki.issn0253-4320.2024.S2.069
[33] 甘黎明, 薛玉容, 黄云杰, 等. 碱熔-基体匹配-电感耦合等离子体发射光谱(ICP-OES)法测定硬岩型锂矿中锂和铷[J/OL]. 中国无机分析化学(2025-02-08)[2025-04-10]. http://kns.cnki.net/kcms/detail/11.6005.O6.20250208.1534.009.html.
Gan L M, Xue Y R, Huang Y J, et al. Determination of lithium and rubidium in lithium ore by inductively coupled plasma optical emission spectrometry (ICP-OES) with alkali melt and matrix matching[J/OL]. Chinese Journal of Inorganic Analytical Chemistry (2025-02-08)[2025-04-10]. http://kns.cnki.net/kcms/detail/11.6005.O6.20250208.1534.009.html.
[34] 夏传波, 成学海, 姜云, 等. 密闭酸溶-电感耦合等离子体发射光谱/质谱法测定花岗伟晶岩中32种微量元素[J]. 岩矿测试, 2024, 43(2): 247−258. doi: 10.15898/j.ykcs.202307310105
Xia C B, Cheng X H, Jiang Y, et al. Determination of 32 trace elements in granite pegmatite by inductively coupled plasma-optical emission spectrometry and mass spectrometry with closed acid dissolution[J]. Rock and Mineral Analysis, 2024, 43(2): 247−258. doi: 10.15898/j.ykcs.202307310105
[35] 程祎, 李志伟, 于亚辉, 等. 高压密闭消解-电感耦合等离子体质谱法测定地质样品中铌、钽、锆、铪和16种稀土元素[J]. 理化检验(化学分册), 2020, 56(7): 782−787. doi: 10.11973/lhjy-hx20200700
Cheng Y, Li Z W, Yu Y H, et al. Determination of Nb, Ta, Zr, Hf and 16 rare elements in granite pegmatite by inductively coupled plasma mass spectrometry with closed acid dissolution[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2020, 56(7): 782−787. doi: 10.11973/lhjy-hx20200700
-